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1. Introduction and statement of results

1.1. Hecke groups. The Hecke groups G(λ), with λ > 0, are the discrete
subgroups of SL2(R) generated by

(
1
0
λ
1

)
and

(
0
−1

1
0

)
. The condition of dis-

creteness implies that either λ = 2cos(π/q) with q = 3, 4, . . . , or λ ≥ 2. This
is the class of discrete groups for which Hecke [14] considered the relation
between Dirichlet series and automorphic forms; see also [15]. In [19] and
[20], Maass extends Hecke’s theory to real analytic automorphic forms.

This paper concerns the case λ < 2 only, hence λ = 2cos(π/q). Nota-
tion: Gq = G(2 cos π/q). It is well known that G3 = SL2(Z), the modular

group. Conjugates of the Hecke groups G4 and G6 are commensurable to G3.
The other Gq are incommensurable to conjugates of G3 and of each other;
see [18]. These Gq are called non-arithmetical as subgroups of SL2(R).

1.2. Dedekind sums. The classical Dedekind sum S(d, c), with c, d ∈ Z,
d > 0, c and d relatively prime, is a rational number that occurs in the
transformation formula for the eta function of Dedekind; see R. Dedekind’s
Erläuterungen zu den Fragmenten XXVIII in Riemann’s collected papers
[10]; especially formula (12) on p. 469, or see [24], p. 47. Dedekind obtains
an elementary expression for S(d, c), see (32) on p. 475; it is equivalent to

S(d, c) =
∑

x mod c

((
dx

c

))((
x

c

))
,

((u)) =




u− 1/2 if 0 < u < 1,
0 if u = 0,
((u+ n)) for all n ∈ Z.

In [24], Rademacher uses this expression as the definition.

Goldstein has generalized Dedekind’s approach to general cofinite dis-
crete subgroups of SL2(R); see [11]–[13]. This can be applied to the Gq and
gives a number T (c, d) ∈ Q(λ) for each (c, d) that occurs as the lower row

[11]
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of an element of Gq , and satisfies

(1.1)

T (1, 0) = 0,

T (c, d1) = T (c, d) if d1 − d ∈ λcZ,

T (c,−d) = −T (c, d),

T (−c,−d) = T (c, d),

T (c, d) + T (d, c) = (q − 2)
c2 + d2 + 1

λcd
− q if c, d > 0.

(I do not follow Goldstein’s normalization.) These relations determine
T (c, d) recursively. In the modular case (q = 3) the same relations are
satisfied by 12 times the classical Dedekind sum; hence T (c, d) = 12S(d, c)
if q = 3.

As far as I know, an elementary, non-recursive, expression for the T (c, d)
is available only in the arithmetical cases q = 3, 4, 6.

1.3. Distribution of Dedekind sums. The Dedekind sums turn out to
satisfy T (d, c) = O(c) (c→ ∞). So the T (c, d)/c are elements of a bounded
interval. We can get information concerning the distribution of (a/c, d/c,
T (c, d)/c) where

(
a
c
b
d

)
runs through the elements of Gq that satisfy c > 0,

−λc/2 < a ≤ λc/2 and −λc/2 < d ≤ λc/2. In the next propositions we
denote by

∑r
(c,d) the sum over the lower rows that satisfy these restrictions.

For a given pair (c, d) there is exactly one matrix
(
a
c
b
d

)
∈ Gq satisfying these

conditions.

1.4. Proposition (First distribution result). For all continuous func-

tions f on (R mod λZ)2 × R

lim
X→∞

1

X2

∑r

(c,d), c<X

f

(
a

c
,
d

c
,
T (c, d)

c

)
=

q

π2(q − 2)

λ∫

0

λ∫

0

f(ξ, η, 0) dξ dη.

1.5. Proposition (Second distribution result). For each continuous

function g on (R mod λZ)2 × R define the function f by f(ξ, η, σ) =
σ2g(ξ, η, σ). Then

lim
X→∞

1

X

∑r

(c,d), c<X

f

(
a

c
,
d

c
,
T (c, d)

c

)

=
∑r

(c1,d1)

∑r

(c2,d2)

1

λc1c2

∑

±

f

(
a1

c1
,
d2

c2
,
±(q − 2)

λc1c2

)
.
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R e m a r k s. The first distribution result states that the majority of the
T (c, d)/c are concentrated near zero, and that the distribution is uniform
with respect to (a/c, d/c). The quadratic factor in the test functions that
occur in the second distribution result masks this majority near zero. The
minority staying away from 0 turns out to be concentrated near a set of
limit points.

In [8], §3, I have stated these results for the modular case q = 3. I have
proved two-dimensional versions of these results (without the dependence
on a/c) in [5], for the modular case only.

The proof, in Sections 5–7, will go along the same lines as in [5]; it
takes some more work to include the dependence on a/c. The proof uses
the meromorphic continuation of Eisenstein and Poincaré series in spectral
parameter and weight jointly. This continuation is given in [2], [3] for the
modular case. The results we need can be obtained in exactly the same way
for the Gq as for G3. Full proofs one finds in [9], in a much wider context.

These continuation results can be extended to G(2), the theta group,
but are more complicated, due to the presence of two cusps instead of one.
I think that one can get distribution results for Dedekind sums associated
with G(2) as well, but they will be more complicated. For G(λ) with λ > 2
I do not know what would be the right concept of Dedekind sum. These
discrete groups have a fundamental domain with infinite area.

1.6. Limit points. Let G0
q =

{(
a
c
b
d

)
∈ Gq : c 6= 0

}
. The distribution

results above give information concerning the image of the map

β : G0
q → R :

(
a

c

b

d

)
7→

(
a

c
,
d

c
,
T (c, d)

c

)
.

Clearly

β

((
1

0

λ

1

)(
a

c

b

d

))
= β

(
a

c

b

d

)
+ (λ, 0, 0)

and

β

((
a

c

b

d

)(
1

0

λ

1

))
= β

(
a

c

b

d

)
+ (0, λ, 0).

This explains the use of periodic test functions.

Let P be the plane {(ξ, η, 0) : ξ, η ∈ R} in R3, and let

L =

{(
a1

c1
,
d2

c2
,± q − 2

λc1c2

)
:

(
aj
cj

bj
dj

)
∈ Gq for j = 1, 2

}
.

From the distribution results it follows that all points of P ∪ L are limit
points of β(G0

q). In Proposition 1.9 we shall see that there are no more limit
points.
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Figures 1 and 2 give illustrations for Proposition 1.5; they are discussed
in Section 2. In these figures the elements of L seem to be approached by
lines of points. The next result describes this feature.

Fig. 1. T (c, d)/c against d/c for the modular group G3, with c < 1000. Number of points:
151897. Horizontal: d/c ∈ [0.00, 1.00), vertical: T (c, d)/c ∈ [−1.00, 1.00]

1.7. Proposition. Let γj =
(
aj

cj

bj

dj

)
∈ Γ , with cj > 0, j = 1, 2. For

±r → ∞, r ∈ Z,

β

(
± γ1

(
1

0

rλ

1

)
γ2

)
=

(
a1

c1
,
d2

c2
,∓ q − 2

λc1c2

)

+
1

λr

(−1

c21
,
−1

c22
,
±T (c1, d1) ± T (c2, d2) + q

c1c2

)
+ O

(
1

r2

)
.

P r o o f. For the first and second coordinate a computation suffices. For
the last coordinate use (3.1).
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R e m a r k s. Elements of β(G0
q) approach the points in L along approxi-

mately straight lines. The proposition does not say that there are no other
elements of β(G0

q) near points of L.

D. Zagier pointed out this result for the modular case. He also suggested
to look whether β(G0

q) is discrete outside L ∪ P. Proposition 1.5 gives a
density result only.

1.8. Notations. Let

p = (a1/c1, d2/c2,∓(q−2)/λc1c2) ∈ L, with γj =

(
aj
cj

bj
dj

)
∈ Gq, cj > 0.

For X > 0, put

A±(p,X) =

{
β

(
γ1

(
1

0

rλ

1

)
γ2

)
: r ∈ Z, ±c

(
γ1

(
1

0

rλ

1

)
γ2

)
> X

}
,

with c(M) the left lower entry of the matrix M . Each A±(p,X) is an end
part of a “line” of points in β(G0

q) approaching p. The freedom in the choice
of the γj can be absorbed in a translation of r.

For any p = (x1, x2, x3) ∈ R3 we define the ε-neighborhood Uε(p) by

Uε(p) = {(y1, y2, y3) : |xj − yj | < ε for j = 1, 2, 3}.

1.9. Proposition. For each p = (ξ, η, σ) ∈ R3 with σ 6= 0, there are

ε > 0 and X > 1 such that{
β

(
a

c

b

d

)
∈ Uε(p) :

(
a

c

b

d

)
∈ G0

q , c > X

}
=

{
A±(p,X) if p ∈ L,
∅ otherwise.

P r o o f. See Section 4.

R e m a r k. In [6] I have discussed the results of Propositions 1.7 and 1.9
for the modular case, without the a/c-coordinate. The proofs are based on
the recursive relations defining the Dedekind sums.

1.10. Re m a r k s. Clearly the T (c, d) generalize the 12S(d, c) of the mod-
ular case. I am not fully happy with the name (generalized) Dedekind sum.
After all, a nice expression defining T (c, d) directly as a sum depending on
c and d does not exist in the non-arithmetic cases, as far as I know.

If one looks at the distribution results in the modular case, it seems that
the set of limit points has a very arithmetical structure. It has surprised me
that these results can be carried over to all Hecke groups Gq .

In [21], and in Proposition 13.6.2 of [9], the method of this paper leads
to distribution results for other quantities.

One finds other distribution results for the classical Dedekind sums (q =
3) in [26] and [7]. The methods are quite different from those in this paper.
Extension of the results in [7] to the distribution of (a/c, d/c, S(d, c)), and



16 R. W. Bruggeman

Fig. 2. T (c, d)/c against d/c for the Hecke group G5, with c < 1000. Number of points:
221080. Horizontal: d/c ∈ [0.00, 1.62), vertical: T (c, d)/c ∈ [−1.85, 1.85]

to the Hecke groups Gq might be possible. That extension is not the aim of
this paper.

2. Figures. The distribution results ask to be illustrated. In this
section, we look mainly at the case q = 5.

It is difficult to get the three-dimensional structure in a picture. Here
we are content to consider the distribution of (d/c, T (c, d)/c). In Figures
1 and 2 we have given for q = 3 and q = 5 a plot of (d/c, T (c, d)/c) with
(d, c) occurring as the lower row of an element in Gq , with the additional
conditions 1 ≤ c < 1000, −λc/2 < d ≤ λc/2.

In both figures we see limit points being approached along lines. The
horizontal black strip is the majority of points with T (c, d)/c approximately
zero. We shall see in 2.4 that the gaps are due to the truncation c < 1000.
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The figures suggest a selfsimilarity of the distribution. This is explained
by a partial action of Gq/{±I} in R3 that leaves β(G0

q) approximately in-
variant; see 4.6.

2.1. Figure 2. We take a closer look at Figure 2. The matrix elements
of G5 are in Z + Zλ, with λ = 1

2
(1 +

√
5). The seven positive values of c

smaller than 6.0 are 1, λ ≈ 1.62, 2λ ≈ 3.24, λ + 2 ≈ 3.62, 2λ + 1 ≈ 4.24,
3λ ≈ 4.85, and 2+2λ ≈ 5.24. For the corresponding matrices in G5 that oc-
cur in the distribution results we have listed the values of Φ and T in Table 1.

Table 1. Values of Φ and T for the first few (c, d) for G5

(1, 0) Φ
(
0
1
−1
0

)
= 0 T (1, 0) = 0

(λ,±1) Φ
(
±1
λ

0
±1

)
= ±2 T (λ, 1) = 10− 6λ

(2λ,±1) Φ
(
±1
2λ
0
±1

)
= ∓1 T (2λ, 1) = 7− 3λ

(λ+ 2,±λ) Φ
(
∓λ
λ+2

−1
±λ

)
= 0 T (λ+ 2, λ) = 0

(2λ + 1,±λ) Φ
(
±2λ
2λ+1

1
±λ

)
= ±1 T (2λ+ 1, λ) = 18λ − 28

(2λ+ 1,±2λ) Φ
(
±λ
2λ+1

1
±2λ

)
= ±1 T (2λ+ 1, 2λ) = 18λ− 28

(3λ,±1) Φ
(
±1
3λ
0
±1

)
= ∓4 T (3λ, 1) = 8− 2λ

(2 + 2λ, 2λ + 1) Φ
(
2λ+1
2+2λ

2λ
2λ+1

)
= 3 T (2 + 2λ, 2λ+ 1) = 0

2.2. Limit points. We consider a few limit points (a1/c1, 0, 3/λc1) that
are projected to (0, 3/λc1) on the left hand side of Figure 2. (So γ1 =

(
a1

c1

·
·

)

and γ2 =
(

0
1
−1
0

)
.) The first four values of c1 give 3/λ ≈ 1.85, 3/λ2 ≈ 1.15,

3/(2λ2) ≈ 0.57, and 3/(λ(λ + 2)) ≈ 0.51. Proposition 1.7 implies that

(0, 3/(λc1)) is approximated by lines with direction
(
1, T (c1,d1)−5

c1

)
.

The possibilities for d1 are listed in Table 2. Note that for c1 = λ + 2
both values of d1 give the same direction.

Table 2. Direction of approach to some limit points for G5 (compare Figure 2)

c1 d1 Direction

1 0 (1,−5)

λ 1 (1, 5λ − 11) ≈ (1.00,−2.91)

−1 (1, 21− 15λ) ≈ (1.00,−3.27)

2λ 1 (1, λ− 5/2) ≈ (1.00,−.88)

−1 (1, 15/2 − 6λ) ≈ (1.00,−2.21)

λ+ 2 ±1 (1, λ− 3) ≈ (1.00,−1.38)
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2.3. Selfsimilarity. The projection p23β(G0
5) of β(G0

5) onto the (η, σ)-
plane is invariant under T1 : (η, σ) 7→ (η + λ, σ), and j : (η, σ) 7→ (−η,−σ).
In Figure 2 we have the union of two fundamental domains for the group
generated by T1 and j. In 4.6 we shall see that p23β(G0

5) is also approximately

invariant under W : (η, σ) 7→ (−1/η, σ/|η|), defined on {(η, σ) : η 6= 0}.
Consider, for instance, (η, σ) = (λ − 1 + δ, σ) with δ small. This means

that (η, σ) is in the vertical strip near the large gap left from the center in
Figure 2.

The composition T1 ◦W sends (η, σ) to
(−1

η
+ λ,

σ

|η|

)
≈ (λ2δ + O(δ2), λσ + O(δ)).

So the vertical strip near η = λ − 1 is mapped to the vertical strip near
η = 0. (Imagine Figure 2 horizontally extended with period λ.) In the
vertical direction there is a scaling with factor λ ≈ 1.62, in the horizontal
direction the factor is λ2 ≈ 2.62.

This process can be extended to find everywhere approximate copies of
the vertical strip near η = 0. In Figure 3 a small part of Figure 2 has been
enlarged.

2.4. Truncation effect. The presence of gaps in the black band around
the horizontal axis in Figure 2 is a truncation effect. We consider it for
0 < η < 1/5. The symmetry (η, σ) 7→ (−η,−σ) and the reasoning that
leads to the selfsimilarity explain the other gaps.

For 1 < c < N and 0 < d/c < 1/5 we consider η = d/c and σ = T (c, d)/c.
We use (3.2), which states that |T (c, d)| ≤ β5c for some constant β5, and
the reciprocity relation (1.1). Thus

cσ = T (c, d) = −T (d, c) +
3

λ

(
c

d
+
d

c
+

1

cd

)
− 5 ≥ −β5d+

3

λ
· 1

η
− 5,

σ ≥ 3

cλ

(
1

η
− 5λ

3

)
− β5η ≥ 3

Nλ

(
1

η
− 5λ

3

)
− β5η.

The points (d/c, T (c, d)/c) with 0 < d/c < 1/5 and c < N stay above the
curve σ = 3

Nλ

(
η−1 − 5λ

3

)
− β5η. This curve is approximately a piece of a

hyperbola; it moves down with increasing N .

3. Hecke groups and the associated Dedekind sums. We ap-
ply Goldstein’s definition of Dedekind sums to the Hecke groups Gq . This
method yields a generalization of the eta function of Dedekind from a study
of the Eisenstein series in weight zero.

3.1. Fundamental domain. Hecke [15] gives a fundamental domain
for Gq. It is the region {z ∈ H : Re z ≤ λ/2, |z| ≥ 1} in the upper
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Fig. 3. Enlargement of the region [0.243, 0.485] × [0.000, 0.556] of Figure 2

half plane H = {z ∈ C : Im z > 0}. It has area π(q − 2)/q. We see that Gq
has only one cusp.

This fundamental domain is symmetric under reflection in the imaginary
axis. This corresponds to the (outer) automorphism j of Gq given by the
conjugation

j : γ 7→
(

1

0

0

−1

)
γ

(
1

0

0

−1

)
,

which sends both generators to their inverses.

3.2. Automorphic forms. A function f : H → C has automorphic

transformation behavior of weight r for Gq if it satisfies

f

(
az + b

cz + d

)
= v(γ)eir arg(cz+d)f(z) for all

(
a

c

b

d

)
∈ Gq
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for some map v : Gq → C∗, called the multiplier system of f . The argument
takes values in (−π, π]. Consider z 7→ y−r/2f(z) to get the well known
transformation behavior of holomorphic automorphic forms.

To allow non-zero functions f with this behavior, the multiplier system
has to satisfy some relations; it is determined by the weight and its values
on generators of Gq .

A function f with automorphic transformation behavior of weight r is a
(real analytic) automorphic form if it satisfies

(−y2∂2
y − y2∂2

x + ir∂x)f = βf

for some β ∈ C, the eigenvalue, and a growth condition at the cusp to be
discussed later on. (Here and elsewhere we use Re z = x and Im z = y as
real coordinates on H.) This definition is equivalent to Maass’ definition
in [19].

3.3. Eisenstein series. Examples of automorphic forms are provided by
the Eisenstein series

∑

γ∈G∞q \Gq

(
Im(γ · z)

λ

)s+1/2

,

where G∞
q is the subgroup of Gq generated by

(
1
0
λ
1

)
and

(
−1
0

0
−1

)
, and

(
a

c

b

d

)
· z =

az + b

cz + d
.

The discreteness of Gq in SL2(R) implies that any element
(
·
0
·
·

)
∈ Gq is an

element of G∞
q .

The Eisenstein series converges for Re s > 1/2, and defines, for these
values of s, an automorphic form of weight 0, with trivial multiplier system
γ 7→ 1, and with eigenvalue 1/4 − s2; see e.g. [16], Ch. VI, (6.7) on p. 41,
Proposition 8.1 on p. 56 and Definition 8.5 on p. 65. The normalization
of the spectral parameter differs from the usual one: susual = shere + 1/2.
(The present choice is a bit simpler when Whittaker functions are involved.
Moreover, I like to have the unitary principal series to be parametrized by
purely imaginary complex numbers.)

3.4. Fourier expansion. Any automorphic form satisfies f(z + λ) =
v
(

1
0
λ
1

)
f(z). Hence there is a Fourier expansion in x. For the Eisenstein

series this expansion takes the form

e(s;λz) = ys+1/2 + c0(s)y
−s+1/2 +

∑

n 6=0

cn(s)e2πinxW0,s(4π|n|y),
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cn(s) = λ−1−2sϕ0
n(s) ·





π1/2Γ (s)

Γ (s+ 1/2)
if n = 0,

πs+1/2|n|s−1/2

Γ (s+ 1/2)
if n 6= 0,

ϕ0
n(s) =

∑

(c,d)∈B

c−1−2se2πind/(cλ).

B denotes the set of (c, d) occurring as the lower row of elements of Gq, with
the additional conditions c > 0, −λc/2 < d ≤ λc/2. The Dirichlet series
ϕ0
n(s) converge absolutely for Re s > 1/2. In the modular case, q = 3, we

have ϕ0
0(s) = ζ(2s)/ζ(2s + 1) and ϕ0

n(s) = σ−2s(|n|)/ζ(2s + 1) for n 6= 0.
In [16], Ch. VI, Theorems 11.6 and 11.8, on p. 128–130, one sees that e,

and hence the ϕ0
n as well, have a meromorphic continuation to s ∈ C. As

e is the unique family of automorphic forms with a Fourier expansion as
indicated, it has a functional equation for s 7→ −s. The right-most pole of e
is at s = 1/2. It is a first order pole, its residue is the constant function
with value 1/(area of Gq\H) = q/(π(q − 2)). Further poles in Re s ≥ 0 can
occur only at points of (0, 1/2).

3.5. Matrix elements. From the convergence of ϕ0
0(s) for Re s > 1/2 it

follows that the positive numbers c that occur in
(
·
c
·
·

)
∈ Gq form a discrete

subset C of (0,∞). Left and right multiplication by
(

0
−1

1
0

)
shows that

C ∪{0}∪ (−C) is the set of numbers that occurs at each of the four positions
in the matrices in Gq .

For each
(
a
c
b
d

)
∈ Gq there are ±1 and k ∈ Z such that ±

(
a
c
b
d

)(
1
0
kλ
1

)

has its lower row in B. The whole set B, and hence C as well, can be found
recursively:

Let B+ = {(c, d) ∈ B : d > 0} and B0 = B+ ∪ {(1, 0)}. As
(−1

0

0

−1

)(
j

(
a

c

b

d

))
=

(−a
c

b

−d

)
,

it is clear that we can recover B from B+. Consider the map ψ : B+ → B0

given by ψ(c, d) = (d, d1) ∈ B0, d1 ≡ ±c mod λdZ. This corresponds to the
following transitions in Gq:(

a

c

b

d

)
7→

(
a

c

b

d

)(
0

1

−1

0

)
,

(
b

d

−a
−c

)
7→

(
b

d

−a
−c

)(
1

0

rλ

1

)
with r ∈ Z suitable,

(
b

d

brλ− a

drλ− c

)
7→ −j

(
b

d

brλ− a

drλ− c

)
if drλ− c < 0.

If ψ(c, d) = (c1, d1), then c1 ≤ λc/2. Hence after O(log c) iterations of ψ
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we have left the domain B+; remember that C is discrete. Thus we end
up at the element (1, 0). By backtracking ψ departing from (1, 0), we can
construct the whole of B+.

3.6. Generalized eta function. Now I review, for Gq , Goldstein’s intro-
duction of generalized Dedekind sums; see [11]–[13].

The residue of e at s=1/2 is the constant function with value q/(π(q−2)).
Hence the ϕ0

n with n 6= 0 are holomorphic at s = 1/2, and

c0(s) =
q

π(q − 2)
· 1

s− 1/2
+ β + O

(
s− 1

2

)
for some β ∈ C.

Furthermore, e(s;−z) = e(s; z), hence ϕ0
−n(s) = ϕ0

n(s), with real values for
real s. Consider the Gq-invariant function h on H given by

h(z) = lim
s→1/2

(
e(s; z) − q

π(q − 2)
· 1

s− 1/2

)
.

It can be written as

h(z) = − q

π(q − 2)
log

y

λ
+ β − 4q

π(q − 2)
Re l(z),

where l is the holomorphic function on H given by

l(λz) = lq(λz) =
πiz

4
· q − 2

q
− π2(q − 2)

2qλ2

∞∑

n=1

ϕ0
n

(
1
2

)
e2πinz.

For q = 3 we get l(z) = log η(z), the logarithm of the Dedekind eta function.
Let γ =

(
a
c
b
d

)
∈ Γ . The equality h(γ · z) = h(z) may be expressed

in terms of l(z) and l(z). Bring all holomorphic terms to one side of the
equality, and the antiholomorphic terms to the other side. Then both sides
have to be equal to the same constant. This yields

l

(
az + b

cz + d

)
= l(z) +

1

2
log(cz + d) + iC(γ),

with C(γ) a real constant.
One easily sees that l(z + λ) = l(z) + πi(q − 2)/(4q). For c 6= 0 we write

the transformation formula as

l

(
az + b

cz + d

)
= l(z) +

1

2
log

(
cz + d

i sign c

)
+
πi

4q
Φ

(
a

c

b

d

)
,

with Φ
(
a
c
b
d

)
∈ R. We write Φq if the dependence on q has to be emphasized.

3.7. Alternatives. There are Eisenstein series for each even weight. For
non-zero weight the meromorphic extension is holomorphic at s = 1/2. Take
the value e2(1/2) of the Eisenstein series in weight 2. It can be expressed
in terms of l′. One can define Φ in terms of periods of the differential form
associated with e2(1/2). In the case of hyperbolic elements in the modular
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group (q = 3) the resulting formula is equivalent to (5.28) in [1]. Atiyah
derives this description from geometric considerations concerning the bundle
of elliptic curves above G3\H. I do not know whether this approach can be
generalized to general Hecke groups Gq.

If one wants to avoid automorphic forms, one may consider the central
extension 0 → Z → G̃q → Gq → 1 where G̃q is the full original of Gq in

the universal covering group ˜SL2(R) of SL2(R). It turns out that the group

homomorphisms G̃q → R form a vector space of dimension 1. Let α be a

basis element. If one takes an obvious section σ : SL2(R) → ˜SL2(R) and
tries to evaluate α ◦ σ in terms of the matrix elements of elements of Gq
one ends up with an expression containing Φ. In another language one can
formulate this as “Φ is needed to describe the connected component of the
group of multiplier systems for Gq”; see 3.11. To check this consult [23].

3.8. Dedekind sums. Consider the transformation formula for l(γ · z)
and for l(λ+ γ · z). That gives

Φ

(
a+ λc

c

b+ λd

d

)
= Φ

(
a

c

b

d

)
+ q − 2.

Hence the quantity

T (c, d) = Tq(c, d) = (q − 2)
a+ d

λc
− Φ

(
a

c

b

d

)

does not depend on a and b. In this definition of the generalized Dedekind

“sum” T (c, d) for all lower rows (c, d) occurring in Gq there is the freedom
of a multiplicative factor. The present choice seems a sensible one; λ times
it might be as good.

From the transformation formula one obtains more properties of Φ and T
(see the table below); we take γ =

(
a
c
b
d

)
∈ Gq with c 6= 0. These relations

imply that Φ has integral values.

1 Φ
(
−a
−c
−b
−d

)
= Φ

(
a

c

b

d

)
T (−c,−d) = T (c, d)

2 Φ
(
0
1
−1
0

)
= 0 T (1, 0) = 0

3 Φ
(
a

c

aλ+b
cλ+d

)
= Φ

(
a

c

b

d

)
+ q − 2 T (c, cλ+ d) = T (c, d)

4 Φ
(
−a
c

b

−d

)
= −Φ

(
a

c

b

d

)
−T (c,−d) = T (c, d)

5 Φ
(
d

c

b

a

)
= Φ

(
a

c

b

d

)
T (c, a) = T (c, d)

Reciprocity law. For c, d > 0

6 Φ
(
−b
d

−a
c

)
= −Φ

(
a

c

b

d

)
+ q

T (c, d) + T (d, c)

= (q − 2)
c2 + d2 + 1

λcd
− q
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To prove (2), take z = i in the transformation formula. For (4) use
l(z) = l(−z̄). For (5) apply the transformation formula to γ−1 · γ · z; after
that use (1) and (4).

Formula (6) is the reciprocity law. Take z = −1/z = i, and apply the
transformation formula in two ways to get

1

2
log(c− di) +

πi

4q
Φ

(
a

c

b

d

)
=

1

2
log(ci+ d) +

πi

4q
Φ

(
b

d

−a
−c

)
.

This implies

Φ

(
b

d

−a
−c

)
= Φ

(
a

c

b

d

)
− q.

Now use (4).

3.9. Three Dedekind sums. For γj =
(
aj

cj

bj

dj

)
∈ Gq, cj > 0, for j = 1, 2, 3,

with γ1γ2 = ±γ3, we apply the transformation formula to l(γ3·z) = l(γ1γ2·z)
to find

Φ(γ3) = Φ(γ1) + Φ(γ2) ∓ q,

T (c3, d3) = T (c1, d1) + T (c2, d2) ∓
q − 2

λ

(
c1
c2c3

+
c2
c1c3

+
c3
c1c2

)
± q.(3.1)

This result is needed to complete the proof of Proposition 1.7.

3.10. Estimate.

(3.2) T (c, d) = O(c).

It suffices to show that |T (c, d)| ≤ βc for all (c, d) ∈ B0, for some β > 0. We
shall get β = 3q/(2 − λ).

Of course we apply induction on the size of c. As T (1, 0) = 0, the start
is no problem. Consider (c, d) ∈ B+. If we can show that the right hand
side in the reciprocity law satisfies |RHS| ≤ αc for some positive α, then we
get by induction |T (c, d)| ≤ βd+αc ≤ (λβ/2 +α)c, and |T (c, d)| ≤ βc if we
choose β = 2α/(2 − λ).

We use the fact that 1 is the minimal element of C, and hence 1 ≤ d ≤
λc/2. We get

RHS =
q − 2

λ

(
c

d
+
d

c
+

1

cd

)
− q ≤ q − 2

λ

(
c+

λ

2
+ 1 − λ

)
≤ 3

2
qc,

and

RHS ≥ −q ≥ −3

2
qc.

This leads to α = 3q/2 and β = 3q/(2 − λ).
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3.11. Multiplier systems. Let r ∈ C. The function ηr(z) = e2rl(z) is a
holomorphic function on H, and satisfies, for each γ ∈ Gq,

ηr(γ · z) = vr(γ)(cz + d)rηr(z),

where vr is the multiplier system that satisfies

vr

(
a

c

b

d

)
= e−πir/2+πir(q−2)(a+d)/(2qλc)−πirT (c,d)/(2q)

= exp

(
πir

(
1

2q
Φ

(
a

c

b

d

)
− 1

2

))

if c > 0. The logarithm of cz + d is taken with respect to the argument
convention −π < arg(cz + d) ≤ π. We see that z 7→ yr/2ηr(z) has automor-
phic transformation behavior of weight r. The function z 7→ yr/2ηr(z) is an
automorphic form of weight r, with eigenvalue r

2

(
1 − r

2

)
for the multiplier

system vr. All other multiplier systems for weight r are of the form χ · vr,
with χ a character of Gq/{±I}. In the modular case all possible characters
of G3/{±I} are of the form vn with n ∈ 2Z. For general Gq, the description
of all characters is slightly more complicated.

3.12. Congruence cases. We have already remarked that G3 is the mod-
ular group SL2(Z), that l3 is the logarithm of the eta function of Dedekind,
and that T3(c, d) = 12S(d, c). We now consider the cases q = 2k, k = 2, 3,
with λ =

√
k.

For these values of k the subgroups

G0(k) =

{(
a

c

b

d

)
∈ SL2(Z) : c ≡ 0 mod k

}

are generated by
(

1
0

1
1

)
and

(
1
k

0
1

)
. As

(
1
λ

0
1

)
∈ Gq for all q ≥ 3, we get for

q = 2k the conjugate group

∆2k =

(√
k

0

0

1

)
G0(k)

(
1/
√
k

0

0

1

)

inside G2k. From a computation of the areas of fundamental domains it
follows that ∆2k has index 2 in G2k. As

(
0
−1

1
0

)
6∈ ∆2k, we have G2k =

∆2k ∪
(

0
−1

1
0

)
∆2k.

The fact thatG2k is conjugate to well known congruence subgroups of the
modular group leads to an explicit description of l2k. It suffices to exhibit a
holomorphic function m on H with the same transformation behavior under
the generators of G2k as that of l2k, and such that m(z) = l2k(z) + o(1)
(y → ∞). It turns out that m(z) = 1

2 log η(z
√
k) + 1

2 log η(z/
√
k) satisfies
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these conditions. This implies for
(
a
c
b
d

)
∈ ∆2k, c 6= 0,

Φ2k

(
a

c

b

d

)
=
k

3

(
Φ3

(
a

c
√
k

b/
√
k

d

)
+ Φ3

(
a

c/
√
k

b
√
k

d

))
,

T2k(c, d) = 4k(S(d, c
√
k) + S(d, c/

√
k)),

and for
(
a
c
b
d

)
∈

(
0
−1

1
0

)
∆2k,

Φ2k

(
a

c

b

d

)
=
k

3

(
Φ3

(
a/

√
k

c

b

d
√
k

)
+ Φ3

(
a
√
k

c

b

d/
√
k

))
,

T2k(c, d) = 4k(S(d
√
k, c) + S(d/

√
k, c)).

4. The structure of β(G0
q). In this section we prove Proposition 1.9.

To do that we prove Lemma 4.1 below. Proposition 1.7 implies that the
other inclusion in Proposition 1.9 can be arranged by adapting X.

Remember that P ⊂ R3 is the plane {(ξ, η, σ) : σ = 0}, and that L is the
set of limit points (a1/c1, d2/c2,±(q − 2)/c1c2), with

(
aj

cj

bj

dj

)
∈ Gq , cj > 0.

We use A±(p,X) and Uε(p) as defined in 1.8.

4.1. Lemma. For each p = (ξ, η, σ) ∈ R3 with ∓σ > 0, there are ε > 0
and X > 1 such that the set{

β

(
a

c

b

d

)
∈ Uε(p) :

(
a

c

b

d

)
∈ G0

q , c > X

}

is contained in A±(p,X) if p ∈ L, and is empty otherwise.

4.2. Plan of the proof. For the cases η = 0 and |σ| large the statement
in the lemma is proved directly; see 4.3 and Lemma 4.4. To get the other
cases we show in 4.5 and 4.7 that if the statement in the lemma holds for p,
it holds for some other p1 as well. In 4.8 we shall see that this suffices to
reach all p.

4.3. Large σ. According to (3.2) all T (d, c)/c are contained in some finite
interval [−βq, βq ]. Hence the statement in Lemma 4.1 holds if |σ| > βq .

4.4. Lemma. The statement in Lemma 4.1 holds for p = (ξ, 0, σ) with

σ 6= 0.

P r o o f. The set {|σ − (q − 2)/(λd)| : |d| ∈ C} has a minimal element α.
For γ =

(
a
c
b
d

)
∈ G0

q with β(γ) ∈ Uε(p), c > X, and with ε > 0 and X > 1
to be fixed later, we obtain from the reciprocity law∣∣∣∣

T (c, d)

c
− q − 2

λd

∣∣∣∣ =

∣∣∣∣ −
d

c
· T (|d|, c)

|d| +
q − 2

λ

(
d

c2
+

1

c2d

)
− q sign d

c

∣∣∣∣

≤ εβq +
(q − 2)ε

λX
+
q − 2

λX2
+

q

X
=: C(ε,X).
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We conclude

α ≤
∣∣∣∣σ − q − 2

λd

∣∣∣∣ < C(ε,X) + ε.

If α > 0, we can choose ε and X such that γ as above cannot be found.
Then the set in Lemma 4.1 is empty, and we are done.

If α = 0 we know that σ = ∓(q − 2)/(λc1) for some c1 ∈ C. A suitable
choice of ε and X ensures that d = ∓c1 for all γ =

(
a
c
b
d

)
∈ Uε(p) with

c > X. For such γ we have
∣∣∣∣ξ ±

b

c1

∣∣∣∣ ≤ ε+

∣∣∣∣
a

c
± b

c1

∣∣∣∣ = ε+
1

|cc1|
≤ ε+ c−1

1 X−1.

As the set of ∓b/c1 with c1 fixed and
(
·
·
b

∓c1

)
∈ Gq is discrete, a suitable

choice of ε and X assures us that the existence of γ as above implies that it
has the form γ =

(
a
c
∓a1

∓c1

)
, with a1 fixed, and that ξ = a1/c1. Choose γ1 =(

a1

c1

·
·

)
and γ2 =

(
·
1
−1
0

)
∈ G0

q ; then γ = ±γ1

(
1
0

·
1

)
γ2 and p =

(
a1

c1
, 0

1 ,∓
q−2
λc1

)
.

Hence γ ∈ A±(p,X).

4.5. Translation. Consider the maps Tn : (ξ, η, σ) 7→ (ξ, η+nλ, σ) in R3.
As

β

(
γ

(
1

0

nλ

1

))
= Tnβ(γ) and A±(Tnp,X) = TnA

±(p,N),

the statement of Lemma 4.1 is true for all Tnp, if it holds for one of them.
We can use the same ε and X.

4.6. Involution. Let W (ξ, η, σ) = (ξ,−1/η, σ/|η|). This is an involution
in {(ξ, η, σ) ∈ R3 : η 6= 0}.

Remark that T1 and W generate a partial action of Gq/{±I} in R3.
The image of β is approximately invariant under this action. To see this
we show that β

(
γ
(

0
1
−1
0

))
≈ Wβ(γ). Let γ =

(
a
c
b
d

)
∈ G0

q with c large; put

γ̃ = γ
(

0
1
−1
0

)
, then γ̃ ∈ G0

q as well.

β(γ̃) = β

(
b sign d

|d|
−a sign d

−c sign d

)

=

(
b

d
,− c

d
,
−T (|d|, c)

d

)

=

(
a

c
− 1

cd
,
−1

d/c
,
T (c, d)

|d| − q − 2

λ
· c

d|d| + O
(

1

c
+

1

|d|

))

= Wβ(γ) − q − 2

λ

(
0, 0,

c

d|d|

)
+ O

(
1

c
+

1

|d|

)
.

If d/c is near η 6= 0, then 1/d = Oη(1/c), and

(4.1) β(γ̃) = Wβ(γ) + Oη(1/c).
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4.7. Lemma. If the statement in Lemma 4.1 holds for p = (ξ, η, σ), with

η 6= 0, ∓σ > 0, then it holds for Wp.

P r o o f. Consider γ =
(
a
c
b
d

)
∈ G0

q with c > X and β(γ) ∈ Uε(Wp), with
ε > 0 and X > 1 to be specified later on. Equation (4.1) and the continuity
of W at Wp allows us to choose ε and X in such a way that we can apply
Lemma 4.1 to γ̃ = sign(d) γ

(
0
1
−1
0

)
. This means that β(γ̃) ∈ A±(p, X̃) if

p ∈ L, and that such γ̃ are impossible if p 6∈ L. As p ∈ L and Wp ∈ L are
easily seen to be equivalent statements, this finishes the case p 6∈ L.

Let

p =

(
a1

c1
,
d2

c2
,∓ q − 2

λc1c2

)
with γj =

(
aj
cj

bj
dj

)
∈ G0

q , cj > 0.

Put ζ = sign d2. Then

Wp =

(
a1

c1
,
d̃2

c̃2
,∓ q − 2

λc1c̃2

)
with γ̃2 =

(
ã2

c̃2

b̃2

d̃2

)
=

(
ζb2
|d2|

−ζa2

−ζc2

)
.

We have arranged ε andX so that β(γ̃) ∈ A±(Wp, X̃), for X̃ suitable. Hence
γ̃ = ±γ1

(
1
0
rλ
1

)
γ2 for some r ∈ Z. This gives γ = ± sign(d)ζγ1

(
1
0
rλ
1

)
γ̃2. As

we started with c > X and |dc − d1
c1
| < ε, we may arrange ε such that

sign d = ζ. Hence β(γ) ∈ A±(Wp,X).

4.8. Induction. We start with p = (ξ, η, σ), σ 6= 0. If η = 0 or |σ| > βq ,
the proof of the statement in Lemma 4.1 is given in Lemma 4.4 or in 4.3.
Otherwise we reduce the proof to that for another p1 by 4.5 and Lemma 4.7:
take n ∈ Z such that η1 = η + nl ∈ (−λ/2, λ/2], and put p1 = WTnp =
(ξ,−1/η1, σ/|η1|). As |σ/η1| ≥ 2|σ|/λ, iteration of this process will bring us
into the reach of 4.3, unless η becomes 0 at a certain stage; then Lemma 4.4
can be applied.

5. Poincaré series. To prove the distribution results we shall use the
fact that Dedekind sums describe multiplier systems of automorphic forms.

In this section we consider Poincaré series in their domain of convergence,
and describe their Fourier coefficients.

5.1. Automorphic forms.We restrict our attention to automorphic forms
of weight r, eigenvalue 1/4 − s2 and multiplier system vr (see 3.11).

For Re s ≥ 0 and |Re r| < 4q/(q − 2) we impose a growth condition at
the cusp by prescribing a Fourier series of a special form. Let f satisfy the
conditions in 3.2, with β = 1/4−s2. The transformation behavior f(z+λ) =
eπir(q−2)/(2q)f(z) implies that f has a Fourier series expansion f(λz) =∑
n fn(z), where n ≡ (q − 2)r/(4q) mod 1, and fn(x + iy) = e2πinxfn(iy).

The functions y 7→ fn(iy) satisfy second order linear differential equations
that depend on n and s. It is not possible to give a basis of the solution space
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that is useful for all (r, s). But for Ren 6= 0 a one-dimensional subspace of
solutions stands out by an exponentially decreasing behavior at infinity; it
is spanned by

ωn(r, s; z) = e2πinxW±r/2,s(±4πny) for ± Ren > 0.

For the Whittaker function W·,· see, e.g., [25], 1.7.

The growth condition we impose on automorphic forms is: fn is a mul-

tiple of ωn(r, s) for all but a finite number of n. This growth condition
allows exponential growth at the cusp. Usually one allows only polynomial
growth.

5.2. The basis element ωn(r, s; z) is holomorphic in (r, s); here and in the
sequel we tacitly assume that n varies with r such that n−(q−2)r/(4q) stays
constant (with an integral value). The following basis element µn(r, s) is
meromorphic in (r, s), with its singularities at the lines s = −l/2,
l ∈ N:

µn(r, s; z) = ys+1/2e2πinz1F1

[
1/2 + s− r/2

1 + 2s

∣∣∣∣2πny
]
.

It is characterized by its behavior µn(r, s; iy) ∼ ys+1/2 for y↓0. For general
values of (r, s) it increases exponentially as y → ∞. Note that µ0(0, s; z) =
ys+1/2, occurring in the Fourier expansion of the Eisenstein series in 3.4.

For general values of (r, s) the functions ωn(r, s) and µn(r, s) span the
space of possible Fourier terms of order n.

5.3. Poincaré series. For r ∈ R, m ≡ (q − 2)r/(4q) mod 1, and
Re s > 1/2, the absolutely converging Poincaré series

pm(r, s; z) =
∑

γ∈G∞q \Gq

vr(γ)
−1e−ir arg(cz+d)µm(r, s; (γ ·z)/λ) with γ =

(
a

c

b

d

)

defines an automorphic form pm(r, s) of weight r, with eigenvalue 1/4 − s2

and multiplier system vr. For r = 0 these are the Poincaré series studied by
Neunhöffer [22]. Even more general Poincaré series than the present ones
are discussed in [16], Ch. IX, §5, see p. 355. The Eisenstein series discussed
in 3.3 is given by e(s) = p0(0, s).

Define the Fourier coefficients cmn (r, s) by

pm(r, s;λz) = µm(r, s; z) +
∑

n

cmn (r, s)ηn(r, s; z),

with ηn(r, s) = ωn(r, s) if n 6= 0, and η0(r, s) = µ0(r,−s). The principle of
computing cmn (r, s) is well known. In the same way as in Proposition 2.16
in [5] one arrives at the following description. Write
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m = µ+
r(q − 2)

4q
and n = ν +

r(q − 2)

4q
.

(One may also use Proposition 5.2.9 in [9]. Then one should note that the
roles of n and m have been reversed, and that the factor λ−1−2s has been
moved.)

cmn (r, s) = Gr(n,m, s)ϕ
µ
ν (r, s),

Gr(n,m, s) = e−πir/2λ−1−2s

×





π21−2sΓ (2s)

Γ (1/2 + s+ r/2)Γ (1/2 + s− r/2)
if n = 0,

πs+1/2|n|s−1/2

Γ (1/2 + s± r/2)
if ±n > 0,

ϕµν (r, s) =
∑

(c,d)∈B

J(n,m, s; c)vr

(
a

c

b

d

)−1

e2πi(ma+nd)/(λc),

J(n,m, s; c) =





c−1−2s if mn = 0,

c−1J2s

(
4π

√
mn

λc

)
Γ (1 + 2s)

(2π/λ)2s(mn)s
if mn > 0,

c−1I2s

(
4π

√
|mn|
λc

)
Γ (1 + 2s)

(2π/λ)2s|mn|s if mn < 0.

In the sum over B the choice of a, b does not influence the result.

The ϕ0
n(s) in 3.4 are the present ϕ0

ν(0, s).

5.4. Symmetry. ϕµν (0, s) = ϕνµ(0, s). To see this, note that for (c, d) ∈ B
there is a unique γ =

(
a
c
b
d

)
∈ Gq with −lc/2 < a ≤ λc/2. The map

γ 7→ j(γ−1) induces an involution in B that gives the symmetry.

5.5. Dirichlet series with Dedekind sums. In the remainder of this
section we relate the ϕµν to the following series:

(5.1) ∆k(ν, µ,w) =
∑

(c,d)∈B

c−w
(
T (c, d)

c

)k
e2πi(µa+νd)/(λc) ,

with ν, µ, k ∈ Z, k ≥ 0. In view of the estimate in (3.2) this converges
absolutely and defines a holomorphic function for Rew > 2. The choice
of a in

(
a
c

·
d

)
∈ Gq for a given (c, d) ∈ B does not matter in this defini-

tion.

5.6. Proposition. Let ν, µ ∈ Z, l ∈ N, l ≥ 2. For fixed s ∈ C with

σ = Re s ∈ (l/2, (l + 1)/2), we have
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e−πir/2ϕµν (r, s)

=

l−1∑

h=0

rh
∞∑

p=0

h∑

k=0

βhp,k(ν, µ, s)∆k(ν, µ, 1 + 2s+ 2p− k) + O(r2σ−1)

as r↓0, with

βhp,k(ν, µ, s)

=
(2πi)k+2p(q − 2)h−k

(4q)hλ2pk!p!(1 + 2s)p

∑

j1,j2∈[0,p], j1+j2=h−k

(
p

j1

)(
p

j2

)
µp−j1νp−j2 .

R e m a r k. This result extends Lemma 3.7 in [5]. There q = 3 and
µ = 0; as βhp,k(ν, 0, s) = 0 for k + p > h, the sum expressing ϕ0

ν in the ∆k is
finite if µ = 0. In this sense the dependence on a/c makes the proof of the
distribution results more difficult than that in loc. cit.

The proof is given in the remainder of this section.

5.7. Splitting up the Bessel functions. In the sequel m and n vary with r,
whereas µ and ν stay fixed. The sign η of

mn =

(
µ+

r(q − 2)

4q

)(
ν +

r(q − 2)

4q

)

does not change for small positive r. Put J1
2s = J2s and J−1

2s = I2s.

J(n,m, s; c) = c−1Jη2s

(
4π

√
ηmn

λc

)
Γ (1 + 2s)

(2π/λ)2s(ηmn)s

=

∞∑

p=0

c−1−2s−2p (−4π2mn)p

p!(1 + 2s)pλ2p
.

The multiplier factor and the exponential in the series for ϕµν (r, s) have
absolute value one. We can interchange the order of summation with respect
to (c, d) and p. This gives

ϕµν (r, s) = eπir/2
∞∑

p=0

αp(n,m, s)Φ
µ
ν (r, s + p),

αp(n,m, s) =
(−4π2mn)p

p!(1 + 2s)pλ2p
,

Φµν (r, u) =
∑

(c,d)∈B

c−2u−1eπirT (c,d)/(2q)e2πi(µa+νd)/(λc) .

The dependence of αp on r is hidden in m and n.
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5.8. Lemma. For Reu ≥ v > 1/2,
∑

(c,d)∈B, c≥X

c−1−2u = Ov(X
1−2 Reu) (X → ∞).

For −2 < Rew < −1,
∑

(c,d)∈B, c<X

c−w = O(X2−Rew) (X → ∞).

R e m a r k. For q = 3 this is easy.

P r o o f o f L e m m a 5.8. We use the fact that ϕ0
0(0, s) has a meromor-

phic extension to s ∈ C, with as right-most singularity a first order pole
at s = 1/2 with residue qλ2/(π2(q − 2)). For Re s > 1/2 it is given by a
Dirichlet series with positive coefficients. The Ikehara Tauberian theorem
(see, e.g., [27], Ch. V, §17, or [17], Ch. XV, §2, 3) implies that

∑

(c,d)∈B, c<X

1

c
∼ 2qλ2

π2(q − 2)
X (X → ∞).

By partial summation this implies the statements in the lemma.

5.9. Taylor expansion. For Reu ≥ σ, Reu 6∈ Z,

(5.2) Φµν (r, u) =

l−1∑

k=0

rk

k!

(
πi

2q

)k
∆k(ν, µ, 1 + 2u− k) + O(r2σ−1) (r↓0).

The constant implied in O does not depend on the choice of u, provided
Reu ≥ σ.

This corresponds to Lemma 3.6 in [5], and is obtained in the same
way: The terms with c ≥ r−1 in the series for Φµν give a contribution
O(r2Reu−1) = O(r2σ−1). For the other terms consider a Taylor expan-
sion of eπirT (c,d)/(2q) up to the term with rl−1. The remainder terms give a
contribution estimated by

rl
∑

(c,d)∈B, c<1/r

cl−2σ−1 = O(r2σ−1).

In the other terms we go over from c < 1/r to all c; the difference is again
O(r2σ−1).

5.10. The final sum. We insert the expansion in (5.2) into

e−πir/2ϕµν (r, s) =
∞∑

p=0

αp(n,m, s)Φ
µ
ν (r, s + p).



Dedekind sums for Hecke groups 33

As
∑∞
p=0 αp(n,m, s) = O(1) (r ↓ 0), the remainder term contributes

O(r2σ−1). For each k ∈ [0, l − 1], and s still fixed, the series
∞∑

p=0

∆k(ν, µ, 1 + 2s+ 2p− k)αp(n,m, s)

converges absolutely, uniformly for r in a neighborhood of 0. It defines a
holomorphic function of r. We replace it by its expansion up to O(rl), and
get

e−πir/2ϕµν (r, s)

=

l−1∑

k=0

rk

k!

(
πi

2q

)k ∞∑

p=0

(−4π2

λ2

)p
(mn)p

p!(1 + 2s)p
∆k(ν, µ, 1 + 2s + 2p− k)

+ O(r2σ−1)

=

l−1∑

h=0

rh
∞∑

p=0

h∑

k=0

βhp,k(ν, µ, s)∆k(ν, µ, 1 + 2s+ 2p − k) + O(r2σ−1),

with βhp,k as in Proposition 5.6.

6. Meromorphic continuation. It is well known that Eisenstein and
Poincaré series have a meromorphic continuation in the spectral parame-
ter s, and satisfy a functional equation. The case of weight 0 may be found
in [22]. In [2, 3, 4] the meromorphic continuation in (r, s) jointly has been
studied. These papers treat the modular case, q = 3. Extension to all Gq
is straightforward for the results in [2, 3], and for part of the results in [4].
Here we need only results that extend easily from G3 to Gq. Theorem 10.2.1
in [9] gives these results in a more general context. (To obtain the results
in 6.1 one takes the cell of continuation J equal to the null cell J(0).)

Our aim is to obtain the meromorphic continuation of the ∆k, and in-
formation concerning the right-most singularity.

6.1. Meromorphic continuation in two parameters. Proposition 2.19
in [3], generalized to Gq, gives:

Let µ ∈ Z. There are a neighborhood U of 0 in C, containing
(
−4q
q−2 ,

4q
q−2

)
,

and a meromorphic family Eν of automorphic forms on U × C that is

uniquely determined by the following conditions:

(i) For each (r, s) ∈ U × C at which Eµ is holomorphic it is an auto-

morphic form of weight r, with eigenvalue 1/4−s2 and multiplier system vr.
(ii) There are meromorphic functions Cµν on U × C such that

Eµ(r, s;λz) = µm(r, s; z) + Cµ0 (r, s)µn0(r,−s; z) +
∑

ν 6=0

Cµν (r, s)ωn(r, s; z)
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as an identity of meromorphic functions. We understand the quantities

m = µ+ (q − 2)r/(4q) and n = ν + (q − 2)r/(4q) to vary with r; by n0 we

mean (q − 2)r/(4q).

The characterization of Eµ by the form of its Fourier series expan-
sion implies various functional equations. Here we shall use the follow-
ing ones: E0(r,−s) = C0

0 (r,−s)E0(r, s), E0(r, s;−z̄) = E0(−r, s; z), and
C0

0 (r,−s)C0
0 (r, s) = 1.

A holomorphic family of automorphic forms is a C∞-function in (r, s, z)
that is holomorphic in (r, s) if we leave z fixed, and that is an automorphic
form in z if we leave (r, s) fixed. A meromorphic family is understood to be
locally in (r, s) of the form 1

ψ(r,s)
f(r, s, z), with f a holomorphic family, and

ψ a holomorphic function that is not identically zero. So all meromorphic
functions (r, s) 7→ Eµ(r, s; z) have common denominators.

Generalization of Proposition 2.23 in [3], or application of part (ii) of
Theorem 10.2.1 in [9], implies:

The family s 7→ Eµ(0, s) exists as a meromorphic family of automorphic

forms of weight 0. It is holomorphic on Re s > 1/2, and is given by the

Poincaré series pµ(0, s) for Re s > 1/2.

The existence of the restriction s 7→ Eµ(0, s) is not trivial, as Eµ might
have had a singularity along the line r = 0. The holomorphy at s = s0 of
this restriction need not imply the holomorphy of Eµ at (0, s0); see 6.7.

6.2. Fourier coefficients. The Cµν are meromorphic on U × C, the re-
strictions s 7→ Cµν (0, s) exist, and coincide with cµν (0, s) for Re s > 1/2. It
will turn out to be useful not to work with Cµν , but with Ψµν , defined by
Cµν (r, s) = λ−1−2sgν(r, s)Ψ

µ
ν (r, s), with

g0(r, s) =
π21−2sΓ (2s)

Γ (1/2 + s+ r/2)Γ (1/2 + s− r/2)
,

gν(r, s) =
πs+1/2

Γ (1/2 + s± r/2)

(
± ν ± q − 2

4q
r

)s−1/2

if ± ν > 0.

Each Ψµν has a meromorphic restriction to the line r = 0; on Re s > 1/2
it is holomorphic with value ϕµν (0, s).

6.3. Derivatives. For each integral h ≥ 0 the function

ψµν (h; s) =
1

h!
∂hr Ψ

µ
ν (0, s)

is meromorphic on C. Of course, ψµν (0; s) is just the restriction s 7→ Ψµν (0, s).

6.4. Poincaré series of positive weight. Let U+ = {r ∈ U : Re u > 0}.
On U+ × C there is no reason not to use the basis µn0(r, s), ωn0(r, s) for
the Fourier terms of order n0 = (q− 2)r/(4q). In Proposition 2.20 of [3] the
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Eµν are combined to form meromorphic families Pµ on U+ × C that have
a Fourier expansion with a simple form with respect to the latter basis.
(One may also apply Theorem 10.2.1 in [9] with J equal to a minimal cell
of continuation, and consult the discussion in 10.3.2 of [9].) To make this
explicit we need

v(r, s) =

(
q − 2

q
πr

)s+1/2
Γ (−2s)

Γ (1/2 − s− r/2)
,

for which ωn0(r, s) = v(r, s)µn0 (r, s) + v(r,−s)µn0(r,−s). It turns out that

Pµ(r, s) = Eµ(r, s) +
v(r, s)Cµ0 (r, s)

v(r,−s) − v(r, s)C0
0 (r, s)

E0(r, s).

It has a Fourier expansion

Pµ(r, s) = µm(r, s) +
∑

ν

Dµ
ν (r, s)ωn(r, s),

with Dµ
ν the meromorphic function on U+ × C given by

Dµ
0 (r, s) = Cµ0 (r, s)/(v(r,−s) − v(r, s)C0

0 (r, s)),

Dµ
ν (r, s) = Cµν (r, s) +

v(r, s)Cµ0 (r, s)C0
ν (r, s)

v(r,−s) − v(r, s)C0
0 (r, s)

if ν 6= 0.

Proposition 2.23 in [5] can be generalized to state that Pµ is holomorphic

at (r, s) if 0 < r < (q − 2)/(4q) and Re s > 1/2, with value pm(r, s).
(Remember the convention m = µ+ (q − 2)r/(4q).) Hence for these values
of (r, s) the Dµ

ν (r, s) are given by the cmn (r, s). (In [9] I call a family like Pµ

a family on a restricted parameter space; see Proposition 10.2.12 for the
holomorphy.)

This makes it possible to express the Ψµν in terms of the ϕµν . We do
not carry this out completely, but are content with inverting the relation
between the C’s and the D’s:

Cµ0 (r, s) =
v(r,−s)Dµ

0 (r, s)

1 + v(r, s)D0
0(r, s)

,

Cµν (r, s) = Dµ
ν (r, s) − v(r, s)Dµ

0 (r, s)D0
ν(r, s)

1 + v(r, s)D0
0(r, s)

if ν 6= 0.

6.5. Behavior for r ↓ 0. Let us take l ∈ N, l ≥ 2. The restriction
s 7→ Ψµν (0, s) is meromorphic, hence the strip {s ∈ C : l/2 < Re s < (l+1)/2}
contains an open dense subset of points s such that Ψµν is holomorphic at
(0, s).

Let us fix such an s, and put σ = Re s. We want to consider the behavior
for r ↓0 of Ψµν (r, s) = λ−1−2sgν(r, s)

−1Cµν (r, s). We express Cµν in the D’s,
which are equal to the corresponding cmn (r, s) = Gr(n,m, s)ϕ

µ
ν (r, s) for the
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current (r, s). The c’s we express in the ϕµν , for which Proposition 5.6 gives
a Taylor expansion in r.

v(r, s)Dµ
0 (r, s) = e−πir/2λ−1−2s

(
q − 2

4q
πr

)2s

× 22s+1Γ (−2s)

Γ (1/2 − s− r/2)Γ (1/2 + s+ r/2)
ϕµ0 (r, s)

= O(r2σ),

D0
ν(r, s) = e−πir/2λ−1−2s

∣∣∣∣ν +
q − 2

4q
r

∣∣∣∣
s−1/2

× πs+1/2

Γ (1/2 + s+ (r/2) sign ν)
ϕ0
ν(r, s)

= O(1) (with ν 6= 0),

Cµ0 (r, s) = v(r,−s)Dµ
0 (r, s)(1 + O(r2σ)),

Cµν (r, s) = Dµ
ν (r, s) + O(r2σ) (with ν 6= 0),

Ψµ0 (r, s) = λ1+2sg0(r, s)
−1v(r,−s)Dµ

0 (r, s)(1 + O(r2σ))

= e−πir/2ϕµ0 (r, s) + O(r2σ),

Ψµν (r, s) = λ1+2sgν(r, s)
−1Dµ

ν (r, s) + O(r2σ)

= e−πir/2ϕµν (r, s) + O(r2σ) (with ν 6= 0).

Ψµν is holomorphic at (0, s), and the ψµν (h; s) are the Taylor coefficients
at 0 of the holomorphic function r 7→ Ψµν (r, s). We find the first l of them
in Proposition 5.6. This can be done for a dense set of points s in the
strip l/2 < Re s < (l + 1)/2. We obtain an identity between meromorphic
functions that extends to the region on which both sides are defined:

6.6. Lemma. Let µ, ν ∈ Z, and h ∈ N∪{0}. The meromorphic function

ψµν (h) is holomorphic for Re s > (h+ 1)/2, and satisfies on this region

(6.1) ψµν (h; s) =

∞∑

p=0

h∑

k=0

βhp,k(ν, µ, s)∆k(ν, µ, 1 + 2s+ 2p − k),

with βhp,k as in Proposition 5.6.

6.7. Singularities at half-integral points. Now we turn to the generaliza-
tion of Proposition 7.19 in [3]. It describes the behavior of the Eµ at points
(0, s) with Re s > 1/2.

Singularities of such Poincaré families at points (0, s) with Re s ≥ 0 gen-
erally arise from two causes. The first cause are spectral features: if the
Laplacian on H has square integrable eigenfunctions on Gq\H with eigen-
value 1/4 − s2 with non-vanishing Fourier coefficient of order µ, then Eµ
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may have a singularity at (0, s). In weight zero all such eigenvalues are
in [0,∞); so for Re s > 1/2 this possibility is of no concern. The other
main cause for singularities is more trivial. The families Eµ are determined
by a prescribed form of the Fourier coefficients with respect to a fixed ba-

sis of the space of possible Fourier terms. If the functions used fail to be
a basis at some point, trouble is to be expected. In the present case this
occurs at points (0, l/2), l ∈ N, due to the singularity of µn0(r,−s) at these
points. If we look at the restriction to the line r = 0 this is not visible,
as µn0(0,−s; z) = y−s+1/2. To describe the resulting singularity one goes
over to another basis of the Fourier terms of order n0. Take a meromorphic
function wl such that µn0(r, s) and lν(r, s) = µn0(r,−s) + wl(r, s)µ

n0(r, s)
form a basis suitable for all points near (0, l/2). For all other Fourier terms
the old basis is all right. Define linear combinations lEµ of the E’s with a
simple Fourier expansion with respect to the new basis. These lEµ behave
nicely at (0, l/2). In [3] I used

wl(r, s) =

(
π(q − 2)r

q

)l
Γ (−2s)Γ (1/2 + s− r/2)

Γ (2s)Γ (1/2 − s− r/2)
;

at present I prefer

(6.2)

(
π(q − 2)r

q

)l
Γ (−2s)

Γ (2s)

(
1

2
− s− r

2

)

l

.

Both can be used to get the following generalization of Proposition 7.19
in [3]:

Let µ ∈ Z, s0 ∈ C, Re s0 > 1/2.

(i) If s0 6∈ (1/2)N, then Eµ is holomorphic at (0, s0), with value given

by the Poincaré series pµ(0, s0).
(ii) Let s0 = l/2, l ∈ N, l ≥ 2. Put

lEµ(r, s) = Eµ(r, s) +
wl(r, s)C

µ
0 (r, s)

1 − wl(r, s)C0
0 (r, s)

E0(r, s).

Then lEµ is holomorphic at (0, s0), with value given by pµ(s0).

This is a special case of Propositions 12.4.2 and 12.4.3 in [9].
The fact that lEµ has value pµ(l/2) at (0, l/2) is not stated explicitly

in [3]; it follows from the fact that Eµ and lEµ have the same restriction to
the line r = 0.

This implies that the Cµν are holomorphic at (0, s) for Re s > 1/2, s 6∈
(1/2)Z.

Near points (0, l/2), l ≥ 2, l ∈ N, we have

lEµ(λz) = µm(r, s) + lCµ0 (r, s) lν(r, s) +
∑

ν 6=0

lCµν (r, s)ωn(r, s),
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lCµν (r, s) = Cµν (r, s) +
wl(r, s)C

µ
0 (r, s)C0

ν (r, s)

1 − wl(r, s)C
0
0 (r, s)

,

Cµν (r, s) = lCµν (r, s) − wl(r, s)
lCµ0 (r, s) lC0

ν(r, s)

1 + wl(r, s) lC0
0 (r, s)

.(6.3)

The lCµν are holomorphic at (0, l/2), with value cµν (0, l/2).

6.8. Lemma. Let h ∈ N ∪ {0}, and µ, ν ∈ Z. All singularities of ψµν (h)
in the region Re s > 1/2 occur at half-integral points.

(i) There exists a number σ0 ∈ (0, 1/2) such that all ψµν (0) are holo-

morphic on the region Re s > σ0, with the exception of a first order pole at

s = 1/2 in the case µ = ν = 0, with residue qλ2π−2(q − 2)−1.

(ii) ψµν (1) is holomorphic on Re s > 1/2.
(iii) If h is odd , h ≥ 3, then ψµν (h) is holomorphic on Re s > (h− 1)/2.

(iv) Let h be even, h ≥ 2. If the number

(−1)h/2

h!

(
π(q − 2)

2λq

)h
λ−1ϕµ0 (0, h/2)ϕν0 (0, h/2)

vanishes, then ψµν (h) is holomorphic at s = h/2, otherwise ψµν (h) has a first

order pole at s = h/2, with this number as the residue. There are no other

singularities of ψµν (h) in the region Re s > (h− 1)/2.

The proof will take the remainder of this section. The case h = 0 is just
spectral theory of automorphic forms. The other cases are based on (6.3).
From the results stated above it follows that the only singularities in Re s >
1/2 occur at points l/2 with l ∈ N, l ≥ 2.

6.9. Case h = 0. The ψµν (0) are, up to some explicit factors, the Fourier
coefficients of Eisenstein and Poincaré series in weight 0. See, e.g., [16],
Ch. VI, Theorems 11.6 and 11.8 on pp. 128–130, claim 9.2 on p. 71, claim 9.6
on p. 78, Theorem 11.11 on p. 140, and also Ch. VII, Theorem 5.3(i), (ii)
and Proposition 5.5(i), (ii) on p. 258. Choose the number σ0 in such a way
that there are no automorphic eigenvalues in the interval (0, 1/4 − σ2

0).

The holomorphy of pµ at s = 1/2, for µ 6= 0, is a consequence of Propo-
sition 11.3.9(iii) in [9].

6.10. Case h ≥ 1. In the lemma we fix h, and consider the l ≥ 2,
l ∈ N, at which ψµν (h) is singular. In the proof it is more convenient to fix
l ∈ N, l ≥ 2, and to consider the h for which ψµν (h) is holomorphic at l/2.
This means that we have to prove that ψµν (h) is holomorphic at s = l/2 for
1 ≤ h ≤ l− 1, and also for h = l if l is odd. For even l we have to determine
the value at s = l/2 of s 7→ (s− l/2)ψµν (l).

We have Ψµν (r, s) =
∑∞
h=0 ψ

µ
ν (h; s)rh for r near 0, and s near l/2, s 6=

l/2. The function Cµν (r, s) = λ−1−2sgν(r, s)Ψ
µ
ν (r, s) has a similar expansion
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Cµν (r, s) =
∑∞
h=0B

µ
ν (h; s)rh. As gν is holomorphic and non-zero at (0, l/2),

it suffices to prove for the Bµν :

(α) Bµν (h) is holomorphic at s = l/2 for 1 ≤ h ≤ l − 1.

(β) s 7→ (s− l/2)Bµν (l) is holomorphic at s = l/2, with value

̺µν (l) =





(−1)l/2

l!λ2

(
π(q − 2)

2qλ2

)l
gν(0, l/2)ϕ

µ
0 (0, l/2)ϕν0 (0, l/2) if l is even,

0 if l is odd.

We treat three cases separately: µ and ν both zero, one of them zero,
and both non-zero. The first two cases have been considered in [5]. There
I tried to get information on the order of all poles at points between 1/2
and h/2; that made the treatment messy. I repeat the reasoning here, but
restrict myself to the right-most singularity.

6.11. Case µ = ν = 0. From the functional equation E0(r, s;−z̄) =
E0(−r, s; z) it follows that C0

0 (−r, s) = C0
0 (r, s). Hence the B0

0(2k + 1)
vanish, and we can restrict the discussion to even h.

There are meromorphic functions A2k and holomorphic functions lAh on
a neighborhood of s = l/2 such that

C0
0 (r, s)−1 =

∞∑

k=0

A2k(s)r
2k, lC0

0 (r, s)−1 =

∞∑

h=0

lAh(s)r
h.

To see that lC0
0 (0, l/2) 6= 0, use the fact that it is equal to c00(0, l/2), and

that ϕ0
0(0, l/2) > 0.

The r-expansion of wl starts with

(6.4) wl(r, s) = rl
(
π(q − 2)

q

)l(
1

2
− s

)

l

Γ (−2s)

Γ (2s)
+ . . . ;

I use the version of wl given in (6.2).

As C0
0 (r, s)−1 = lC0

0 (r, s)−1 + wl(r, s), we conclude that the A2k with
2k < l are holomorphic at s = l/2. If l is even, the singular part of Al
at s = l/2 is given by the first term in the expansion of wl. This gives, for
even l,

Al(s) =
1

s− l/2

(
π(q − 2)

2q

)l
(−1)1+l/2

g0(0, l/2) l!
+ (holomorphic at l/2).

The relation between the A’s and the B0
0 ’s implies that B0

0(2k) is holo-
morphic at s = l/2 for 2k < l, and that for even l, modulo holomorphic
functions at s = l/2:
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B0
0(l; s) ≡ −B0

0(0; s)2Al(s)

≡ −λ−2−2lg0
(
0, l/2

)2
ϕ0

0

(
0, l/2

)2 (−1)1+l/2

g0(0, l/2) l!

(
π(q − 2)

2q

)l
1

s− l/2

= ̺0
0(l)

1

s− l/2
.

This gives (α) and (β).

6.12. Case µν = 0, but µ 6= 0 or ν 6= 0. We consider the quotient

Q(r, s) = Cµν (r, s)/C0
0 (r, s) = lCµν (r, s)/lC0

0 (r, s).

As lC0
0 (0, l/2) is non-zero, the function Q is holomorphic at (0, l/2), with

value

Q(0, l/2) =
cµν (0, l/2)

c00(0, l/2)
=
gν(0, l/2)

g0(0, l/2)
· ϕ

µ
ν (0, l/2)

ϕ0
0(0, l/2)

.

With A2k as above this gives

Q(r, s) =

∞∑

h=0

rh
∑

0≤k≤h/2

A2k(s)B
µ
ν (h− 2k; s),

Bµν (h; s) = B0
0(0; s)

1

h!
∂hrQ(r, s)|r=0 −

∑

1≤k≤h/2

B0
0(0; s)A2k(s)B

µ
ν (h− 2k; s).

We already know that the function Bµν (0) is holomorphic at s = l/2
with value λ−1−lgν(0, l/2)ϕ

µ
ν (0, l/2). Inductively we get the holomorphy of

Bµν (h) at s = l/2 for h < l, and for h = l if l is odd. For even l we get,
modulo holomorphic functions at s = l/2,

Bµn(l; s) ≡ −B0
0(0; s)Al(s)B

µ
ν (0; s)

≡ 1

s− l/2
(−1)λ−1−lg0(0, l/2)ϕ

0
0(0, l/2)

(−1)1+l/2

g0(0, l/2) l!

(
π(q − 2)

2q

)l

× λ−1−lgν(0, 1/2)ϕ
µ
ν (0, l/2)

= ̺µν (l)
1

s − l/2
.

Use ϕµν (0, s) = ϕνµ(0, s) (see 5.4) to conclude that ϕ0
0ϕ

µ
ν = ϕµ0ϕ

ν
0 in the

case µ = 0.

6.13. Case µν 6= 0. In (6.3) we have expressed Cµν in the lC ·
· . As lCµν is

holomorphic at (0, l/2), we need look only at the correction term given by

R(r, s) = lCµν (r, s) − Cµν (r, s) = wl(r, s)
lCµ0 (r, s) lC0

ν(r, s)

1 + wl(r, s) lC0
0 (r, s)

.
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Now, R(r, s)/(wl(r, s)C
0
0 (r, s)) = lCµ0 (r, s)lC0

ν (r, s)/
lC0

0 (r, s) is holomorphic
at (r, s) = (0, l/2) with value

gν(0, l/2)ϕ
µ
0 (0, l/2)ϕ0

ν (0, l/2)

λ1+lϕ0
0(0, l/2)

.

The expansion of wl in (6.4) implies that the r-expansion of R(r, s)/C0
0 (r, s)

starts with rlf(s) + . . . , where, modulo terms holomorphic at s = l/2,

f(s) ≡





1

s− l/2

(
π(q − 2)

2λq

)l
(−1)1+l/2

λ l!
· gν(0, l/2)ϕ

µ
0 (0, l/2)ϕ0

ν (0, l/2)

g0(0, l/2)ϕ0
0(0, l/2)

if l is even,

0 if l is odd.

Hence the expansion of R(r, s) starts with rlf(s)B0
0(0; s) + . . . This means

that the Bµν (h) are holomorphic at s = l/2 for 0 ≤ h < l, and that

lim
s→l/2

(s− l/2)Bµν (l; s)

= lim
s→l/2

(s− l/2)f(s)B0
0(0; s)

=





(−1)l/2

λ2l!

(
π(q − 2)

2λ2q

)l
gν(0, l/2)ϕ

µ
0 (0, l/2)ϕν0 (0, l/2) if l is even,

0 if l is odd.

7. Dirichlet series with Dedekind sums. The results in the previous
sections lead to information concerning the right-most singularity of the
Dirichlet series ∆h(ν, µ,w) defined in (5.1). This will enable us to prove the
distribution results in Propositions 1.4 and 1.5.

7.1. Proposition. Let µ, ν, h∈ Z, h≥ 0. The function w 7→∆h(ν, µ,w)
has a meromorphic extension to C.

(i) There exists ε0 ∈ (0, 1) such that

(a) ∆0(ν, µ,w) is holomorphic on Rew > 2 − ε0 if (ν, µ) 6= (0, 0),
(b) ∆0(0, 0, w) is holomorphic on Rew > 2 − ε0, except for a first

order pole at w = 2 with residue 2λ2q/(π2(q − 2)).
(ii) ∆1(ν, µ,w) is holomorphic on Rew > 1.
(iii) Let h ≥ 2 be even. Then ∆h(ν, µ,w) is holomorphic on Rew > 0,

except possibly at w = 1, and

lim
w→1

(w − 1)∆h(ν, µ,w) = 2(q − 2)hλ−h−1ϕµ0 (0, h/2)ϕν0 (0, h/2).

(iv) If h ≥ 3 is odd , then ∆h(ν, µ,w) is holomorphic on Rew > 0.

P r o o f. Central are the relation between the ψµν and the ∆k(µ, ν, ·) in
Lemma 6.6, and the properties of the ψµν given in Lemma 6.8.
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The meromorphic continuation is obtained by an induction procedure,
based on the following reformulation of (6.1) in Proposition 6.6:

(7.1) ∆h(ν, µ,w)

= h!

(
4q

2πi

)h
ψµν

(
h;
w − 1 + h

2

)

− h!

(
4q

2πi

)h∑

p

∑

k

βhp,k

(
ν, µ,

w − 1 + h

2

)
∆k(ν, µ,w + 2p+ h− k),

where 0 ≤ k ≤ h, and p ≥ 1 if k = h, p ≥ 0 otherwise. Suppose ∆k(ν, µ,w)
has been meromorphically extended to Rew > 2 − m. All terms in the
right hand side of (7.1) are meromorphic on Rew > 1 −m, but there are
infinitely many of them. If Rew > 1−m, all but finitely many terms satisfy
Re(w + 2p + h − k) > 3. On this region ∆k is a bounded holomorphic
function. The β-factors satisfy estimates ensuring that the corresponding
infinite sum converges, and defines a meromorphic function. This gives the
continuation to Rew > 1 −m.

Consider the case h = 0. Take ε0 = 2σ0, with σ0 as in Lemma 6.8. The
term with ψµν (0) in (7.1) has the behavior described in (i)(a) and (b). For
Rew > 2 − ε0 the remaining terms satisfy Re(w + 2p) > 4 − ε0, and hence
define a holomorphic function.

For h = 1 the term with ψµν (1) is holomorphic on Rew > 1. In the sum
the terms with p ≥ 1 satisfy Re(w + 2p + 1 − k) > 3. In the corresponding
sum the ∆k are bounded and the β-factors are holomorphic, hence the sum
is holomorphic on Rew > 1. The remaining term with p = k = 0 is also
holomorphic on Rew > 1. This gives (ii).

To get (iii) and (iv), suppose that they have been proved for smaller
values of h. It suffices to consider the various terms in (7.1) on the region
Rew ≥ ε, for an arbitrary ε ∈ (0, 1). The subsum with p ≥ 1 satisfies
Re(w + 2p + h − k) ≥ 2 + ε, hence it gives a holomorphic contribution.
The other terms in the sum have p = 0 and k = 0, . . . , h − 1. For these
Re(w+2p+h− k) ≥ 1+ ε. For 2 ≤ k ≤ h− 1 use the induction hypothesis.
For k = 1 use (ii). For k = 0 we have Re(w+ 2p+ h− k) = Re(w + h) > 2,
hence (i) can be used. Finally, we consider ψµν

(
h; w−1+h

2

)
. Lemma 6.8 shows

that it is holomorphic on Rew ≥ ε, except if h is even. In that case there
may be a singularity at w = 1, with a residue that leads to the formula
in (iii).

7.2. Proof of the distribution results. We shall use Proposition 7.1 to
prove the distribution results for a suitable class of test functions. A density
arguments will give Propositions 1.4 and 1.5 for all continuous functions.
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7.3. Some functionals. For continuous functions f on (R mod λZ)2 ×R

and X > 1 define

µX(f) =
1

X

∑

(c,d)∈B, c<X

1

c
f

(
a

c
,
d

c
,
T (c, d)

c

)
,

µ(f) =
2q

π2(q − 2)

λ∫

0

λ∫

0

f(ξ, η, 0) dξ dη;

νX(f) =
1

X

∑

(c,d)∈B, c<X

(
T (c, d)

c

)2

f

(
a

c
,
d

c
,
T (c, d)

c

)
,

ν(f) =
∑

(c1,d1)∈B

∑

(c2,d2)∈B

(q − 2)2

(λc1c2)3

∑

±

f

(
a1

c1
,
d2

c2
,
±(q − 2)

λc1c2

)
.

We use the convention that for each (c, d) ∈ B some
(
a
c
b
d

)
∈ Gq has been

chosen.
The second distribution result amounts to (7.3) below for all continu-

ous f . We shall see in (7.6) that the first distribution result follows from (7.2)
for all continuous f .

lim
X→∞

µX(f) = µ(f),(7.2)

lim
X→∞

νX(f) = ν(f).(7.3)

In 7.5 we prove (7.2) and (7.3) for the functions

fhν,µ(ξ, η, σ) = e2πi(µξ+νη)/(λc)σh, µ, ν, h ∈ Z, h ≥ 0.

In 7.4 we extend these limit formulas to all continuous functions.

7.4. Extension. From (3.2) it follows that we can work in the space Y of
continuous functions on the compact set (R mod λZ)2×[−βq, βq ]. Provide Y
with the supremum norm. The functions fhν,µ span a dense subspace Y0. To
extend the limit formulas from Y0 to Y we need ‖µX‖ = O(1) (X → ∞).
This follows from |µX(f)| ≤ ‖f‖µX(f0

0,0), and limX→∞ µX(f0
0,0) = µ(1).

Proceed similarly for νX .

7.5. Tauberian results. We use the Ikehara Tauberian theorem (see, e.g.,
[27], Ch. V, §17, or [17], Ch. XV, §2, 3). It allows us to conclude

∑
c<X a(c)∼

̺X (X → ∞) from the fact that the Dirichlet series
∑
c∈C a(c)/c

w has a
meromorphic extension to Rew > 1−ε, with a first order pole at w = 1 with
residue ̺ as the only exception to holomorphy. The case that the extension
is holomorphic at w = 1 corresponds to ̺ = 0. This can be applied directly if
the a(c) are non-negative. For complex a(c) it holds if there are non-negative
b(c) with a(c) = O(b(c)) such that the Dirichlet series

∑
c∈C b(c)/c

w satisfies
similar assumptions, with non-zero residue at w = 1.
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To get (7.2) for fhν,µ apply this with

a(c) = c−1−h
∑

d, (c,d)∈B

T (c, d)he2πi(µa+νd)/(λc) , b(c) = c−1#{d : (c, d) ∈ B}.

Together with Proposition 7.1 this gives

lim
X→∞

µX(fhν,µ) =

{
2λ2qπ−2(q − 2)−1 if h = µ = ν = 0,
0 otherwise.

This turns out to be µ(fhν,µ).

To get (7.3) for fhν,µ take

a(c) = c−h−2
∑

d, (c,d)∈B

T (c, d)h+2e2πi(µa+νd)/(λc) ,

b(c) = c−h1−2
∑

d, (c,d)∈B

T (c, d)h1+2,

with h1 = h if h is even, and h1 = h − 1 if h is odd. The corresponding
Dirichlet series are ∆h+2(ν, µ,w) and ∆h1+2(0, 0, w). We use the fact that
ϕ0

0(0, 1 + h1/2) is positive. We get

lim
X→∞

νX(fhν,µ)

=

{
2(q − 2)h+2λ−h−3ϕµ0 (0, h/2 + 1)ϕν0(0, h/2 + 1) if h is even,
0 if h is odd.

To see that this equals ν(fhν,µ) for even h, use ϕµ0 = ϕ0
µ, and insert the

Dirichlet series for the ϕ’s.

7.6. Partial integration. Define α(X) =
∑

(c,d)∈B, c<X c
−1f(a/c, b/d,

T (c, d)/c)), with f continuous on (R mod λZ)2 × [−βq , βq ]. We have found
A ∈ C such that α(X) = AX + o(X) (X → ∞), and want to show that

X∫

0

x dα(x) =
1

2
AX2 + o(X2) (X → ∞).

As
X∫

0

x dα(x) = Xα(X) −
X∫

0

α(x) dx,

we have to show that
X∫

0

α(x) dx =
1

2
AX2 + o(X2).

For ε > 0 there exists Xε > 1 such that |α(x)−Ax| < εx for all x > Xε.
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For X > Xε sufficiently large we have
∣∣∣∣
X∫

0

α(x) dx − A

2
X2

∣∣∣∣ ≤ (constant) +
ε

2
(X2 −X2

ε ) < εX.

Thanks. I thank the copy editor of Acta Arithmetica for a number of
corrections in this paper.
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