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Fourier Coefficients of Cusp Forms 

R.W.  B r u g g e m a n  

Stichting Opleiding Leraren, Postbus 14007, Utrecht, The Netherlands 

Abstract. Let 01,0 2, ~ 3,... be an orthonormal basis of the space of cusp forms of weight zero for the full 
modular group. Let 

~k~(z) = ~ yj, W~(4~z In[ y) e 2~"x 
n # 0  

be the Fourier series expansion. The following theorem is proved: 
Let a~(�88 �89 let f be a holomorphic function on the strip IRe s[ < or, satisfying f ( -  s)= f (s )  and 

f (s )  = C([�88 s2l - 2 [cos lrs[- 1) 

on this strip; let rn and n be non-zero integers, then 

co 

f(ss) "7:., 7~. 
j = l  

converges and is equal to 

-(2rci) -1 ~ f(s)coo(-S)Cot,,l(S)Col,l(s) ds 
R e s = 0  

+(2rci)-l(47tlrnl) 1 ~ f ( s )e , , . ( s )2sds  
R e s = a  

-6 , , , (2n i ) - t (4~z lm[)  -1 ~ f(s)sinTzs 2 s d s .  
R e s = 0  

The functions Coo(S ) and c01.,l(s ) are coefficients occurring in the Fourier series expansion of the 
Eisenstein series; the function c,.,(s) is a coefficient in the Fourier series expansion of a Poincar+ series. 

The theorem is applied to obtain some asymptotic results concerning the Fourier coefficients ?~.. 
Under additional conditions on the function f the formula in the theorem is modified in such a way that 
the Fourier coefficients of holomorphic cusp forms appear, 
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T h e  m a i n  ob jec t  o f  this  p a p e r  is to  de r ive  a f o r m u l a  c o n t a i n i n g  the  F o u r i e r  
coeff ic ients  o f  cusp fo rms  wi th  we igh t  ze ro  for the  full m o d u l a r  g roup .  Th i s  f o r m u l a  
is s imi la r  to the  Se lbe rg  t race  f o r m u l a  (see [4 /~ tppend ix ] ,  [1, 3]), as it  re la tes  a 

ce r t a in  s u m  o v e r  the  s p e c t r u m  of  the  L a p l a c e  o p e r a t o r  to a n u m b e r  o f  integrals .  T h e  

d i f ference  is tha t  it is n o t  o b t a i n e d  by  c o m p u t i n g  in t w o  ways  the  t race  o f  a ce r ta in  
o p e r a t o r ,  bu t  by  d o i n g  the  s a m e  th ing  for  a d o u b l e - s i d e d  F o u r i e r  coeff ic ient  o f  the  

ke rne l  o f  the  ope ra to r .  
T h e  in tegra ls  in the  f o r m u l a  c o n t a i n  F o u r i e r  coeff ic ients  of  E i sens te in  a n d  

P o i n c a r 6  series, wh ich  are  be t t e r  k n o w n  t h a n  the  F o u r i e r  coeff ic ients  o f  cusp  forms.  
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Section 1 of this paper contains general results about automorphic forms of 
weight zero. In Section 2 a connection is studied between Poincar6 series and the 
resolvent of the Laplace operator. In Section 3 the main theorem is derived. In the 
last two sections the theorem is used to get some information about the Fourier 
coefficients. Section 4 contains asymptotic results and in Section 5 a link is made 
with the Fourier coefficients of holomorphic cusp forms. 

I thank the referee for his remarks; notably the suggestion to look at evidence 
for the Ramanujan conjecture (see Sect. 4) and a simplification in Section 5. I thank 
Prof. T.A. Springer for the interest he has shown in my work on this paper. 

1. Preliminaries 

This section serves mainly to fix notations and to recall results. References are [4], 
[5, Ch. XIV], [8]. 

On the upper half plane H the group F=SL2(Z ) acts. The operator L =  

_ y2 \~-~-T + ~y2/is  invariant under F. The measure dz = y -  2 dx dy is also invariant 

under F. 
F-invariant eigenfunctions of L with eigenvalue � 8 8  2 have a Fourier series 

expansion 

(1.1) ~ a,(y)e 2~i"x, 
n~Z 

where a n satisfies the differential equation 

(1.2) a~,'-(4n 2 n 2 - ( � 8 8  =0.  

So for s4:0 the function a o is a linear combination of y~§ and y~-S. For  n ~ 0  all 
solutions are linear combinations of W~(4z ]nl y) and V~(4n Inl y), where 

(1.3) W~(y) = z~- ~ y~ Ks(y/2), 

(1.4) V~(y) = n �89 y~ Is(y/2 ). 

K s and I s are modified Bessel functions, see [14]. I'll use the following asymptotic 
behaviour for y ~ c~ 

(1.5) W~(y),,~e -r/z for R e s >  - �89 uniform for s in compact sets, 

(1.6) Vs(y)~e y/2 for R e s >  - �89 uniform for s in compact sets. 

Examples of F-invariant eigenfunctions are the Eisenstein series ~/~ and the 
Poincar6 series P~s with meZ, m~:O. For Res> �89  they are obtained as a sum of 
translates of the function yS+~, resp. V~(4nJmly)e 2~imx. These functions are 
eigenfunctions of L invariant under the subgroup of F consisting of the upper 
triangular matrices in F. Therefore one takes the sum of all translates by a set of 
representatives of F modulo that subgroup. The functions t/s and P~s so obtained 
have a meromorphic continuation as functions of s and they satisfy a functional 
equation for s~--, - s .  
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(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

Icoo(s)l = 1 

and for all ~ > 0 

Co i.l(s) = (9(I Im sl ~ IF(s)l- 1) 

The Eisenstein series has a Four ier  series expansion 

qs(z) = y ~ + '  +Coo(S)y ~-~ + ~ CoN(S ) W~(4 n Inl y) e 2"I"~, 
n 3 : 0  

C0o(S ) = n ~- �89 F ( � 8 9  s) ((1 - 2 s)/(n- ~-~ F(s + 1) ((1 + 2 s)), 

col.l(s)=lnl--}-~a2s(Inl)/(n-~-SF(s+�89 +2s ) )  for I n l # 0 ,  

O-2s(In[)= ~ d 2'. 
aim 

Lemma .  On the line Re s = 0 one has 

I Ims l - - ,  oo. 

Proof The first assertion is clear; the second one follows f rom [13, p. 114]. 
The Fourier  series expansion of the Poincar6 series is 

(1.12) 

(1.13) 

(1.14) 

t -  s Pms(Z)=qmjO(S)y ~ + <(47Z Imly)e 2=imx 

+ ~ cm,(s) W~(4~[nly)e 2~i"x, 
n * O  

clmlo(S) = 2  n 2 s- l Iml Corral(s), 

"2 ~ Im/nl ~ ~, rm,(C ) e-  1 j2~( 4 n c -  a Im nl ~) 

e m . ( s )  = c = 1  

2 n [m/nl ~ ~ rm,(C ) c-  1 i2,( 4 n c -  1 ]m n[ ~) 
C = I  

if mn>O 

if mn<O. 

Here J2s and I2s a r e  Bessel functions (see [14]) and rm,(C ) denotes a K loos t e rman  
sum: 

c - 1  

(1.15) rm,(C)= ~ e 2~i{ma'+na)/r with dd'=-lmodc.  
d = 0  

(d, c) = 1 

It satisfies for all e > 0 

(1.16) rm,(C)=(9(c ~+~) c ~  ~ ;  

see [11] and [15]. Hence  the sum for c,.,(s) converges for R e s > � 8 8  For  a general 
Fuchsian group one would be sure of  convergence only for Re s >�89 

For  a p roof  of  (1.12-14) see [9]. 
It  is interesting to look at the Poincar6 series for s = �89 As W}(y) = e -  y/2 and V~(y) 

= e  y/2 - -e  -y/2, one has for m >  1 
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(1.17) P ~ ~_ -2rtimz -m, �89  

+ 24al(m) + ~ ~1~ 2ninz 
c _  m, . ~  e 

n = l  

z l \  -2~in~. --e-2nirae" q - C _ m , - n [ ~ ) e  �9 
n = l  

The term e-2.~mz is the only term which is not square integrable on the standard 
fundamental domain of F\H. There is a meromorphic function p(z), a polynomial in 
the modular invariant j(z), such that p ( z ) -  e -2~.~  is also square integrable on the 
standard fundamental domain. As the only square integrable eigenfunctions of L 
with eigenvalue 0 which are F-invariant as well, are the constant functions, it is clear 
that P_.~,~-p is a constant. Hence 

(1.18) c_,,,_,(�89 for m,n>0 .  

(1.14) gives a series for the Fourier coefficients of p. Taking m= 1 one gets the 
formula of Petersson for the Fourier coefficients of j, see [10, p. 202]. From (1.14) it 
is clear that also 

(1.19) c,,,(�89 for m,n>O. 

Lemma. Let at(�88189 let m and n be non-zero integers, then 

(1.20) e,,,(s)=(9((4nZ[mn[)ReSlF(2s+l)[-1) uniform for Res>~r, 

(1.21) c,,,(s)=(9(e ~f'msl [Ims[ -k-zRes) for [Ims[ ~ ~ ,  

Re s > ~ fixed. 

Proof. Let Re s > a. 

(1.22) Cr..(S) ~ ~ Irm.(C)l C -1 ~ (2 ~t c- l lm nl~)2R~ zk/ (k ! lF(Z s + k + l )l) 
c= 1  k = 0  

[rr..(e)lc -1-2ReS (2rtlmnl~)2R~s[F(2s+ l)1-1 
c 

o~ (2 rc Im hi�89 2k 
X 

k~ok!12s+ l l12s+21 . . . [2 s+k l  

4(4  ~2 Im nl) Re~ IF(2 s + 1)[- 1. 

The second assertion follows from Stirling's formula. 
The functions cm.(s) are connected with the Fourier coefficients of holomorphic 

Poincar6 series. Take m ~ 1 and k > 2; denote 

(1.23) g k m ( Z ) = Z  e2nimAZ(CZ-}-d)-2k ,  

a s0t of re1 ires modulo sub rou  of 

upper triangular matrices. One has: 
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oo 

(1.24) gk,,(z)= ~ (6,,,+(--n/m)kcm,(k--�89 
n = l  

see [-6, p. 298]. 
There are no values of s for which P,,s or t/S are square integrable functions on 

F\H with respect to dz = y- z dx dy. Yet in some way the Eisenstein series and the 
Poincar6 series are sufficient to get the whole of ~,~ The space ~2(F\H) is the 
orthogonal sum of subspaces Y~2(F\H) and ~2(F\H). The Eisenstein series t/s with 
Re s = 0 and Im s > 0 span ~2(F\H) as a continuous direct sum. s is spanned 
by square integrable eigenfunctions of L. A one-dimensional subspace of s (F\H) 
is the space of constant functions; a nontrivial one of them can be obtained as the 
residue of t/S in s = �89 All other square integrable eigenfunctions have eigenvalues 
larger than �88 they are called cusp forms. The corresponding values of s satisfy Re s 
= 0, s ~= 0. It is a special feature of SL2(Z) that there are no eigenvalues in (0, �88 see 
[7, thin. 32, p. 203]. All cusp forms are linear combinations of residues of Poincar6 
on the line Re s = 0. 

Let 01 ,0e ,03  .. . .  be a complete orthonormal system of cusp forms, with 
eigenvalues 21__22 =<)1.~ <= .... I take 2j -1-~-sj,2 with sj=itj, tj>O. 

From the Selberg trace formula follows that 

= - -  +(9(v -~-~) for v',~O. (1.25) e_VZ j 1 v- 1 
j=l 12 

This may be derived by taking h(r)=e - ~  in [-4, appendix]. (1.25) implies 

(1.26) 2 j~ 12 j  for j ~ oc. 

One may assume that the cusp forms 0r all are eigenfunctions of all Hecke 
operators T, (n> 1) and T 1. These operators I normalize in this paper as follows: 

(1.27) T_l f (z )=f( -z -  ), 

(1.28) T,f(z)= ~ f((az+b)/d) for heN.  
ad=n,bmodd 

(a,b,d)= 1 

The Fourier series expansions of the 0r are of the form 

(1.29) 0r(z)= ~ 7r, W~j(47r Inl y) e 2~i"x. 
n:#0 

I'll call the 7jn Fourier coefficients although properly 7r, W~,(4 rc Inl y) would deserve 
that name. 

Let neN and let 2j, be the eigenvalue of T, with respect to 0r. Then an easy 
computation shows that 

(1.30) yj,=Tjx n-x ~ 2j,/d2. 
d21n 

From the Selberg trace formula follows for n > 2 

(1.31) ~ 2r, e -va, =(9(v -~-~) for v'~O. 
j = l  
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This can be found by taking h(r) = e-  ~'~ in [3, (11, 10)]. The term ~ v- 1 in (1.25) is 
due to the identity o fF ;  in the double F-coset corresponding to T, the identity does 
not occur; all other terms give contributions of the order (9(v-~-~). From (1.31) 
follows 

k 

(1.32) ~ 2j ,=o(k) for k ~ ~ .  
j = l  

2. The Resoivent of  L 

There exists a connection between Poincar6 series and the resolvent of the 
unbounded operator L on ~2(F\H) .  This connection will be used in Section 3. 

For � 8 8  2 outside the spectrum of L one has in ~2(F\H) the bounded operator 

(2.1) R(s)= [L-( �88 -1 

Faddeev uses this operator to define the function q~ directly for Re 1 3 se( -~ ,~) ,  see 
[2], [5, Ch. XIV]. (The variable s in [5] corresponds to s + �89 in this paper.) 

Let meZ, rn#0  and ~e Cff(1, oo) be given; by taking ~(y) =0  for y <  1, one may 
consider ~ as a function on (0, oo). The function O,,,eC~(F\H) is defined by 
prescribing its values on the standard fundamental domain F={zeHIIzl>O, 
IRezl<�89 

(2.2) ~m(Z)=O~(y)e 2nimx for zeF. 

The function 

(2.3) 't,,,~=R(s)O,m 

is a square integrable function on F\H for Re s > 0, s + �89 Moreover it satisfies 

(2.4) L~l,ms=(�88 

Let for y > 0 :  

y 

(2.5) b, lml~(y ) -- (4 n [m])- 1 V~(4 n [m[ y) j" W~(4 ~ [ml y') ~(y') y ' -  2 dy' 
0 

y 

-- (4 ~ [m])-i  I,V~ (4 ~z Iml y) ~ V~(4 ~z ]m] y') ~(y') y'-  2 dy' 
0 

and 

(2.6) 

then 

(2.7) 

l,,~(z)=b, lml~(Y)e 2'~im~ for zeF, 

L l~ms(Z ) = (�88 - -  S 2) l~,~s --  ~ m "  

SO ~/~m~ + l~ms is an eigenfunction of L with eigenvalue � 8 8  s 2. 
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(2.8) Proposition. Let 

w~l,,f(s ) = ~ W~(4 n Iml y) c~(y) y -  2 dy, 
o 

then 

r/~,,s + l~ms = (4 72 [m[)- 1 W~lml(S) Pms 

for all s with Re s > 0, s 4= �89 

Proof. As � 8 8  s 2 is not  an element of the spectrum of L, it is sufficient to show that  the 
left and right hand sides of the equality differ by a function in L~2(F\H). I prove this 
for �89 Re s < 23; then it is true elsewhere as both  sides are meromorphic  in s. The 
following lemma will be proved:  

(2.9) Lemma.  If �89 then ~ems(Z)=(-Q (y~-R~S) for y ~ .  

Hence q~,,~ is square integrable and its contr ibut ion to all Four ier  coefficients is 
bounded.  As l~,,, does only contr ibute to the m-th Fourier  coefficient, one needs 
only look at this coefficient. It has the form 

(2.10) uVC~(4~lmly)+vV~(4~lm[y). 

As the W~-term is square integrable on F, it is sufficient to determine v. This can be 
done by taking lim of this Fourier  coefficient multiplied by e-Z~lmly, see (1.5) and 

y ~  

(1.6). By the lemma the contr ibut ion of rt,,,s is zero. 

(2.11) v =  lim e-Z~lmlyb, lml~(y)=(47~ Im I)- 1W~lml(S)" 

SO 

(2.12) r/~m ~ + l,,,~--(4rc Iml) -~ W, lml (s) Vs(4 rc Im[ y) e 2=~m~ 

modulo  ~c~2(F). By (1.12) one gets the proposition. 

Proof of Lemma (2.9). I'll use several results from [5, Ch. XIV, w 8 and w 10] ; the 
variable s in [5, Ch. XIV] corresponds with s + �89 in this paper. 

The resolvent can be expressed in other  operators  Q and B, acting on functions 
on F;  for the meaning of Q, o9 and B see [5, Ch .XIV] :  

(2.13) R(s)=Q(s+�89 +og(s+�89189189 +~(s+�89189 

The proof  of Lemma (2.9) now is completed by checking the following steps: 

(2.14) Q(s+�89 

(2.15) B(s+�89 O~m~(Z)=(9(y -~) for y ~ ,  z~F, 

(2.16) Q(s+�89 ~-"~) y ~ ,  z~F, 

for any functionfsatisfyingf(z)=(9 (y-1) on F. 
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(2.17) Proposition. Let n E Z, n + O. The n-th Fourier coefficient of q~,,s is equal to 

(4~ lml) -~ Woqm](S ) Cm.(S ) WA4rc I rnl y) - (~mn b~lmls(Y) 

q-(~mn(47t Iml)- a Wot[m[(S) V~(4~ Imly). 

Proof See (1.12) and (2.8). 

3. A Formula Containing Fourier Coefficients of Cusp Forms 

In this section I derive a formula containing the yj, of (1.29). The idea is to take two 
simple functions ~0~ and r in L~'Z(F\H) and a holomorphic function g such that the 
operator g(L) makes sense. Then I express (g(L) q91, (/92) in two ways. The first way 
is based on the decomposition ~PZ(F\H)=~LP2(F\H)+~.~cp2(F\H) and gives an 
expression of (g(L) qh, ~02) in terms of Eisenstein series and the basis {Oj} of the 
cusp forms. The other way is based on the description ofg(L) as an integral around 
the spectrum of L. In the equality so obtained the functions ~01 and r occur. In two 
steps the dependence on the special form of ~0~ and tp2 is removed. 

In this section two non-zero integers m and n and a real number a ~(�88 �89 are kept 
fixed. 

Let f be a holomorphic function on a neighbourhood of the strip [ Re s[ < a, 
satisfying 

(3.1) f (--s)=f(s)  

(3.2) f(s)=O((�88 -4) on the strip JResl<a.  

The function g defined by g(�88 - s 2) =f(s)  is bounded on the spectrum of L restricted 
to the orthogonal complement in s of the constant functions. Therefore 
there exists a bounded operator g(L) on this subspace of Aez(F\H). 

Take ~ , / ~  C~(1, ~ )  with 

l < x < y  for all x~supp(~) and y~supp(fl). (3.3) 

Let 

(3.4) q) l :~ctm and q~2 =~#.,  

then qh, ~oz6SYZ(F\ H) and q~1, q~2 are orthogonal to the constant functions. I 
consider the inner product 

(3.5) (g(L)q91,q~2) = S g(L)qgx(z)<Pz(z)dz" 
F\H 

It is equal to the sum o f a "  cuspidal part" and a"  Eisenstein part". The cuspidal part 
is 

(3.6) ~, g(Ab)<Cpl , ~bj)(<p2 , I//j); 
j = l  
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by (1.29), the definition ofw..(') in (2.8) and the fact that W~ (y) = W~j(y), it is equal to 

(3.7) ~, f(sj) 7j,, Yj, W, lml (S j) Wt~l, I (St). 
j = l  

The Eisenstein part is 

(3.8) (2hi) - t  ~ f(s)E~ox(s)Eq}2(s)ds, 
R e s = O  
I m s > O  

where for any q} ~ C[ (F\H) 

(3.9) E~0(s)= ~ q}(Z)qs(z)dz. 
FXH 

The Eisenstein part equals 

m 

(3.10) (2~i ) - '  ~ f(s)E~p,(s)Eq}2(-s)ds 
R e s = O  
I m s > 0  

=(2ni ) -x  ~ f(s)Coo(_s)Eq~a(s)E~o2(s)d s 
R e s = O  
I r e s > 0  

=(4n i ) - I  ~ f(s)Coo(_s)Eqh(s)Eqo2(s)d s 
R e s = O  

= ( 4 n i ) - i  ~ f(S) Coo(_S)Col,,l(S)Col,t(s)w~lml(s)w#l,l(s)ds. 
R e s = 0  

The sum of the expressions in (3.7) and (3.10) equals (g(L)tp l, q ) 2 ) "  

To express the same expression in another way the resolvent R(s) can be used. 
Let C 1 be a contour in the A-plane going around [�88 oo) in negative direction at a 
distance 6 with 6 e(0, �89 Then 

(3.11) (g(L) (Pa, ~o2) =(2n i)-1 f g(2) ( (L-2)  -a q)l, (])2) d~. 
Ci 

Let C 2 be the contour in the s-plane with Re s > 0  corresponding to C 1 under 
2 �88 s 2 Then 

(3.12) (g(L)(/2}1} ~02) =(2~ 0 -1 Sf(s)(R(s)qh, q}z)(-2s)ds  
C2 

=(2hi)  -1 S f(s)(R(s)qh,q)2) 2sds" 
Res=tT 

Let 

(3.13) v~l~l(s ) = ~ Vs(4g Iml y) cr -2 dy, 
0 
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then by Proposi t ion (2.17) the expression in (3.12) equals 

(3.14) (2 rc i ) - l (4z lml )  -1 S f(s)W~lml(S)Wpl,l(s)cmn(s)2sds 
R e s = ~  

+ ~ n ( 2 ~ 0  -l((4~lml) -1 ~ f(s) w~lml(s)vplmj(s)2sds 
R e s = a  

ct3 

- ~ f(s) Sb~m,(y)~Iy)y-2dy2sas}.  
Res= t r  1 

In the terms with 6,~ the path of integration may be moved to the line Re s = 0. 
Keeping (3.3) in mind one sees that these terms are equal to 

(3.15) 6,.n(2xi)-l(4xlml) -1 ~ f(s){W~lml(S)VBl~l(s ) 
R e s = O  

- -  W~tlm I (S) V~] [m I (S) "[- Vat im I (S) W~ im I (S)} 2 s ds. 

As V_~ = V~ + 2 sin n s W~ and f ( - s )  = f ( s )  one gets 

(3.16) 6m,(2ni)-l(4nlm[) -1 ~ f(s)l(v~l~l(s)-v~lml(-s))wal,,l(s)2sds 
R e s =  0 

= - 6 m , ( 2 r c i ) - l ( 4 n l m [ )  -1 ~ f (s )s inns  W~lml(S)W~l,,l(s)2sds. 
R e s = 0  

From (3.7), (3.10), (3.14) and (3.16) follows: 
oo 

(3.17) ~f(s~)7~m 7~,w~lml(sj) wal,l(s ~) 
j=l  

= - ( 4 n i ) - t  ~ f(s) Coo(--S)Colml(S)Col,l(s)w~lml(s)wpl~l(s)ds 
R e s = O  

+(2rc i ) -~(4nlml)  -1 ~ f(s)cm.(s)w~l~l(s)wal.l(s)2sds 
R e s = o  

-3,~.(27~i)-l(4rctml) - t  ~ f ( s ) s inxs  W~tml(S)Wat,l(s)2sds. 
Res=O 

In each term of  (3.17) occurs 

(3.18) w~lml(s)wal,l(s) 

= ~ W~(4nlmly) W~(4nlnly')ct(Y)fl(Y')Y-2dyy'-2dy '. 
1 ~ y < y '  

To remove the dependence of(3.17) on 7 and fl I first take the integral over y and y' 
outside the sum and integrals in (3.17). For  each term one has to check whether this 
is allowed. 

F o r  the first term it is sufficient to prove that  

(3.19) ~ If(sj)y~m yj, W~j(4~lmly) W~j(4~zlnly')l 
j = l  

converges. 

(3.20) Lemma.  y~, W~j(47~ I nl Y) = (9 (2j) j ~  oo, uniform for y > O. 
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Proof  Given ~ >~  Faddeev defines two operators Tand  Vsuch that R(~c) = T +  V, as 
can be found in [-5, Ch. XIV, w 8]. Directly from the definition of T follows that 
T ~ = 0  for all cusp forms ~k; hence I[lj=(t~j--l-[-ls gl[lj. Now V is a bounded 
opera tor  ~ 2  (F\H) --. &t'~ (F\H), see I-5, Ch. XIV, w 8]. Hence 

(3.21) II 0-/II ~o ~ (~-/- �88 + ~c2) II ~'-/II 2 ~'t-/. 

As 1~-/~ Wsj(4 zr In[ Y)I < ]lq@] o~ the assertion of the lemma follows. 
Lemma (3.20) and (1.26) ensure the convergence in (3.19), uniform in y and y'. 
For  the second term one needs 

e~ 

(3.22) W~(y)=~-122~+ZF(s+~)y -~-~ ~ u s i n ( � 8 9  
0 

which can be derived from Basset's formula for K s, see [14, p. 172]�9 F rom this and 
(1.11) follows that 

(3.23) If(s) Coo( - s) Col,.l(s ) c01.1(s ) W~(4 rc Im[ y) W~(4 zt In[ Y')I 

=0 ( [ Ims[  2~-6) for [Ims[ ~ 0% R e s = 0 ,  

uniform for y > 1, y' > 1. Hence the integral of the expression in (3.23) converges on 
the line Re s =0,  uniform in y and y'. 

For  the last terms in (3.17) one proceeds analogously, using (1.21) for the third 
term. 

Having moved the integrals over y and y' outside one may consider (3.17) as an 
equat ion relating four distributions on the region y < y'. These distributions are 
given by continuous functions, hence the corresponding equation is valid for these 
functions: 

(3.24) Proposition. Let f and ~ be as in (3.1), let m and n be non-zero integers and let 
1 < y < y', then 

f(s-/) ~-/,. 7j. W~j(4 7c Iml y) W~j(4 7r Inl y') 
i=1 

= - ( 4 z c i )  -1 f f(s)Coo(-S)Col,.l(S)Col.l(s) 
R e s = O  

�9 W~(4 rc Iml y) W~(4 ~z Inl y')ds 

+(2r~/)-1(4~lm[)  -1 ~ f(s)c, . . (s)  
R e s = a  

�9 W~(4~ Imly) W~(4~ In ly ' )2sds  

-6 , . . (2zt i ) - l (4~zlml)  -1 S f ( s )s inrcs  
R e s = O  

�9 W~(4n Iml y) W~(4~ Inl y ' )2sds .  

In the equality in Proposi t ion (3.24) the variables y and y' occur. To be able to 
remove them, one has to add conditions for f 
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(3.25) Lemma. Let the function f in (3.24) satisfy the additional condition 

f(s) = (9(I �88  s21- 2 Icos rc sl- 1) 

for [Re s l N a; then for each term T in the right hand side of the equality in (3.24) the 
limit 

lim lim e2ntlmly+lnly')T 
y~oo  y '~oo  

exists and can be evaluated by taking the limit inside the integral. 

Proof. From (3.22) follows that 

(3.26) IW~(y)I < WRo~(y). 

Using this, the asymptotic behaviour of WRe ~ in (1.5) and the estimates made in the 
proof of(3.24), it is easy to apply the dominated convergence theorem of Lebesgue. 
The factor [cos z~s]-1 in the bound o f f  counteracts the F-factors in Colnl(s ) Coital(s) 
and Cm,(S) and the factor sin Ks. 

The first term in (3.24) cannot be handled in the same way, as the order of growth 

of 7jm 7j, is not known. Instead of dominated convergence Fatou's lemma will be 
applied. 

(3.27) Lemma. Letf(s)  = (�88 s2) - 2(cos rc s)- 1, then 

f(sj) I~.1: 
j = l  

converges. 

Proof. By (3.25) the limit 

(3.28) lim lim ~, f(sj)I~j,I 2 e2~l"rtY+r')W~j(4~z Inl y) W~j(41z Inl y') 
y~oo y'~ct3 j =  1 

exists. As the terms are positive the assertion of the lemma follows by Fatou's 
lemma. 

(3.29) Theorem. Let ae(�88189 let f be a holomorphic function on the strip LResl <a ,  
satisfying f (  - s) = f(s) and 

f(s) = (9(1�88 s: l-  e ]cos zc sl- 1) 

on this strip; let m and n be non-zero integers; then 

f(sj) ~j-~ ?jn 
j = l  

converges, and 
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f(si)71m 7i, = - ( 2 h i )  -1 ~ f(S) Coo(--S)Colml(S)CoM(S) ds 
j = 1 R e s = O  

+ ( 2 n i ) - l ( 4 n l m l )  -1 ~ f(s)e, . ,(s)2sds 
R e s = ~  

-6 , , , (2ni ) - l (4nlm[)  -1 ~ f ( s ) s inns  2sds. 
R e s = 0  

Remark. The Fourier  coefficients 7i, are defined in (1.29); the functions c..(s) can be 
found in (1.8), (1.9), (1.13) and (1.14). 

Proof The only thing left to do is to take the limits inside the sum in 

lim lim ~ f(si) Tim 7i, e2~0mly+ Inly') W~,(4n Iml y) W~,(4n In[ y'). 
y ~ o o y ' ~ j =  I 

But now we can use dominated  convergence, for by Lemma(3.27) a multiple of 

f(si)(171ml 2 + 17i.I 2) 

is summable;  so it can be used as majorant .  

4. Some Asymptotic Results on Fourier Coefficients of Cusp Forms 

Theorem (3.29) is used as a starting point  for the derivation of asymptot ic  estimates 
for the 7j.. 

Throughout  this section ty denotes Im sj. 

(4.1) Proposition. 

~ e - ~ a '  7im ViJ c~ n t i = 3m.(4 ~2 I ml)- 1 v-  1 + (;(v- ~- ~) 
j = l  

for v"~O, with e>0 ,  

Proof. Take in (3.29) 

(4.2) f(s) = e -  v~�88 s2)/cos n s. 

The second and third term in (3.29) are (_9(v -~-~) and (9(v -~) as follows from (1.11) 
and (1.21). The last term gives 

(4.3) bmn(2 if2 [m[)- ~ e -~v ~ t e-"t2(1 + (9(e- 2~t)) dt 
0 

-- 6m.(4n2 [ml)- 1 v-  1 + ~(1) for vx~0. 

(4.4) Corollary. 

e -~zJ [yi.lE/cosh n t1 = (4~Z 2 Inl)- 1 U -  1 Ar(Q(V-~-e ) 
1=1 
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for v'~ O and hence 

N 

17jnlZ/cosh ~ tj ~ 3(~ e Inl)- 1N 
j = l  

N-~ oo. 

For the last assertion (1.26) is used. 
One may interpret Corollary(4.4) as saying that on the average 17j1[ equals 

n-x(3 coshn tj) ~. It will turn out that the exact equality lTjll =n-1(3 coshn tj) ~ 
cannot be valid for all j. 

In the following p is a fixed prime number. By (1.30) one has for all integral n > 1 : 

(4.5) limv ~, p-n( ~ 2jp,)lTjl[Z(coshntj)-l e-VXj=O. 
v', ,O j = I  O<-_l<n 

n - I even 

Now ~ Rip, is a polynomial in 2jp, not depending on j. This polynomial h, is 
O<_l<=n 

n - -  1 e v e n  

determined by 

(4.6) 

So 

(4.7) 

hn(p�89 2 + ... +u"). 

4~p(h) = lim v ~ h(2jp) l Yjl 12 (cosh n t j)- 1 e- vx, 
vNO j = l  

defines a functional ~p on the polynomials in one variable, satisfying 

(4.8) q~p(1) =(4 n2) - 1, 

(4.9) q~p(h,) = 0 for n > 1. 

This functional can be described as a measure on [ - 2 p ~ , 2 p  ~] given by a 
continuous function: 

(4.10) Proposition. Let 4~p be the functional given in (4.7). Then 

2 p:~ 
qip(h) = _ Sp~ h(2) (8 zt 3 p)- 1(4 p - 22) ~ d2. 

Proof cI)p is determined by (4.8) and (4.9). These equalities are easily checked 
making the substitution 2=  2p ~ cos $ and using (4.6). 

It is known that 12jpl<p+l for all j. The Ramanujan conjecture for non- 
holomorphic cusp forms amounts to 

(4.11) 12jpl<2p ~ for all j;  

see [12]. Proposition (4.10) suggests that the majority of the 2jp satisfy (4.11). 
From (1.25) and (1.31) I'll derive a similar proposition; from it will follow that 

the Ramanujan conjecture is asymptotically true. 
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Let 7p be the following functional on the polynomials  

(4.12) 7p(h)=l im v L h(2jv) e-v~j 
vNO j = l  

Then ~, satisfies: 

(4.13) 7p(1) = 1/12, 

(4.14) 7 ~ ( h 0 = 0  and 

(4.15) tl~(h,)=tPp(h_z) for n=>2. 

(4.16) Proposition. The functional tip described in (4.12) satisfies 

2p�89 
7~,(h) = j" h(2)(p + 1)(24 re)- ~((p + 1) 2 - 22)- 1 (4p -  22) ~ d2. 

-2V�89 

Proof. Along the same lines as that  of  (4.10); take 

((p + 1)2 _ Z2)- 1 = (p _ e 2 i~) - 1 (p _ e - 2 i~) - 

and expand it as a series. 

(4.17) Proposition. Let k be the characteristic function of E - p - l , - 2 p � 8 9  
(2p�89 p + 1], then 

N 
l im N -  1 ~ k(2jp) = O. 

N ~  j = l  

This means  that  the 2jp not  satisfying (4.11) have density zero. 

Proof. Firstly r emark  that  (4.12) and (4.16) can be extended to all cont inuous 
functions on [ - p - l , p + l ] .  The next step is to approx imate  the function k by 
cont inuous functions to get 

(4.18) l i m v  L k(2jp) e-vaj=O. 
v'~O j = l  

Here  one has to use tha t  7~ has no points with non-zero measure.  Finally one 
obtains  the s ta tement  in the l emma  by a Tauber ian  argument .  

Combin ing  (4.10) and (4.16) one gets: 

(4.19) Corollary. For all polynomials h 

lim v ~ h(2jp) e -  vx,(3 rt-  2 _ }7~11z( cosh n t~)- 1) 
v"~0 j = l  

2p�89 
= ~ h(2)(8 x3 p) -  1 (4p - 22)�89 - p - 1)((p + 1) 2 - 22)- t d2. 

-2p�89 

Clearly l?jll = re-1(3 cosh x ti)�89 cannot  be valid for all j. Actual ly I don ' t  even 
know whether  the lTjll2/coshrc tj are bounded.  
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It is remarkable that the difference 3 re- 2 _ I 7j~ 12/cOsh rc tj and the eigenvalues of 
the Tp are dependent. On the other hand there seems to be no dependence between 
IYjxl2/cosh rc tj and the eigenvalues of T_ 1: 

(4.20) Corollary of (4.1). Let T_ 1 ~bj = ej O j, then 

~ e-V;~J�89 • +(-9(v -~-~) for v',~O. 
j = l  

5. A Connection with the Holomorphic Cusp Forms 

For k > 2 the number cm,(k - �89 is up to a factor the Fourier coefficient of a Poincar6 
series of weight 2k, see (1.23) and (1.24). In this Section I take the function f i n  (3.29) 
in such a way that the path of integration in the c,,,(s)-term can be moved to the 
right. The result is a formula in which the Fourier coefficients 7i, are connected with 
the Fourier coefficients of the holomorphic cusp forms. 

(5.1) Let keN,  k > 2; I denote by ~kk~, r . . . . .  ~krk an orthonormal basis of the 
holomorphic cusp forms for the modular group with weight 2k. For 2 < k < 5 the 
dimension r k is zero. Let 

(5.2) @kj= ~ 7kjn e2~inz 
n = l  

be the Fourier series expansion ~kj" Let m > 1; in (1.23) is given the corresponding 
Poincar6 series of weight 2k. Now the inner product of @kj and gk,, equals 

(5.3) 7jkm(41rm)~-2k(2k--2)! 

see [6, p. 286]. From this and (1.24) one easily deduces that 

rk 
(5.4) 6,., +(n/m)k(--1)k cm,(k--�89 2)!(4ztm) 1- 2k ~ "~kjm ~)kjn 

j = l  

for m,n> l. 

Now let ul, u 2 . . . . .  uq be points in the region Res> �89  satisfying ur+�89162 and 
q 

A1,A 2 . . . . .  Aq complex numbers with ~ Ar--O. Set 
r = l  

q 

(5.5) g(s)= Y~ Ar(s 2-ur)2 -1. 
r = l  

Then 

(5.6) g(s)=(9((1-s2) -2) for Isl large. 

Now let 

(5.7) f(s) =g(s)/cos rr s; 
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then f satisfies the conditions of (3.29). In the terms 

(5.8) (2hi)x(4nlmD -1 ~ f(s)cm,(s)2sds 
R e s = a  

-6m.(27zi)-l(47tJml) -1 ~ f(s)sinTrs 2sds  
R e s = 0  

the line of integration can be moved to the right. Let l~N be larger than 
Re u 1 . . . . .  Re uq. Then the sum of the terms in (5.8) equals 

(5.9) (2ni)-t(4n[m[) -1 ~ f(s)cm,(s)2sds 
R e s = l  

-6m,(2ni)-l(4nlm[) -~ ~ f (s )s inns  2sds  
R e s = l  

l 

-(4n Iml) -1 Z g(k-�89 1)k(2k -- 1) cm,(k-�89 
k = l  

l 

- -  C~mn(47r Iml) -1 ~ g(k)(2k- 1) 
k = l  

q 

-(4zc ]m[)- 1 ~ A,(cos nur)- 1 c,..(u,) 
r = l  

q 

+6m.(47rlml) -1 ~ Artanrtu,;  
r = l  

see the estimate of cm.(s) in (1.20). Furthermore the integrals over Re s = l tend to 
zero for 1 ~ oo. Hence one has the following proposition. 

(5.10) Proposition. Let m and n be non-zero integers; let g be as in (5.5). Then 

~, g(sj) 7jm y~Jcosh 7r tj 
j = l  

= - ( 2 ~ i )  -1 S g(s)(c~ -1Coo(--slcolmf(S)Col.l(s) ds 
R e s = 0  

- ( 4 ~  ]m[) -* ~ g(k)(-  1)k(2k-- 1) Cm.(k-�89 
k = l  

-6,..(4~ [m[)- 1 ~. ( 2 k -  1)g(k) 
k = l  

q 

-(4re Iml) -1 ~ A, cm,(ur)/cosnu r 
r = l  

q 

+6,,,(4rclrnl) -1 ~ Artanrcur. 
r = l  

Take m and n positive and use (1.19). Together with (5.4) this gives: 
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(5.11) Corollary. Let m and n be positive integers and let g be as in (5.5). Then 

~g ( s j )  ~)jm 7~./cosh n t~ 
j=l 

+ ( 2 n  i ) -  1 S g( s)(cOsns)-I COO(--S) COImI(S)COInI(S) ds 
R e s = O  

rk 

+ ~ g(k)(2 k -  1)!(16 7~ 2 m n)-k ~ 7kjm 7kjn 
k = 2  j = l  

q 

=(4n m)- a ~ A~( - c,..(u~)/cos n u~ + 6mn tan n u~). 
r = l  

The terms in the left hand side of the formula in (5.11) all have the same 
structure. They correspond to several components of the representation ofSLz(R ) 
in ~2(SL2(Z)\SLE(R)). 
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