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Automorphic forms, hyperfunction cohomology,
and period functions
By Roelof W. Bruggeman at Utrecht

Abstract. Lewis, [5], has given a relation between cuspidal Maass forms and "period
functions". This paper investigates that relation by means of the invariant hyperfunctions
corresponding to automorphic forms.

1. Introduction

Lewis, [5], constructs, with help of integral transforms, a bijection between the space
of cuspidal Maass forms with eigenvalue s — s2 for the f ll modular group PSL2(Z), and
the space of holomorphic functions ψ on C \(— oo, 0] that satisfy

(1) φ ( ζ ) _ φ ( ζ + ΐ ) Α ( ζ + ΐ ) - 2 _
z -r l/

and ψ(χ) = O (l /χ) s χ -> oo. See also [6].

Lewis, [5], §6(c), gives formal computations with the boundary form associated to
a Maass form s a motivation for his method. The present paper arose from the wish to
understand the map from Maass forms to period functions in terms of hyperfunctions.

Almost all real analytic modular forms, cuspidal Maass forms included, arise from
invariant hyperfunction vectors in the corresponding principal series representation. These
hyperfunctions live on the boundary of the upper half plane, which is topologically a circle.
They are represented by holomorphic functions in the upper and lower half plane. Prop-
osition 2.3 shows that a special choice of the representatives always leads to functions that
satisfy the relation (1), and that, after a normalization, there is a bijective correspondence
between invariant hyperfunctions and Solutions of (1), for general values of the spectral
Parameter.

Zagier, [11], gives arguments why the functions ψ associated to cuspidal Maass forms
are similar to the period polynomials associated to holomorphic cusp forms for the modular
group. (See also [6], II-C.) We shall show that the classical period polynomials are a
specialization of 1-cocycles with values in the hyperfunctions with compact support (see
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2 Bruggeman, Period functions

Proposition 5.8 and the construction in the proof of Proposition 2.5 in Subsection 6.3).
To arrive at this cohomological Interpretation, we have to work with cocycles on the f ll
original of the modular group in the universal covering group of SL2(IR), and use hyper-
functions on the line, which arises s the universal covering of the circle bounding the
upper half plane.

In Proposition 2.7, we give a natural map from compactly supported hyperfunctions
on the line to holomorphic functions on C \/, with / c R an interval. The image of the
l-cocycles mentioned above leads again to Lewis's period functions, but with the opposite
choice of the spectral parameter; see Proposition 2.8.

Lewis's period function is a special feature of the modular group. Most results in
this paper are valid for a general cofinite discrete subgroup Γ c= PSL2(IR) with cusps.

Bunke and Olbrich, in [2] and a number of preprints, consider the hyperfunction-
valued cohomology for much more general discrete groups. I do not see a direct relation
to the cohomology group discussed in this paper.

I thank E.P van den Ban, J. J. Duistermaat, J.B. Lewis and D. Zagier for their inter-
est, help, and useful discussions.

Many of the ideas in this paper are present in the work of Lewis, or have been the
subject of our discussions during Lewis's visits to Utrecht. I have also profited from Lewis's
remarks on preliminary versions of this paper. Zagier has brought the work of Lewis to
my attention, and has shown interest in the approach in this paper. Van den Ban showed
me the argument in the proof of Lemma 5.2. Duistermaat has repeatedly told me that
invariant boundary forms should give insight into automorphic forms.

2. Notations and Statement of results

2.1. Principal series representations of PSL2(R). Let (?:= PSL2(R). Elements of G

are indicated by a representative in SL2(R). So l ) and ( ] denote the same
elementofG. \c d/ \-c~dJ

We use k (9) ·= l . L and p (z) ··= ( " ",- l for z in the upper half plane
\ — s m i J cos / \ 0 1/1/y/

|>+ = {χ -f iy : χe R,y > 0}. We always write χ = Rez, y = Imz, for z e §+. We also use
n(x) :=/?(/ + x) for xe R and a(y) -=p(iy) for y > 0

) : ; c e ! R > i s a unipotent subgroup of G, and A -=· (p(iy): y > 0} a one-

dimensional real torus. P«= NA is a parabolic subgroup of G. The group

:i={fc( ): »6 ΚπκκΙπΖ}
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Bruggeman, Period functions 3

is a maximal compact subgroup of G. As a Haar measure on K we use dk = - d9, with
k = k(9). n

Elements of G act on the complex projective line P^ := C u {00} by fractional linear

transformations z \-> ( l · z := - -. This action has three orbits: the upper half plane\c d) cz + d
£+, the / wer half plane §~ «= {z e C : >> < 0}, and the real projective line r:=P^ = !Ru{oo}.

The upper half plane can be viewed s the quotient G/ K by identifying gK to g · i.
We identify T to P \G by Pfc(#) h-* cot 5. We provide T with the cyclic order that induces
the usual order on R ci Γ. Note that the function 5 1—> cot 5 is decreasing. (This choice of
the identification avoids some complications in the formulas later on.)

For each v 6 C, we denote by πν the principal series representation of G by right
translation in the space Mv of classes of functions /: G -* C satisfying

and J | f ( k ) \ 2 dk < oo . This gives the induced representation of G corresponding to the
κ

character p (z) i— > yv + 1/2 of the parabolic subgroup P.

Mv is the Hubert space L2 (K, dk) with a G-action πν depending on v. This represen-
tation is bounded. The G-spaces (πν, Mv) and (π_ ν , M~v) are dual to each other under
the pairing (fl9f2)^> If^(k)f2(k)dk. See, e.g., [4], Chap. III, §2.

κ

Usually, the letter H is used to indicate these spaces. We employ M to avoid confusion
with cohomology groups.

Functions on K correspond to functions on T ̂  P \G. This gives the realization of

Mv in the functions on T that are square integrable with respect to — - ̂ -. The action
and the duality are given by: π( τ )

a b\ f 1 + t2 V /2 + v / άτ-
(2)

ί
y

(3) <φΐ9 φ2> = ~ ί Φι ( τ 2 -7-7—2 '
71 1 -Γ Τ

The action of G on T = P \G is on the right. If we view T s the real projective line,
then this action corresponds to g : τ H-> g~ l - τ.

The representation πν makes sense in the spaces M^ and Α/Ιω, oianalytic vectors and
hyperfunction vectors of Mv. The spaces M^ and ΜΓ^ are dual. We have M^ <=. Mv c Μ^ω.

Elements of M „ are given by holomorphic functions on some neighborhood W of T
in P^ (this neighborhood depends on the element). The representation πν of G in M^ is
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4 Bruggeman, Periodfunctions

( 1+ τ 2 γ+ 1/2
given by (2). Note that l ^2 t ^_—^ ) is holomorphic in τ on a neighborhood

of T depending on (\c df

Let W be a neighborhood of Γ in Ρ<ί. An element of Μ1ω is an equivalence class
of holomorphic functions on W\T9 where two functions are equivalent if their difference
extends s a holomorphic function on W. This concept does not depend on the choice of W.

The inclusion Μ^αΜ1ω associates to a holomorphic function φ on W => T the
hyperfunction represented by the function equal to φ on Wr\9)+ and to 0 on <r>~.

The space Μν
ω contains the space MV

K of K-finite vectors, with algebraic basis

(τ _|_ /\e/2
: l . This space is

not invariant under nv(G), but it has the derived action of the complexified Lie algebra g
of G. It is ^Γ-invariant, and nv(k(8))(pq = eiq^q>q.

2.2. Automorphic hyperfunctions. By F we denote a cofinite discrete subgroup of
G = PSL2(R). So F acts discontinuously on <r>+ u §". The limit set of F is equal to T. The
quotient F \i>+ has finite invariant measure; we assume that it is not compact. The funda-
mental example in this paper is the modular group Fmod:=PSL2(Z).

/l Λ
A cusp of F is a point of T fixed by an element of F of the form g ( l g l, with

x φ 0, g e G. Let us call ^(F) the set of cusps of Γ. This non-empty set consists of finitely
many Γ-orbits.

We have ^(rmod) = P^ = Tmod · oo. The group F°° = | ± Γ n\ : n E Z l is the sub-

group of rmod fixing the cusp oo. For a general Γ, we arrange by conjugation that oo e ^(Γ),
and that {γ e Γ : γ - co = 00} = Γ00.

For v e C, let ΑΙ.ω(Γ) be the space of α e Μν_ω that satisfy nv(y)a = α for all γ Ε Γ. We
call the elements of Αν_ω(Γ) automorphic hyperfunctions for Γ. So Αν^ω(Γ) = Η°(Γ, Μ1ω).

As an example, consider a holomorphic automorphic form on Γ ofweight k e 2 Z, i.e.,

a holomorphic function / on §+ such that /( l = (cz 4- d}k f(z) for all l l e Γ.
\cz + d) \c a)

We do not impose any growth condition at the cusps, so k may be negative. We define
af e MlfcJ1)/2 to be the hyperfunction represented by

(4) £,(τ):=

The transformation behavior of / under F implies that ay e A(*L ~ 1)/2(F).
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Bruggeman, Period functions 5

On the other band, automorphic hyperfunctions produce automorphic forms by the
so called Poisson integral (see Thm. 3 of [3]). Let v E C, q e 2 Z. For a given automorphic
hyperfunction α e Αν_ω(γ), the function

(5) ^ (£)'=<*-v teK>a>

is an automorphic form on G for Γ of weight q with eigenvalue v2, i.e., it satisfies:

(i) Fq(ygk(9)) = F(g)eiq* for all 7 6 Γ and k(9) e K.

(ii) CFq = i - — v 2 l Fq9 where C is the Casimir operator.

We do not impose a growth condition at the cusps.

There are differentiation relations between the various F. Consider W:= (

( l 0\ /O 1\ V"* 0
l ± n ] in the Lie algebra g s left invariant differential operators

on G. Then VfFq = iqFq and E±Fq = (l - 2v ± ?)Fq±2.

For α = α/? where / is a holomorphic automorphic form s above, we have
Fk(p(z)) = ykl2f(z). (To check this, use (15).) One can show that almost all automorphic
forms on G (including those corresponding to cuspidal Maass forms) arise s Fq for some
automorphic hyperfunction. In this paper, the automorphic hyperfunctions are the central
point of interest, and not the individual automorphic forms.

2.3. Automorphic hyperfunctions and period functions. Let 3F be the space of holo-
morphic functions /: C \R -> C that satisfy

(6) /(τ)=/(τ + 1),

(7) /(τ) = θ(1) s |Imt| -» oo ,

(8) /(/oo)+/(-/oo) = 0.

Conditions (6) and (7) ensure that / has an expansion in non-negative powers of e±2nil

on g1. So /(+ /oo) makes sense s the constant term in this expansion.

Let T0 = Γ\{οο}. So T0 = IR in the coordinate τ. Any hyperfunction α on Γ has
a restriction a|To to Γ0, which can be represented by a holomorphic function on
{ t e C : 0 < |Ιηιτ|°< 1}.

Proposition 2.1. There is an injective linear map αι-*/β: Αν_ω(Γ) -> ̂  such that
τ h-> (l 4-12)1/2 + ν/α(τ) represents the restriction α|Γο.

We define powers of 1 + τ2 with the Standard choice arg (l + τ 2 ) ε ( — π, π]. So
τ h-» (l + T

2)1/2 + v is discontinuous on /[l, oo)u(- /)[!, oo).
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6 Bruggeman, Periodfunctions

For the formulation of this result, it is essential that oo is a cusp of Γ, with width l.

Example. Let /(τ) = £ ane ιητ be a holomorphic automorphic form of weight
n = — oo

k € 2 Z, and let ar be the corresponding automorphic hyperfunction, represented by gf s
in (4). Then

l £
-a0-f 2^ fl„e nt fo r i e§ ,

_i _ γ -2πΐητ

Example. Let v £ - + Z and ae Αν_ω(γ). Suppose that the automorphic form F0 of

weight zero corresponding to α (see (5)) does not vanish, and has the Fourier expansion

/7 | η(τ\\ = > r s>2ninx ΊΊ/ ( Α π ί η ΐ ιΛLQ\F\^)j — / . cw e K rO,vV^ / ι |Γ ί l y) ·
Π Φ Ο

(W^ s is the exponentially decreasing Whittaker function.) Proposition 4.6 shows that the
function /a in Proposition 2.1 satisfies

00

"1/2Γ(1/2-ν) Σ nv + 1/2cne2nin* forie§+ ,

-πν + 1/2Γ(1/2-ν)

n = l
oo

Equations (11) and (19) in [6] show that our fa is - πν + 1/2Γ(1/2 - v) times the
function / in Theorem 3 of [6].

The map α ι—»/α is far from surjective. In the modular case we can describe the image:

Proposition 2.2. Let veC. Define ^n0d(v) to be the subspace offe^for which
τ Η*/(τ) — τ ~ x ~ 2v/(— l/τ) extends holomorphically to C \(— oo, 0].

The Image of Α^^Γ^} ->^:ct \-+fa is equal to ^od(v).

Let veC . We define iPmod(v) to be the linear space of holomorphic functions
ψ : C \(- oo, 0] -> C that satisfy

(9) ψ(τ) = ψ(τ + 1) + (τ + 1Γ2ν-

(10) e~niv lim (ψ(τ) + τ'ι'2ν\ρ{— )) + ^πίν lim (ψ(τ) + τ"1"^!— 1) = Ο .
Imt->oo\ \ Τ // Im t-*-οο \ \ Τ

The existence of both limits is part of condition (10). Equation (9) is Lewis's period relation
(1), with 2s replaced by 2 v + 1.
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Bruggeman, Period functions l

Proposition 2.3. Lei v e C. For α e Av_m(rmoa), put

(11) ^W-AW-T-1-^/^-!/!),

with /Λ s in Proposition 2.1. 77*e /mear m«/? απ-»φα : ̂ !_w(Tmod) -* ^„^(v) w bijective if

This shows that all hyperfunctions associated to automorphic forms for the modular
group (without any growth condition at the cusp) lead to Solutions of Lewis's functional
equation (1).

If α is an automorphic hyperfunction associated to a holomorphic automorphic form

for rmod, then ψΆ = 0; so the injectivity fails for v e - -f Z.

In the case that α e Α^^Γ^^) corresponds to a Maass form, our φα is

times Lewis's period function ψ.

The relation (11) and its inverse relation (17) are due to Lewis see [6], II-B. We shall
prove the Propositions 2.1, 2.2 and 2.3 in Section 3.2.

2.4. Γ-decompositions. Let X a T be a non-empty Γ-invariant set. We define a Γ-de-
composition q on X of an automorphic hyperfunction α e Αν_ω(Γ) s a map (ξ, η) \-> α [<!;, rf\q
that assigns to pairs (ξ, η) e X2 with ξ Φ η an element of Μ1ω according to the following
rules:

(a) Supp(a[£, η\} c [£ η\ for all ζ, η e Χ, ξ Φ η.

The interval [ξ, >?] refers to the natural cyclic order on T. The hyperfunction α [£, f/]^
is required to have restriction 0 on (η, ξ).

n

(b) X « K/-!>£.,·]« = α whenever ^,^,. . . ,^6^ satisfy ξ0 < ̂  < ··· < £„ = £0,

and the intervals [^_!, £,·] intersect only in their end points.

(c) Λΐγ^ξ9γ^η^^πν(γ)^ξ9η^{οΐ3Άγ€Γ9ξ9η€Χ9ξ^η.

The nature of hyperfunctions admits breaking up all hyperfunctions α such that (a)
and (b) are satisfied. The Γ-behavior in condition (c) is crucial in this definition.

We define Α^ω(Γ, X) to be the linear space of α e Αν_ω(Γ) that have a Γ-decomposition
on X. The next result, to be proved in Subsection 5.2, gives conditions under which
Γ-decompositions exist.
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8 Bruggeman, Period functions

Theorem 2.4. Lei X c T be a Γ-invariant non-empty subset of Γ, without hyperbolic
fixed points of Γ.

If v 6 C, v Φ - -l- Z^0 , //*£« ν4^ω(Γ, ") = Αν_ω(Γ).

If v 6 - -f Z^0 , /A^« ^4^ω(Γ, A") consists of those α 6 ^4!.ω(Γ) ί/ζ^ί satisfy Α^(θί) = Ο

Here ^(α) is the constant term in the expansion of /a on £>+ s a function of e2ni\
see Proposition 2.1. If ξ Ε ̂ (Γ), then >4£(α) := ^^(πν(^)α) for any g e G with g · oo = ξ

/l A
such that g l l g 1 generates the subgroup of Γ fixing ξ. The condition A% (a) = 0 needs

to be checked only for one ξ in each Γ-orbit in Χη^(Γ).

For automorphic hyperfunctions α such that the automorphic forms Fq in (5) are
cusp forms, we shall define, in Proposition 5.7, the geodesic decomposition gd of α οη ^(Γ).
For cusps ξ and η, we shall give α [ξ, ?7]gd by an integral from ξ to η in £>+, and one from
η to ξ in §"", over paths that approach ξ and η along geodesics for the hyperbolic metric.

This is similar to the period polynomials associated to holomorphic cusp forms / of
weight fce2Z:

(12) Rf&wX)*

In Subsection 4.1, we shall see that there is a morphism of G-modules from MlfcJ1)/2 to
the polynomials of degree at most k — 2. If o^ e^4(.i~1)/2(T) is the hyperfunction corre-

sponding to /, then this morphism sends a[£, 7/]gd to — Rf^, η), see Proposition 5.8.

2.5. Universal covering group. The period polynomial Rf(-9-,X)isa homogeneous
1-cocycle of the type discussed in Subsection 6.2, with values in the polynomials of degree
at most k — 2. But, from α[£, η]9 + α[?/, £]β = α, we see that a Γ-decomposition is not a
1-cocycle (unless α = 0).

This is the reason why we go over to the universal covering group G of G. (See
Subsection 6.1.) The action of G on T lifts to an action of G on the line f. The principal
series representations πν of G correspond to representations πν of G on functions and
hyperfunctions on the line T. In particular, we have the representation πν of G acting in
the space of hyperfunctions Μ1ω. It leaves invariant the subspace ΜΖω c of hyperfunctions
with compact support. By Γ we denote the f ll original of Γ in G. Automorphic hyper-
functions α6^!!_ω(Γ) correspond to Γ-invariant elements of Μ1ω.

Proposition 2.5. Lei X be a non-empty, Γ-invariant subset ofX. Denote by X itsfull
original in T. Lei v 6 C.
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Bruggeman, Period functions

α 6 Αν_ω(Γ, X) and each Γ-decomposition q 0/a, there is a homogeneous \-cocycle
ca^q on X with values in Μ^ω c such that for all ξ, η e Χ, ξ < η, the restriction of ca g(£, η)
to (ξ, η) is equal to the restriction to (ξ, η) of the element of (Mljr corresponding to a, and

The class of c^ q in Η\(Γ, Ml0)jC) does not depend on q. The resulting map

is injective. Its Image consists of those classes that can be represented by a homogeneous
\-cocycle satisfying Supp(c(£, η)} α [£, η] for all ξ, η e Χ, ξ < η.

Subsection 6.2 gives a discussion of the cohomology groups Η~(Γ, Α) c H l ( f 9 A),
for right F-modules A. In the case that X = ^(Γ), the cohomology group H% (f, A) consists
of those classes that can be represented by an inhomogeneous 1-cocycle η : Γ -* A with
the property that for each ξ e X there exists αξ e A such that 77(7) = αξγ — αξ for all ξ e Γ
that leave fixed ξ. We call this group //J(T, A) the first parabolic cohomology group on Γ
with values in A.

Theorem 2.6. Lei v e C. There is an injective linear map Αν_ω(Γ) -> H1(f9 ΜΙω,Γ).

If v φ- + Z^0 , then the Image is contained in the first parabolic cohomology group on Γ

with values in Μ-ω,€.

We prove these results in Subsection 6.3.

2.6. Action in holomorphic functions of weight l — 2 v. There is a Standard lifting
G -> G : g l·-» g. This is used to describe the action of G in the functions on §+ u §~ of
complex weight r :

* e S L 2 ( R )r \c d) \cz -f d) \c a

with — π < arg(c/ -f d) < n. If the weight r is an even integer, then the center of G acts
trivially, and we have the usual action of G of weight r.

By ^fr we denote the space of holomorphic functions on £>+ u §", provided with this
action. Some elements of 3?τ may have a holomorphic extension tojm interval contained

\ \
in R. Lewis's functional equation (1) can be written s ψ = \p\2s L· l H- ψ\2* \

Proposition 2.7. There is an intertwining operator P : Μ1ωtC ~> ̂  _ 2v. //"a e
Λα^ support contained in [ξ, τ/] w/YA — π < ^ < ^ 0 , iAe« Ρα has a holomorphic extension
to the interval (cot η, οο).

Here we use the coordinate B on f that corresponds to the one-parameter subgroup
9 h-> £(9) in G covering 9 l·-* k (9) in G.
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10 Bruggeman, Period functions

The operator P induces maps //£(f, Μ"ω c) -> Ηι^(Γ, ·#Ί_2ν) f°r each non-empty
Γ-invariant Χ c Γ. In the next result, we assume that A^contains the f ll original of <^(Γ).

Proposition 2.8. Lei νφ- + Ζ, and let α6^4 ν_ω(Γ) be such that all corresponding

automorphic forms Fq (see (5)) are cusp forms. Then

(13) ρ£.α,8(1(-π,0)

where ι (v) : Μ1ω -» MI^ is the isomorphism given in (18), andfl(v}(X is the function given in
Proposition 2.1 for the automorphic hyperfunction i(v)a

Ifmoreover, Γ = rmod, then

(14) P^

This gives a cohomological Interpretation of Lewis's period function.

We prove these results in Section 7.

3. Hyperf nctions

3.1. Repr sentatives of hyperfunctions. The manifold T = P \G has real dimension l .
That makes hyperfunctions on T reasonably concrete objects. We discuss hyperfunctions,
first on R, and next on T. For more Information, and for proofs of the following facts,
see [8], § 1.1-3.

Holomorphic functions. Let & be the sheaf of holomorphic functions on the complex
projective line Ρ<ί. So @(U) is the space of holomorphic functions on U for each open

The sheaf s/ of real analytic functions on R is the restriction 0|R. This expresses the
fact that each real analytic function on an open set U c R is the restriction of a holomorphic
function on some open set V c P^ containing U.

Hyperfunctions on R. Let U c R be open in R, and take F c P^ open in Ρ<ί , Κ z> t/.
The linear space & (U) *= 0 (V \U) mod 0 ( V) does not depend on the choice of K Elements
of £%(U) are called hyperfunctions on [/.

Intuitively, a hyperfunction on [7, represented by g e 0(F \(7), is the jump in g when
we cross U.

The presheaf U*-> 0$(U) is a sheaf on R.
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Bruggeman, Periodfunctions 11

Support ofan hyperfunction. The support Supp (μ) of μ e @ ( U) is the smallest closed
sei S c: U such that the restriction of μ in &(U \S) is equal to 0.

Duality. Let U c R be open, and S c £/ be compact. There is a duality between

and the space of ae^(U) with Supp^cS given by <φ, α>:= J φ (θ) g (5) — ,
c π

where C is a contour encircling S once in positive direction, inside the intersection of the
domain of φ and the domain of the representative g of a. (This intersection is not necessarily
connected. Use the component that has S in its closure.)

Hyperfunctions on T. Locally, T looks like (R. We define the sheaf 0$T of hyper-
functions on T in the same way s ̂ . So $T(U) = G(V\U)mod&(V), independent of
the choice of an open neighborhood V of U inside P^ .

Duality. There is a duality between the real analytic functions on U <= T and the
hyperfunctions on U with compact support. We shall mainly use the case U = T:

(15)
c_ π(1+τ 2 ) '

for fe&(W), ge&(W\T} a representative of α e ̂ Γ(Γ), and C± contours contained in
FF \Γ; see Figure 1. If α has support inside an interval / φ T inside Γ, we can rewrite the
sum of both integrals s a new integral over a curve encircling / in negative direction.

i d9 J άτNote that — corresponds to - — under τ = cot*
π τ2)

c_

Figure 1. The contours C+ and C_ used in (15), drawn in the upper half plane (left), and in the circle

model (right). The coordinate w on the right is related to the coordinate τ on the left by w = = e~2i9. The
contours at the left and the right are not equal, but homotopic.

The set W ^> T is not drawn. The contours should be adapted to the set W in such a way that the region
between the contours and T is contained in W.

Real analytic functions and hyperfunctions on T. The sheaf £/T -= & \ T is the sheaf of
real analytic functions on T. We define an injection stfT(T) h-> @tT(T) by sending fe G(U)
for an open U c P>£9 U => T, to the hyperfunction represented by g (τ) = /(τ) for τ e £>+ n U
and g(-r) = 0 for τ e §". With this Interpretation, (15) is an extension of the duality in (3).
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12 Bruggeman, P er iod functions

r 4- / V/2
rui φ(1 1 <WT\I ), φ^τ) —

following way:

on i>~

ι ι , q t Z^L, wc picicr ιυ repre

(τ + ίΤ l o
Ιτ-i j 2 °

o J fT + T2 U - i J

Representative. The hyperfunction α e ST(T) can be recovered from the linear form
φ Η-* <φ, α> on the real analytic functions. For each τ0 e C \R the function

h _ : τ
0 T — Tτ τ

is holomorphic on P^ \{τ0}. One can check that g(T0) ·.= </ζτο, α> is the unique representative
of α that is holomorphic on C \R and satisfies g(/) + g( — /) = 0.

This unique representative can be written in the form Σ cqcpq with cq = s

| < 7 J -> oo, for each p > 1. If we take the representatives of ̂  e $T(T} s indicated above,
then the corresponding series actually converges on £j+u£>~. The duality amounts to

Hyperfunction vectors. Let Μ1ω be the space 3ST(T) of hyperfunctions on Γ, pro-
vided with the action πν of G described by (2). In this way we have an inclusion of πν(ο)-
spaces M^ c Mv c: Μ1ω.

The duality satisfies <π_ = <φ, α>. So ΜΖω is dual to M~v .

3.2. Proofs of Propositions 2.1, 2.2 and 2.3.

Proof of Proposition 2.1. Take a representative g of a. The function
F: Th-»(l +τ2)~1 / 2~ ν#(τ) is holomorphic on the strip 0 < | Ι η ι τ | < ε for some ee(0,l) .

The invariance of α under π (θ J)impliimplies that Ρ(τ — 1) = F(i) + q(i), with q holomorphic

on | Im τ | < ε. So F represents a hyperfunction on [R that is invariant under the translations
τι-»τ + 1. It determines a hyperfunction on the circle RmodZ, and this hyperfunction
has a representative that is holomorphic on the complement of the circle in P^. The freedom
in this representative is an additive constant. We replace F by the unique function /a of
the form

(16)
2 o(a) + „t'1 π(α)

_ l "
~~ τ -^o w ~. 2^ -^ -

for τ e

So/ae J ,̂ and represents a|To.
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Bruggeman, Periodfunctions 13

Suppose that/a vanishes. Then Supp(a) c {oo}. As oo cannot be a fixed point of the
whole group Γ, we conclude that α = 0. D

Remark. Equation (16) defines the coefficients An(a) for each automorphic hyper-
function a. They may be viewed s a kind of Fourier coefficients.

For any cusp ξ€<β(Γ), we have defined A%(a) = A0(nv(g^ *a), with gstG such

that £ξ · oc = ξ and g J \ g^1 generates the subgroup of Γ fixing ξ. Note that if n Φ 0,

the analogous definition of Αξ
η (α) would depend on the choice of g^.

Proof of Proposition 2.2. Let α 6 Αν-ω(Γηού). The restriction to Γ\{0} of

Ο Γ

has representative τι-» (Ι + τ 2)1/2 + ν/α(— 1/τ). The gluing condition on (0, oo) between
this representative and τ ι—» (l + τ2)1/2 + ν/α(τ) is the condition characterizing ̂ od(v) inside
J^ The gluing conditions on (— oo, 0) and on (0, oo) are equivalent.

Conversely, let/e JJnod(v). The function τ ι— > (l + τ2)1/2 + ν/(τ) represents a hyperfimc-

tion Qe@T(T0) that satisfies π νΓ J } 0 = 0. Put ^nJ °.\u ι/ \ — ι υ
This hyperfunction has representative τ H-» (l + τ" 2)1/2 + v/(— l/τ). As fe ^od(v), the glu-
ing conditions on (0, oo) and (— οο,Ο) are satisfied. So 0 and ^ are restrictions of a

πν l 1-invariant j 6 &T(T). The support of πν ( l j — β is contained in {oo}. On

| τ | > 2, τ £ R, this hyperfunction is represented by

1 / 2 + V

1 4 - 2 v

As /e J^od(v), the quantity between brackets is holomorphic on a neighborhood of

= 1. This shows that πν ( <} β - β vanishes on a neighborhood of oc.

As ( ) and ( . Λ ) generate rmod, this implies eAv,m(rmoa). Ώ
\ U l / \ — l U >
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14 Bruggeman, Periodfunctions

Proof of Proposition 2.3. Proposition 2.2 implies that φα satisfies (9). If v E - + Z,

then φα(τ) + τ 1 2νψα( — VT) = 0, an<3 (10) is satisfied. If v φ - + Z, we recover Lewis's
Inversion formula:

which implies (10). D

4. Behavior of automorphic hyperfunctions at a cusp

The proof of Theorem 2.4 will be based on knowledge of the behavior of automorphic
hyperfunctions at a cusp. This can be compared to the study of automorphic forms with
help of their Fourier expansion. We do not give the complete Fourier series. The expansion
at the cusp discussed in Subsection 4.3 suffices for our purpose. The crucial term in this
expansion corresponds to the Fourier term of order zero. This term is an AMnvariant
hyperfunction. In Subsection 4.2, we construct explicitly a basis of the corresponding space
(Μν_ω)Ν. Το see that we really have a basis, we use the results in Subsection 4.1 on the
structure of M^.

4.1. The (g, A )-modules M .̂ The complexified Lie algebra g of G acts in Μ%. For

and dnv(E±)9q = (l + 2v ± q)cpq±2 .

Irreducible case. The (g, AT)-spaces M^ are irreducible if v ^ - + Z, see, e.g., [4],

Chap.VI, §5. For these v, there are isomorphisms ι (v) : M% -» M%v defined by

(18) i(v)«V=(^-v) fi + v
V ) \q!2\V /k/2 1

where (a)n = a (a + 1) · · · (a + n — 1) is the Pochhammer symbol. The extensions

ι(ν):Μν
ω-> M"* and ι(ν):Μ1ω-+ MI^

intertwine the G-actions πν and π_ ν .

k — l
Redudble case. Let v = — - — , k e 2 Z, k ^ 2.

M (k -D/ '2 ^as invarjant subspaces D+ and D*, spanned by the (pq with q ^ k, respec-
tively q ̂  — k. The quotient M^~ 1)/2 mod /)+ ® D* has finite dimension, and is isomorphic
to an irreducible subspace of M^(k~i}12.
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Bruggeman, Period functions 15

This quotient can also be viewed s the space of polynomials of degree at most k - 2,

with the right action of G given by p \ 2 _ k ( } (X) = (cX + d)k ~ 2p l - - - ) . To construct
\c a) \cX+dJ

an explicit intertwining operator, put Α<*>(τ):= - (2/) k~ 2( i 2 + 1)χ~* / 2(τ - X ) k ~ 2 . This is
a polynomial in X with coefficients in M(^ ~ k}/2. Define for α e M(k~ 1)/2:

(19) a< f e > :=< /4 f e >,a> .

A computation shows that:

(^(g)a)<fc> = a < f c > | 2 _ k g - 1 for all ge G.

Intertwining operators. Let v e C and αΕΜ*ω . We define Γα:Μ^ ν -» C°°(G) by
ΤΛφ^):=(π_ν (g) φ, α>. This operator intertwines the (g, >action in M% v with the action
in C°°(G) by right differentiation and translation. If α is invariant under πν(Χ) for some
subgroup Xa G, then the functions in Γα(Μ^ν) are left-invariant under X.

4.2. W-invariant hyperfunctions. We determine a basis of the space

X(v) :={αεΜν_ω: π ν («(*)) α = α for all χ e R} = (MV_JN

for each v e C by constructing sufficiently many linearly independent elements in it.

Intertwining operators in the left-N-invariant functions. We recall the following de-
scription of the space of intertwining operators M%v -> C(X(N \G). The dimension of this
space is an upper bound for dimX(v).

(a) For all v e C, there is the Standard form of M% v s induced representation from
P to G. It is given by St(- v)(pq(p(z}k(3)):= / / 2~ veiq*.

(b) For v φ- + Ζ, ν Φ Ο , a basis of the space of representations in €^(Ν \G) is given

by St(— v) and St(v)i(— v). See (18) for the isomorphism i ( — v).

(c) Also in the case v = 0, the space of such representations has dimension 2. There
is a representation L, not a multiple of St(0), with L<pq(p(z)k($)) = y1/2(lq + logy)eiq*.
(This does not determine L completely.)

(d) If v E - + Z, v < 0, then the space of representations has dimension 2. A basis is

given by St(-v) and 5(-v), where S(- v)<p(g):= lim St (μ) /(-μ) <p (g).

(e) If ve - + Z, v > 0 , then there is a basis St (-v), 5+(-v), S_(-v), with

:= lim (μ- ν)8ΐ(μ)ι(-μ)φ(£), S_(-v)(pq:=sign(q)S+(v)cpq.
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16 Bruggeman, Period functions

N-invariant hyper functions. In the sequel, we exhibit elements of X(v) and indicate
the corresponding representation in CCC(N \G). Then we consult the list (a)-(e) to see that
we have a basis of ^(v). We leave to the reader most of the computations needed to check
the Statements. The invariance of α under nv(N) is a consequence of the left-TV-invariance
of the Tacpq.

Within X(v) we define the subspace 1^0) := {a e X(v) : Supp(a) c {oo}}.

A hyperfunction for St( — v). The function τ H-> -— τ determines δ e ̂ (v) for all
v e C, such that Td = St(- v).

A hyperfunction for a multiple of St (v) ι ( — v). Let v e C , v < £ Z < 0 , and put

νΓ^Ι + τ2)**1'2 on§+\/[l,oo),

for T £ R U /[- l, 1] .

We define μ (v) s the hyperfunction represented by p on Γ0, and by q on Γ\{0}. (The
gluing relations are satisfied.) For φ e M ~v we have:

/om / χ Λ Χ f Φ(τ)/?(τ)ί/τ v f <p(20) < ^ r t „ > _ _ _ + j ; f

with contours s indicated in Figure 2. This is holomorphic in v e C \Z<0 . For Re v < 0
we move off the contours B± to infinity, and obtain

(21) <<Ρ,/Φ)>= f φ π(1+τ2)

We use this integral to define μ (v) for v e Z < 0 . A computation with φ = n_v(a(y))<pq

Ίshows that Γμ(ν) = Γ Ι - - v j St (v) ι (- v) for v φ - -h Z (check this first for Re v < 0, then

extend the relation by holomorphy). As νι-*<φ, μ(ν)> is holomorphic on C, we have

^ B+

Figure 2. Contours for the computation of <<p, μ(ν)> in (20).
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Bruggeman, Period functions 17

~ V) f°r V + Z? V < °' and Γ^ = (~1}*/2 ~ ί1^- v) for

2

The restriction of μ(ν) to Γ0 is represented by |/πΓ(- v)""1 (l -l· τ2)1/2 + ν οη
<r> + \ / [ l ,oo) and τι->0 on §~. For v £ Z < 0 this is clear. For v e Z < 0 , we use (21) with

- / l + ττ0Φ W = -^ ·2 τ-τ0

Support (ex)}. If v e Z ^ 0 , then μ (v) e Α^(ν).

Let v e Z> 0. A representative of μ (v) on a neighborhood of oo is

which is clearly not a representative of a multiple of δ. As dim X(v) ^ 2, we conclude that

Case v = 0. We have μ(0) = π~1 / 2^. Put λ(ν)«= - (μ (v) - π~1/2(5) for Ο < | v| < -.

For each φ holomorphic on a neighborhood of T and each g E G, the function
v h-> <7Γ_ ν(^)φ, /l(v)> is holomorphic at v = 0. A computation shows that

lim <π_ ν(/>(ζ))φβ, A(v)> = - / /2(log>> + g ,
v->0

with ^q = O (log \q\) s |^| -> oo. Hence, this determines a hyperfunction >!(0)
The AMnvariance extends to v = 0, and Γλ(0) is linearly independent of St(0). For the
restriction of λ(ν) to Γ0 we find a representative that is equal to — |/π(1 + τ2)ν + 1/2 οη
{ T e C : 0 < I m T < l } and vanishes on §"".

Case v e - + Z, v > 0. A third element of ̂ (v), linearly independent of δ and μ (v),

is represented by τ ι-» (l 4- τ2)ν + 1/2 on a neighborhood of oo.

Lemma 4.1. dim Jf(v) = 3 i/ v e - + Z > 0, am/ e^wafa 2 /or of/zer v 6 C.

v e Z> 0 , ί/ze« ^(v) = ^(v), otherwise X^(v} has codimension l /w

For eacA v e C \Z> 0, ί/zer^ exists κν 6 ̂ (v) /or which the restriction to T0 is represented
\-+(l + i2)v + 1/2 on £+ \i [l , oo), andr^O on §".
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18 Bruggeman, Periodfunctions

Proof. We have shown most Statements. We choose

f22) ίπ-1/2Γ(-ν)μ(ν) i f v € C \ Z , 0 ,
1 ^ v * |-π-^2^(0) i f v = 0.

We can add any element of ^(v) to κν. The present choice works well in the sequel. D

4.3. Expansion at oo. Proposition 2.1 attaches to each invariant hyperfunction α a
holomorphic function fa on C \R; equation (16) gives the expansion of fa in terms of
coefficients An(%). In this subsection, we use fa to give an expansion of α based on the
behavior at the cusp oo.

Lemma 4.2. For each α e Αν_ω(Γ), there exists ac e (Μ*ω)Γ°° for which the restriction
to T0 is represented by the function τ ̂ fa

c(?)(l + τ2)ν +1/2 on

with

(23)

Remark. The conditions do not determine ac uniquely.

Proof. Let us take contours 7± s indicated in Figure 3, and define ac s the hyper-
function represented by

(24)
τ ~ ~ τ

We have to adapt the contours to the position of τ0, such that τ0 is inside 7+ or inside /_
Note that /ac has exponential decay.

Figure 3. The contours /+ and /_.
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Bruggeman, Period functions 19

For τ0 e §ε, ε e {+,-}, TO between 7£ and the real axis, we have

+ /

- Σ f /β<(

The terms with integrals are holomorphic in τ0 οη a neighborhood of Γ0. So
represents ac|To. A computation shows that for cpeM~v

(25) O,ac> =

with /+ inside the domain of φ. The 1-periodicity of/a
c gives πν ( * * ) ac = ac. D

\ /

Fourier term. Let g be a representative of α e >4Ιω(Γ). We define, for m e Z,

Fwg(T):= J

This defines Fwg on a neighborhood of Γ that is a bit smaller than the domain of g. The
hyperfunction represented by Fmg does not depend on the choice of g. We call this hyper-
function Fma. We call it the Fourier term of α of order m. It transforms under 7rv(7V)

/l x\according to the character l \\-*e 2nimx.

We also define Fm β for Γ00-invariant hyperfunctions on Γ0. Restriction to Γ0 commutes
with Fw.

For qe2Z, and α6^ ν_ω(Γ), the m-th term in the Fourier expansion of the auto-
morphic form Fq in (5) is g h-» <7r_v(g)(^, Fma>.

The hyperfunction F0a is invariant under nv(N). This is the only Fourier term that
we study explicitly.

Proposition 4.3. For each α e Αν_ω(Γ) there are α°, α00 € (Μ:ω)Γ°°, such that

(i) a = a° + a°°,

(ii) the restriction α°|Γο has τ h-» (l + τ2)ν + 1/2/α(τ) a^ a representative,

(iii) Supp(a°°)c:{oo}.

T/1 v e Z > 0 , iA^« ^40(a) = °/ r each α€^4!.ω(Γ).
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20 Bruggeman, Periodfunctions

Remark. This does not determine a° and a00 uniquely.

Proof. Consider first F0a, for a 6 Αν_ω(Γ)9 v e Z > 0 . It is an element of X(v) = Α^(ν),
see Lemma 4.1, so F0a|To = 0. Compute F0(a|To) with help of Proposition 2.1 to see that

Take α°:= ac if v e Z> 0 , and a° := ac + Α0(α)κν otherwise. The restriction of a° has
the right form, s we see from Proposition 2.1, Lemma 4.1, and Lemma 4.2. This also
gives the ^(F^Hnvariance. The restriction of a00 := a — a° to Γ0 vanishes. D

4.4. Cuspidal automorphic hyperfunctions.

Definition 4.4. We call a real analytic automorphic form F for Γ cuspidal at oo, if
it is given by a Fourier expansion of the form

(26) F(p(z)k(»))= ZinWe^W^w^Wy^"1*,
Μ Φ Ο

where q e 2 Z is the weight and - — v2 e C the eigenvalue, and where W. . is the exponentially

decreasing Whittaker function, see, e.g., [10], 1.7.

We define F to be cuspidal at ξ E ̂ (F) if gt-+ F(g£g) is cuspidal at oo. (As before,
g£ e G is chosen such that ξ = g£- ao, and such that gsn^g^1 generates the subgroup of
Γ fixing ξ.)

An automorphic form F is a cusp form, if it is cuspidal at all ξ e ^(Γ).

Spectralparameter. The action of the Lie algebra preserves cuspidality at a point ξ.
Cusp forms are square integrable on Γ \G. This puts conditions on the (g, T)-module
generated by a cusp form, see [4], Chap. VI, §6. Such a module is isomorphic to either

M χ with v E / R u f — -, - j , or to an irreducible quotient of M^~k)/2, with kelZ^^^. The

trivial representation, which is a quotient of M^2, occurs in L2(F \G), but s the space
of constant functions; hence it does not consist of cusp forms.

If Γ has more than one cuspidal orbit, an automorphic form can be cuspidal at some
cusps, and not at others. For such an automorphic form, the spectral parameter does not
necessarily satisfy the conditions mentioned above.

Definition 4.5. We call an automorphic hyperfunction α £ Α ν _ ω ( Γ ) cuspidal at oo if
α = ac. We call α cuspidal at ξ Ε ^(Γ) if πν(^ξ)-1α is cuspidal at oo.

We call α cuspidal, if it is cuspidal at all cusps £ 6

Proposition 4.6. An automorphic hyperfunction α £ Α ν _ ω ( Γ ) is cuspidal at
if and only if all associated automorphic forms Fq(g) = <π_ v(g)(pq, oc> are cuspidal at ξ.
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Bruggeman, Period functions 21

Ifa is cuspidal at oo, then an(Fq}, s defined in (26), is related to the coefficients A „(a),
defined in (16), by

Proo/. Compute <π_ ν(ρ(ζ))φ,, ac> by means of (25), and interchange the order of
summation and Integration. This gives

α<> = Χ Λ „(«) A, (g, v),

The quantity pn(g,v) is holomorphic in v. We compute it for Rev < 0, by deforming the
contour /sign(w) into the real axis:

°o / 1 + T 2 \ 1 / 2 - v / T _ ^ \

f i-i^-s) H
oo \/ "r" VT ~ ·*/ / \T ~" Z/

So if α is cuspidal at oo, then we obtain the f ll Fourier expansion of each Fq. If, on the
other hand, all Fq are cuspidal at oo, then <φ^, α — occ> = 0 for all q 6 2 Z. This shows that
α = ac. D

Corollary 4.7. Let v φ- + Z. If ae Αν_ω(Γ) is cuspidal at oo, fAeri

An(*) forneZ9n*0.

Proof. If v φ - + Z, the element φ0 generates the (g, J^)-module M% v. So α is deter-

mined by the cusp form of weight zero F0(g) = <π_ ν(^)φ0 , α>. Similarly, ι(ν)α is deter-
mined by F0(g) = <πν(^)φ0, ζ( ν)α)· This is equal to

* ο > α > = 3>(£)·

From (26), we conclude that an(F0) = an(F0) (use WKV = f^,_v). D

5. Decompositions

5.1. Partings. To prove that F-decompositions exist, we first consider how to de-
compose hyperfunctions locally.

Fix group. If X is a subgroup of G and ξ Ε Γ, we define Χξ·.= {g E X: g - ξ = ξ}.
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22 Bruggeman, Period functions

So N00 = N, and Νξ = {1} if ξ 6 Γ0 = Γ\{οο}. The subgroup Γξ c Γ is trivial for
most ξ 6 T7. The exceptions are the cusps ξ e ^(Γ) and the hyperbolic fixed points. For the
latter, Γξ is generated by an element of the form gξa(t)gξi, with g$eG and t > 1. For a
cusp^, the group Γξ is generated by

Definition 5.1. Let ae (R and let ae^(i7) be a hyperfunction on a neighborhood
U of a. We call a parting of α at α a decomposition α = α + + α_ , where α± 6 J^(t/) are
such that Supp(a+) c [a, oo)n [7 and Supp(a_) <= ( — oo, a] n {7.

Any parting of α on a smaller neighborhood U^ c ί/of a, gives rise to a parting on t/.
So a parting of α at a is a decomposition of the germ of α in the stalk 3 a.

A parting is far from unique. We can replace a± by a± + β for any hyperfunction β
with Supp/J = {a}.

Lemma 5.2. Any α e ̂ (t/), U open, has a parting at each a E U.

Proof. The sheaf of hyperfunctions ^ is flasque, i.e., the restriction maps
are surjective for all open t/c Fez R (see [8], page 2).

Let ae(p,q)a U. The sheaf properties imply that there is a hyperfunction β on
(/?, a) u (a, #) such that β has restriction 0 on (p, a), and coincides with α on (a,/?). The
flasqueness implies that there exists a+e&(p,q) with restriction β on (/?, α) υ (α, g). So
Supp(a+) c: [a,/?), and α_ = α — α+ has support contained in (#, a\. D

Partings on T. As Γ is locally isomorphic to [R, the order structure included, the
concept of parting can be transferred to germs of hyperfunctions on T.

For a parting of a hyperfunction α at T0e Γ, we define a+ and a_ with respect to
the cyclic ordering of T. If α 6 (&τ)το corresponds to α e J*do under the decreasing map
θ i— »cot 9, then a± corresponds to ατ.

Definition 5.3. Let X be a subgroup of G. By an X-parting of α at ξ e Γ we mean
a parting α = α+ 4- oc_ such that πν(#)α± = α± for all ̂  e JT^.

Note that the fix group Χξ acts in the stalk ( j)^ Any parting at ξ is an Jf-parting
if Χξ is trivial. If a hyperfunction α has an ^-parting at ξ, then 7cv(g)oe = α in the stalk
(39 T) ξ for each g e Χξ.

Proposition 5.4. Let α € Α ν _ ω ( Γ ) . Consider a cusp ξ

If v φ - + 2, / e« α /z ^ Γ-pariing at ξ.

If v € ~ -h Z, /Ae« α Aas α Γ -parting at ξ if and only if A%(a) = 0.

Proof. It suifices to consider this at the cusp oo.
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Bruggeman, P er iod functions 23

We use the expansion α = α° -h α00 in Proposition 4.3. As a00 has support inside {oo},
and is invariant imder the fix group Γ00, it has the Γ-parting a00 = a00 + 0. In Lemma 5.6
we shall see that ac has a Γ-parting at oo. So we are left with Λ0(α)κν. This is treated in
Lemma 5.5. D

Lemma 5.5. Lei v e C \Z> 0. Then κν, s defined in (22), has a Γ-parting at oo ij
l

Proof. We shall show that κν has an N-parting at oo if v < £ - Z> 0 , and has no
l 2

Γ-parting at oo if v e - + Z> 0. We leave to the reader many computations needed to check

the Statements in this proof.

Let v e C , v <£ - -f Z, v ^ Z ^ 0 . The functions q+ and q_, given by

?+(τ) = - / , —4 ty π cos π ν

with the arguments of ± τ and l + τ ~ 2 in (— π, π), represent hyperfunctions

(cyclic order) that determine a parting of μ (v) at oo. They turn out to be invariant under
N in the stalk ( -

Figure 4. Contour used in the definition of μ + (ν) in (28).

l
Consider the contour Q in Figure 4, and define μ + (v) e M^ for v f - H - Z , v ^ Z < 0 , b y

2

r ^τ
(28) <φ, /i+(v)) := J φ(τ)^+(τ) —: jr.

By taking φ (τ) = -, with τ0 inside Q, one checks that /i + (v) has image μ + (ν) in
2 τ-τ0

the stalk (^7)^. If Re v < 0, then we can move off the contour to oo, and find

., άτ
,£ + (v)>= J <ρ(τ)ρ(τ 2\ ·π(1+τ2)
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24 Bruggeman, Periodfunctions

We use this integral to define μ + (v) for all v with Re v < 0, and μ _ (v) := μ (v) — μ+(v). This
turns out to define an 7V-parting at oo.

Take λ±(ν)-= - l μ±(ν) — - π~1/2δ 1. This determines an 7V-parting of λ(ν) at oo for

v Φ 0, which extends to v = 0.

1 1

Suppose that v = ——, with b e 2Z> 0. Up to a non-zero multiple, the hyperfunction

μ (v) has representative τ H-» (l + T2)b/2sign(Imi) in 0(C \R). For any parting of μ (v) at oo,
a representative r of μ + (ν) has to be holomorphic on a set Λ < | τ | < ο ο , τ ^ ( — o o , — R),
and there has to be a holomorphic extension across (— oo, — R) satisfying

r(x + 00 - r(x - 00 = 2(1 + x2)b/2

for χ < — R. Hence r (τ) = (l + T2)b/2 ( h rt (τ) l, with ^ holomorphic on R < \ τ \ < oo.
\ πι J

(\ x\Invariance under πν l l implies that we have, for large |τ|:

— log(l - χ/τ) + Γ!(τ - χ) - ^ (τ) = Ο mod i~b.πι

If we expand log (l — χ /τ) and ^(τ) in Laurent series in τ, we see that the terms τη with
n ^ 0 do not interact with the terms with n < 0. So we leave out the sum with non-negative
powers of τ, and assume that rt is holomorphic at τ = oo, with a zero at oo. We fix χ > 0.

l χ l
For τ < - R, we have ^(t - x) - ^(τ) = : log(l - χ/τ) + Ox(i~b) = — - + Οχ(τ"2).n i πι τ

χ ^ ~ ^ 1
For each fceZ>0, we find ^(τ —fcj t ) = — J] Ηθχ(1/τ). This contradicts

D m = °

Lemma 5.6. Lei α e yi!_ω(Γ). The hyperfunction ac defined in Lemma 4.2 has a Γ-part-
ing at oo.

Proof. In (24), we have given a representative of ac, by Integration over the contours
7± in Figure 3. We take half of the contours /+, with end point ^/, respectively, initial
point — \ i; see Figure 5. We define a function g^·*, holomorphic on | τ01 > l, τ0 φ (— oo, 0), by

<29) &«(to)„J_?|^/;w(i+^)-"2^,
where τ0 is to the right of the contours. If we take τ0 to the left of the contours, with

. |τ0 |>1,τ0£(οο ,0), Ret0<0, then

1 1 _L_ TT

(30) gc'^(T ) = (l + τ2

— τ
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Bruggeman, Periodfunctions 25

Thus wesee thatgc/representsahyperfunctionac
+ on(l, -1)(cyclicorder), withrestriction

0 on (l, oo), and restriction equal to ac on (oo, — 1).

Figure 5. The contours I* and l£_ used in the construction of ac
+.

Byfixing/+ suitably, we see that £^(τ0) = O(l)as|r0 | -> oo,Rei0 ^ — 2. Byanother
choice of the contours, and with use of (30), we obtaing£'(T0) = (l + τ£)ν + 1/2//(τ0) 4- O(l)

s |τ0| -»oo, τ0£(οο , -1), Rei0 <Ξ -1.

The invariance of ac under Γ00 implies that πν ( n l α+ — α + , considered s a hyper-

function on (2, — l), has support contained in {oo}. On a neighborhood of oo, this difference
is represented by

A(TO)'=
v+ 1/2

In (30) we see that h is holomorphic on (oo, —1). The estimates of gc/ imply that h is
bounded on a neighborhood of oo, hence h is holomorphic at oo s well. This shows that
a+ is invariant under Γ00.

To finish the proof, we define αϊ = ac — a+ on (l, -1). D

Remark. We can define a representative gc/ of α i in the same way s in (29), but
with the other halves of the contours 7±. In that way we have gc

a = gc^ + gc^r.

5.2. Existence of F-decompositions.

Proof of Theorem 2.4. Let q be a Γ-decomposition on Xcz T of an automorphic
hyperfunction α6^4!.ω(Γ), s defined in Subsection 2.4. This determines a parting
α = α^+ + α£_ at each ^e^, by defining a+?<* s the germ at ξ of α [ξ, η] for some
>/ e Χ, η φ ξ. Condition (c) in 2.4 ensures that these are Γ-partings, and moreover, that
α γ . ξ ± = πν(γ)(χ.ξ ± for each γ e Γ. Conversely, if we have such a collection of Γ-partings,
then it determines a Γ-decomposition.

Actually, the whole collection of partings, and hence the Γ-decomposition is well
determined, if we know the Γ-partings α = αξt+ + αί§ _ at each ξ in a System of represen-
tatives of Γ \Χ.
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26 Bruggeman, Period functions

The assumptions of Theorem 2.4 exclude hyperbolic fixed points. So the theorem
follows from Proposition 5.4. D

5.3. Geodesic decomposition.

Proposition 5.7. Lei Χα^(Γ) be a non-empty Γ-invariant sei. Suppose that
α 6 Αν_ω(Γ) is cuspidal at each ξ e X. There is a Γ -decomposition gd of α οη Χ given by

(31) <?,«K, !/]*>= i Pfr)gfr) 2,α(ξ,η) n (i -h τ ;

/0r all φ e MJ v, and ξ,η e X. The function g e&(C \R) represents a. The contour ζ)(ξ, η)
consists 0/β+(ξ, η) c <r>+ αηάζ)_(ξ, η) α <r>~, s indicatedin Figure 6. The pieces ο/β±(ξ, */)
//ζαί approach ξ, respectively η, are pieces ofgeodesics in ξ)*. The definition does not depend
on the choice of ζ)(ξ, η) cz Supp(<p).

H^ ca// gd ? ^ geodesic decomposition of a.

Figure 6. The contour £>(£, ή) used in Proposition 5.7 to define the geodesic decomposition. It is the union of
+({, η) and (2_(£, ?;). Near ξ and 77 the contours are pieces of geodesics in §* and §".

Proo/. Let £e JSf. Put jS = nv(g£ l)a. In (24) we see that the representative gc of
c = jg satisfies g^(T) = O(l) s |Ιηιτ| -> oo, uniformly for Rei in compact sets. Any

representative g of α is equivalent to nv(g^gc . We conclude that #(#««· τ) = O(1) s
| Im τ | -*· oc, uniformly for Rer in compact sets, for each ξεΧ.

This shows that the integral over ζ)(ξ, η) is well defined, and does not depend on
the geodesics in §* along which the points ξ and η are approached. Condition (b) in the
definition of F-decompositions in Subsection 2.4 is satisfied. A representative of α [ξ, ^]gd
is given by

2 τ-τ0

with τ0 outside Q(ξ, η). This representative is holomorphic on Pj \[^, η].

To check condition (c), we use γ - ζ)(ξ, η) s Q(y - ξ, γ - η). Α computation gives the
desired result. D
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Bruggeman, Period functions 27

Proposition 5.8. Lei fce2Z>0. Suppose that f is a holomorphic cusp form for Γ of
weight k. Lei ccfeA(1l~ 1)/2(F) be t he automorphic hyperfunction corresponding to /, s indi-
cated in (4). For all ξ,ηβ

Remark. The period polynomial Rf has been introduced in (12). See Subsection 4.1
for the intertwining operator β h-> <ky.

Proof. A straightforward computation. D

6. Hyperfunction cohomology

6.1. Universal covering group.

Description. The universal covering group G is a central extension of G = PSL2(!R)
with center Z ^ Z. As an analytic variety, it is isomorphic to £>+ χ R. This isomorphism
is written s (z, $)\-+p(z)K(9) which covers the isomorphism

There are injective continuous group homomorphisms U -+ G : xt-+n(x)''=p(i + x),
R* 0 -» G : 3; H-» <2(j) ·.= j5(/j), and R -» G : 9 κ^ ^(θ), covering respectively ^7 : R -* G,
a: IR> 0 -* G, A: : IRmodπZ -> G. The center of G is Ζ.·=£(πΖ). The group Ρ·.= ρ(ξ>+) is
isomorphic to P; it is the connected component of l in the parabolic subgroup Z P of G.

By g h^ g we denote the surjective group homomorphism G -> G. We define a lifting

by Γ }ρ(ζ) =Ρ\~^^(-- arg(cz + rf)), with -n

. (a bY1 ( d -b\ (]fy xlV~y\ ~, ,Some properties: , = if arg(c/ + a ) e ( — π , π), [ * * ] = ρ ( ζ ) ,
V d) \-c a) \Q i/|/^;

Sm J=£(9)for - π < 9 < π .
cos9y

f-= P\G is isomorphic to the real line. It is a covering of T = P \G = R ιηοάπΖ;
the projection map is PK(9) H-» cot 9. We shall identify f with R, by PK(9) ̂  9, and we
shall write the action of g e G s 9 H-> 9 · g. So 9 · K (ζ) = 9 + ζ. If arg(c/ + d) e (- π, π),

then 9 h-^ 9 · ( l is the strictly increasing analytic function given by
\c dj

9 h-* arg ((ia - b) sin 9 -h (d -ic) cos 9)

on a neighborhood of 9 = 0. We have (9 + π) · g = 9 · g + π for all g e G.

Discrete subgroup. We define f to be the f ll original in G of the discrete subgroup
Γ. So Γ is a discrete subgroup of G containing Z.
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28 Bruggeman, Period functions

The f ll original fmod of the modular group is generated by w ->= K (n/2) =/n\ \-* -/
and n -= /?(!) = ( l, subject to the relations w2n = nw2 and nwnwn = w3 (see, e.g., the

"1

discussion in [1], §13.1).

Action in weight r. Let reC. A function / on G has weight r if it satisfies
($)) =f(g)elrS^ for all 5 e IR. A function of weight r is fully determined by the cor-

responding function z\-+y~r/2f(p(z)) on §+.

The left translation Lgif(g) = f ( g i g ) in C°°(G) is a right (/-action. On functions of
weight r, it corresponds to the right G-action g^ : F H-> F \rg1 in the functions on $>+ defined
by F\rK(nm) = enirmF forme Z, and

for ( l e SL2(IR), — n < arg(c/ + d) < n. If the weight r is even, then the center Z acts\c dj
trivially, and we recover the action of G in weight r.

Formula (32) defining F L I J makes sense for functions on §~ s well. It turns\c dl
out that we obtain a right action of G on the functions on §>+ u £> , if we put

(33) F\rk(nm)'.= e±nirmF for ze §± and me ~L .

Action in the holomorphic functions on §+ u §~. Let Jî . := C? (ξ^ u §~), with the right
action of G of weight r e C. For each he^r, let /(A) be the set of points of T c P^ to
which h has a holomorphic extension.

Property (1) of the period functions can be rewritten astp = t / ; | 2 s ( | + i / ) | 2 s
Note that ψ 6 Jif2s and /(φ) => (0, oo). V° !/

6.2. Restricted cohomology. Let Δ be a group. In this paper we consider group
cohomology with values in right J-modules.

Resolutions. Let Χ Φ 0 be a set on which Δ acts from the right. We define a com-
plex of Zzl-modules ®/.(X} by %/n(X)-.= Z · Xn + i, the boundary map determined by

o , · · ·>€· ) '= Σ (-1)' + 1«ο— ̂  — f.).
i = 0

and the zl -action by (£0, . . . , ξη)δ -= (ξ0 · δ, . . . , ξη - δ) for δ e Δ. This is a complex of free
ZJ-modules if Δ acts freely on X.

Cohomology. Let A be a right /4-module. We define //X(<d,v4) s the cohomology
of the complex Hom^ ( .̂ (X\ A).
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Bruggeman, Period functions 29

In the special case Δ = Γ and X = <ίί(Γ), the group Η^(Γ,Α) is usually called a
parabolic cohomology group. If Xa f is the f ll original of <£(Γ\ then we call also
//par(F, Α) -.= Η$(Γ, Α) a parabolic cohomology group.

\-cocycles. We are mainly interested in Ηχ(Δ,Α). Its elements are represented by
homogeneous l -cocycles c : X2 -+ A, satisfyingc(£0, ^) + c^^iz) = c(£^ ξ2\ ctf, ζ) = 0,
and c(£0, ξι)δ = c(^0o, ^(5). This cocycle is a coboundary, if there is a J-equivariant
6 : X -> X such that c«0, f i) =

In the case that A'consists of one zl-orbit on which Δ acts freely, the choice of a base
point identifies X with A . Thus we obtain the usual group cohomology H l (Δ , A ), described
by inhomogeneous cocycles η : Γ -> X, satisfying f/(y<5) = f/(y)^ 4- ij(<5), modulo inhomo-
geneous coboundaries δ \-> α δ — a with a e A. An inhomogeneous cocycle corresponds to
a homogeneous one by c ( y 0 9 y i ) = η ( γ ΐ γ ο ΐ ) γ 0 .

Definition 6.1. Let Al be a subgroup of Δ. An inhomogeneous l -cocycle η : Δ -+ A
is Δ ̂ trivial if there exists an ae A such that 77(7) = 0(7 — 1) for all y e zl^

Lemma 6.2. Let X be s above. The group Ηχ(Δ, A) is canonically isomorphic to the
subgroup of those classes in Η1(Δ,Α) which are represented by a cocycle that is A^-trwial
for all ξΕΧ.

Remarks. So, if Δ acts freely on X, then Ηχ(Δ,Α) is canonically isomorphic to

If ^(Γ) consists of one Γ-orbit, then the parabolic cohomology group H^(y)(r,A)
has a description similar to the definition of the first parabolic cohomology group in [9],
§8.1.

Proof. Fix ξ € X. The map (y0, . . . , y„) H» (£y0, . . . , £}>„) induces a chain map from
the Standard resolution F. of ZA (where Fn = Z^ln + 1) to ^.(JSf). Different ξ e ̂  lead to
homotopic maps. This induces a canonical map fj : Η{(Δ, A) -» //J(zl, ,4) for all y* ^ 0.

The map /x is injective. Indeed, to a 1-cocycle c on "2 is associated the homogeneous
cocycle c^y^yj = c^yQ, ξy^. Suppose that c^y^yj = α(γί-γ0) with a € A. Let Ξ be
a set of representatives of Χ/Δ. Define b(BS) = (a 4- c({, #))<5 for 5 e 5 and (5 e Δ\ then

The cocycles ci obtained in this way are z^-trivial for each 9 e X, s one sees from

On the other hand, suppose that for each 9eX there exist a^eA such
that η (γ) = ad(y-l) for all yeΔ*. We can arrange that α^δ = α^δ-η(δ) for all
9 EX, δεΔ. Then c(5, Q:=ad — αζ is a homogeneous cocycle on Jf2 such that

- αξ(δ - 1) for all de Δ. π

Inclusions. Lemma 6.2 allows us to identify Η^(Δ, Α) with its image in Ηι(Δ, Α).
If ^ acts on Xl D ̂  s well then the natural map Η^(Δ, Α) -+ Η£(Δ, Α) is injective.
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30 Bruggeman, Period functions

Parabolic cohomology for t he modular group. Consider the group Fmod acting on the
f ll original X of ^(rmod) in T. A class in H*ar(fmod, A) can be represented by an inhomo-

geneous cocycle η that vanishes on the generator n = ( l , and is determined by its~
value p on the other generator w l = l l, satisfying p(w 1 + l)(w — 1) = 0 and

p(nw~~ln + n) = p (see the relations in Subsection 6.1). The class is trivial ifp = a(w~ 1 — 1)
for some aeA satisfying a (n — 1) = 0. The relation p(w~l + i)(n — 1) = 0 follows from
the other relation:

(nw~ln -^- n — l)(l — w'1^ = nw~1n -i- n — i — nw~inw~1n — nw~1n + w-in

(This computation was shown to me by J. Lewis, for the module J^r.) So for each right
Cd-Module:

(34) H^r(rmod,A)^{p€A:p(nw-in + n)=p}mod{a(w-1-l):aGA,an = a}.

Consider the right Fmod-module J^2s9 with the action of weight 2 s. We take for Xc Τ
the f ll original of ^CTmod). The functional equation (1) for the period functions is the
relation \p\2S(nw~ln + n) = ψ.

Let 23Φ2Ζ. Take a = \p\2s(w~1 + l ) (w~ 2 - l)""1. Note that w ~ 2 - l is invertible if
2s φ 22. Thus, we see that ^(fmod,^f2s) = 0. We might conclude that (1) is a triviality.
But that does not take into account the fact that the period functions ip satisfy /(ψ) => (0, oo),
and that property is not clear for a general element of a\2s(w~ l — 1), a e Ji^s. This aspect
is ignored, if we force (1) into the framework of group cohomology with values in J»f2s.

If p == φα in the Situation of Proposition 2.3, then a = tpli + 2v(H ;~1 + l ) ( w ~ 2 — l)"1

corresponds to — fa.

6.3. Cohomology with values in the compactly supported hyperfunctions on the line.

Principal series representations. Usually one induces representations from the para-
bolic subgroup ZP to G. Here we induce from P to G.

Let (πν, M v) be the representation of G in the functions on G that transform on the
left according to p(z) h-» y112* v. This representation can be realized in the functions on f.
This leads to the action nv(G) in the analytic functions M^ on T, and in the space of
hyperfunctions Μ-ω-= Λ (R). In the coordinate 5 the action of π v (£(£)) is the translation
over ζ.

Let Μ1ω tC be the subspace of Μ1ω of hyperfunctions with bounded support. The
space Μ!ω c is invariant under πν, and there is a duality between (πν, Μ^) and (π_ ν, ΜΓ^ c),
that can be described with explicit integrals, see Subsection 3.1.
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Bruggeman, Periodfunctions 31

Identifications.

(35) M^ = (M^, Μ:ω = (Μ:ω)Ζ, Α*_ω(Γ) = (Μ1ωγ.

The action of nv(g) in the 7iv(Z)-invariant spaces on the right of the equality signs cor-
responds to the action of 7rv(g) in the spaces on the left.

If β e Μ1ω§c, then £ πν(ζ) β is well defined, and determines an element of (M^J2.
ζ ε Ζ

We denote the corresponding element in Μν_ω by σβ.

Right module. In the cohomology group Η%(Γ, Μ1ωtC), we consider Μ^ω c s a right
G-module by ag = ftv(g~1)a.

Proof of Proposition 2.5. Given α and g we construct caq in the following way:

(a) Let ξ, η e Χ, ξ < η < ξ + π. Take an open interval / => [ξ, η] of length less than
π. Under 9 h-» τ = cot 5, this is isomorphic to an open interval / c Γ, / Φ Γ, such that
7=5 [cot >/, cot £]. We define οα(1(ξ,η) s the hyperfunction on Ϊ that corresponds to
α [cot 77, cot ξ~](ί on /, and we extend ca g(£, 77) to R £ f by zero outside /.

The properties of a[-,j]e imply cef i(&9) + catq(99 η) = <:..,(&*/) i f £ < S < f / < £ + 7r,
and ca^(£ · y, ^ - 7) = π^)""1^^, ^)) = c^q(£, η)γ for all γ e f. We use the fact that
cot (5 · g) = g~1 · cot S, where g i—> g is the projection G -> G.

(b) If 17 ^ ξ + π, then we take intermediate points 90 = ξ < B^ < · · · < 9k = η, with
k

fy < Bj_ 1 -h π, and define €Λ(1(ξ, η) -= J] c e , e(fy_ι, θ/). This does not depend on the choice
of the intermediate points. J= 1

(C) €Λ99(ξ9 ξ) - 0, C.ie({, l,) .= - C«.,(l/, {) if If < {.

This defines a 1-cocycle whose support has the property indicated in the proposition.
If ξ < η in X, then €9(ξ, η) and the Γ-invariant hyperfunction on f corresponding to α
have the same restriction to the open interval (ξ, η).

Lemma 6.4 below shows that the cohomology class of caq does not depend on q.
Lemma 6.5 gives the injectivity of the map from Αν_ω(Γ, Χ) into the cohomology group.
Lemma 6.3 characterizes the image. D

Lemma 6.3. For each \-cocycle c e Homf (^ (X), MlmtC) that satisfies

Supp(c(£, η)) cz [ξ, η] for all ξ, η e £ ξ < η ,

there is a unique α e Αν_ω(Γ, X) and a unique Γ-decomposition p o/a on X such that c = ca p.

Proof. Let c be given. For x, y e Γ, χ φ y, we can find ξ,ηεΧ such that * = cot ξ,
7 = cotf/, and η < ξ < η -f π. We define Λ (χ, j) «= tfc(£, */) e Μ1ω. So Supp^^)) c [x,y].
The freedom in the choice of ξ and η is a translation over a multiple of π, and £(π) 6 Z a f,
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32 Bruggeman, Period functions

hence the choice of ξ and η does not influence the definition of A(x, y). If there are α and
q with c a € = c, then α [χ, j]€ = A(x, y). The properties ^4(x, z)-f ^i(z, j) = yi(x,^) and
A (γ - χ, γ · >>) = 7rv(y)v4(X j) are easily checked.

Consider je, y, z, w e Γ, χ Φ >>, z Φ u. Choose ξ,η,ζ,νΕΤ above these elements such
that f j < £ < *j + π and t? < £ < u + π. Put

ρ1-.= €(ξ,η) + €(η,ξ-π) and ρ2*=€(ζ, ν) + φ, ζ - π) .

Then ,4 (χ, j) + ^4(j, χ) = σρΐ9 and ^(z, w) + A(u9 z) — σρ2. The cocycle properties show
that σ(ρ2 -/?!> = σ(>(£, ζ) + c(£ - π, ξ - π)) = 0. This implies that α «= Λ(χ,>0 + Λ(;ν, χ)
does not depend on the choice of χ and y. We have α.ΕΑν_ω(Γ) and α[χ,^]β :=A(x9y)
defines a Γ-decomposition of α such that caq — c. n

Lemma 6.4. Lei α e Αν_ω(Γ, X], and let p be a Γ-decomposition ofa on X. Then each
Γ-decomposition q of a on X has the form q = /?</*>, where

a[cot£, cot>/]p< >*= a[cot f, coti/]p + σΑ(^) - σ

,ξ,ηεΧ, and where h E Homf (%(^), M-^c} satisfies Supp(A(0) <=- {ξ}

For such h we have ca Λ = ca p + dh.

for

Proof. The correspondence in Lemma 6.3 associates α and /K/z> to the cocycle
c^p + dh. This shows that/?<A> is a Γ-decomposition.

Let p and # be Γ-decompositions of α on A'. The cocycle c:=ca p — c a p satis-
fies Supp(c(£, ^)) c {ξ, η}. For ξ Φ /?, we have c^, η) = c,(<J, r;) H- οτ(ξ, η) with
Supp^^c^, η)) c {£} and Supp(c,.(^, η)) c {^}. A consideration of the cocycle relation for
three different points shows that cf(^, η) = <:/(£)> ^r(^ ^) = c

r(n)> and ^^(ξ) = — cr(£). The
Γ-behavior is €,(ξ - y) = cr(^)y. Take h-=cr. Then ca € = ca p -h t/A, with h satisfying the
condition in the lemma. D

Lemma 6.5. Let α€Αν_ω(Γ,Χ) and let q be a Γ-decomposition ofa on X. If c^q is a
coboundary, then α = 0.

Proof. Suppose caq = dh for some h € Honif (%(.?), Mb
v). Fix 9 € X. The support

of h (5) is contained in some bounded closed interval /. Take N ε Ν large, such that
N n + min(/) > max(/) + 4 π. There is a closed interval / of length 2 π between θ and
9 4- Λ/π that does not intersect / or / +

Supp(/t(fl)) Supp(h(9 + Nn)) *

5 +
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The restriction of ca,p(3, » + Nn) = h($)K(Nn) - h (9) to / vanishes. So for any ξ,ηεΐ,
> 7 < £ < i 7 + 7 r ,we have Supp(ca π(£, η)) c {η9 ξ}, and hence

Suppa[cot£, cot^]pc {cot ξ, cot η}.

This implies that α has restriction zero on each open interval in T bounded by two
different points of X. As X is infinite, we have α = 0. α

Proof of Theorem 2.6. If v e - + Z^0 , let X be the Γ-orbit of a point ξ e Γ with

Γ* = {!}, and let X= *(Γ) ptherwise. Then Λ ν_ω(Γ) = Λ ν_ω(Γ, JT) by Theorem 2.4. Let X
be the f ll original of X in f. Proposition 2.5 gives an injection Αν_ω(Γ) -> Η%(Γ, Μν_ω c).

Lemma 6.2 identifies //](f, M^c) with Ηι(Γ,Μ1ω^ if v e ^ + Z^, and with
7/p

1
ar(ff, Μ^ω c) for general values of v. D

7. Image in the holomorphic functions of weight l — 2v

7.1. Construction of the intertwining operator P. This subsection contains the proof
of Proposition 2.7. We construct the operator P in a number of Steps. To show that P
arises naturally, we take the first step in a more general Situation.

Proposition 7.1. Let v e C. For each r e C there is a non-trivial intertwining operator Qr
from M_!wc to the real analytic functions on G of weight r with the action g\-+ Lg-i of G
by left translation.

, The functions in ρ,ΜΙ^^ are eigenfunctions of the Casimir operator with eigenvalue
- - v2. Furthermore, E* (ρ,β) = (l - 2 v ± r)Qr±2 for each β e Ml^c.

Proof. The space M~v of analytic functions, considered s a subspace of C°°(G),
contains a one-dimensional subspace of functions of weight r 6 C. This subspace is spanned

Λ + 1 /2
by the function φΓ : 9 h-* £1>d. If r 6 2 Z, then this function corresponds to φγ : τ Η-> ( - :"

Let eMl^c. We define (Qr )(g)'-= <π_ ν(^)φΓ , j8>. This defines a real analytic
function ρ,./? on G that has weight r. Moreover, Qr(nv(x) ) = Lx-iQr for χ eG. The
diflferentiation relations between the ρ, are a consequence of </π_ν(\ν)φ,. = ir(pr and
ί/π_ ν(Ε±)φΓ = ( 1 - 2 ν ± Γ ) φ Γ ± 2 . G

Intertwining operator to the holomorphic functions on £>+. Let us take r in such a
way that φ, is a lowest weight vector in a discrete series type representation of G, i.e.,
r = l — 2 v. Then E~ (<?! _ 2 v jS) = 0 for all β e M~ v. This is equivalent to the corresponding
functions z ̂ y~i/2^ v (ρ1 -2v ) ( p ( z ) ) bein§ holomorphic. Hence

(36) P + (z}^=y-il2^(Q1-
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34 Bruggeman, Period functions

for ze§+ and eM"L^c, defines an intertwining operator P+ from AflmtC to the holo-
morphic functions on §+ with the action of weight l — 2 v.

Integral representation. If Supp( ) c [77, £J c f for some β Ε MlmtC9 and χ is holo-
i/5morphic on a neighborhood of |>,£], then <χ, /?> = Jjc(S)g(S) — , for some contour

c n
encircling [r\, ξ~] once in positive direction, and g a representative of . We write this s

(37) αί>

with C the image of C under 9 h-* cot 5 with opposite orientation, and χ and g multivalued
functions on an open set in Ρ<ί. In general, this does not help much. But if the interval
[77, ξ] has length smaller than π, then the functions are single valued.

Let us take [η, ζ] c (- π, 0]. The contour C has the form indicated in Figure 7. The
interval [η, ξ] is sent to [cot ξ, cot η] (equal to [oo, cot?/] if ξ = 0).

V-^ cp y^

(x fr t * ι ^
v* /̂ cot?/ Λ—τc

Figure 7. Contours C in the integral representations (37) and (38), with Supp( ) c [ξ, ή] <= (— π, 0]. The upper
case is valid only for — π < η < ξ < 0, the lower case for — π < ^ < { <^ 0.

Take Z6§+. To compute P+ β (z) =/~1 / 2<π_ ν(ρ(ζ))φ1_2 ν , /?>, we have to take
X (3) = χΜ equal to /'^^..(^(z))^^^^) for B in a neighborhood of [η, ζ}. We

have k($)p(z) = p ( - r— - - - ) k( - arg (cos 9 - z sin 5)) for - π < θ < π, hence\ — z sin v? ·+· cos t/y

— z sin 5 + cos 9J

We write (cos 5 — z sin B)2 s

((l + iz)e™ + (l - /z)) · ((l - /z)e- 2id + (l + iz)) ,
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Bruggeman, Period functions 35

to conclude that χζ(9) is equal to

2i-2*((l + iz)e2i» + (l-iz)Y-v2((l-iz)e-2i» + (l + iz))v-lt\

with the arguments chosen in such a way that the whole expression equals l at 9 = 0.
(The argument of the first factor has period π s a function of 5; the second factor has a

creasin a r u m e n .decreasing argument.)

With τ = cot 5, we have ̂ 4 = r ((l ± iz)e±2i* + l + /z). Hence

satisfies χζ(9) = #z(cot9) for B in a neighborhood of \_η, ζ]. Here we take argf ]
\τ ± //

equal to 0 at τ = oo, with discontinuities s indicated in Figure 8. Thus we find the integral
representation

(38)

if Supp( ) c [)/,£] c= (- π, 0], with representative θ ι~> g(cot 3), and C s in Figure 7 not
intersecting the lines of discontinuity in Figure 8.

Figure 8. Sets of discontinuity of the argument of χζ(τ).

Definition of P. If Supp( ) c [77, ζ] c= (— π, Ο], then the integral representation (38)
makes sense if we move z into the lower half plane passing the real axis at points of
(cot??, oo). We take this s the definition of ? (z) on C \(— oo, cotf/]. (If ξ < 0, there is
also an extension to C \(cot^, oo). On §~, this extension is equal to e4nivP .)

If both i and 2 satisfy Supp( ) c [>/, {], then P^ + 2) = Pj»! + PjS2. If h e G
satisfies Supp(^) · h'1 c (- π,Ο], then Pnv(h) = P \1-2vh~i on C\(-oo, / ) for some
f e R . (We have this relation already for ze§+.) If the support of eMv_wc is con-
tained in an interval with length strictly smaller than π, we take geG such that
Supp(7rv(g)j3) = Supp(j9) · g'1 c (- π, Ο], and put^Pj»« (Pirv(g)j?)|1_2vg. This does not
depend on the choice of g. We can write any β t Ml„tC s a sum of hyperfunctions on f
with support of length strictly smaller than π. In this way we extend P to all hyperfunctions
with bounded support.

This finishes the proof of Proposition 2.7. D
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36 Bruggeman, Period functions

Cocycles. Propositions 2.5 and 2.7 imply that that there is a 1-cocycle Pca on X
with values in Jfj _ 2v for each α 6 Αν_ω(Γ, X), and each Γ-decomposition q of α on A". (X c Γ
is Γ-invariant, and A^ is its f ll original in Γ.) If ξ, η e X satisfy — π<η < ξ ^0, then

f i (ΐί,{))=> (cot ι/, ex)).

7.2. Proof of Proposition 2.8. In this subsection, we take X= Γ - oo. So JP is the
orbit of 0 in f under f. We consider α e Αν_ω(Γ) that is cuspidal at oo. So α e Λ!.ω(Γ, JSQ.
We compute Pca ,g d(— π, 0)(z) s explicitly s possible.

Intermediate point. The interval [— π, 0] is just too long to use (38) directly.

Choose±( JeFwithc>O.Takey:=( JeF,>/:=0 · y = arg(J- /c)e(-7t,0)\c </y _ \c <//
and 77 j := arg( — a — ic) = (— π) · y 1 e ( — π, 0). We use

ca,gd(- π
? 0) = ca,gdOh, 0)y + ca,gd(f7, 0) .

Integral representations for Pca ,gdO?, 0) a« f Pca ) g d(— π, f/). Let A be a representative
of a. Proposition 5.7 and equation (38) give

(39) P^gdO/, 0)(z) = Σ J χ2(τ) Α (τ) ^ 2 ,

and a similar integral, with ±(oc, a/c), for Pca gd(^ l9 0)(z). We use the Γ-invariance of α
to transform the latter integral into

(40, Ρ,.,Λ,,Ο)<Ζ>-Σ j
± Q(-d/c,oo)

2 'ci + dj ν / π ( 1 + τ 2 )

TU f t ^ Λ - u , u- ·The factor /(z, τ) «= - - - ̂ - χ. - r is holomorphic m τ e PC,\ 1+τ ζ / \CT + a/
,, f ,, .di — bdz — b . —di — b , .except for a path from /, via - , - and - , to — /, crossmg the real axisa — ic a — cz a + ic

at a point of (— oo, — die). To determine it completely, we note that

With the Standard choice of the arguments, χζ(τ) = (z - τ)2ν ~ * (- 1 - τ)1/2 ~ ν(ι - τ)1/2

for τ φ (i -h [0, oo)) u (- ι + [0, oo)) u (z + [0, oo)). This gives

for zeC \(— oo, a/cj.

For zeC \[— rf/c, oo), we use the integral representation (40) to compute
Pca5gd(-7t,>0(z) = Pca,gd(^1,0)|1_2vy(z):
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Bruggeman, Periodfunctions 37

(41) Pca,Rd(-7

On the path of Integration, we have the equality

αζ + b \_Λ-Λ"~1 / 2Λ-ζΥ-1Ύ -Ι V v~1

, j> τ l ""

but now the discontinuities occur along a path from / via z to — ι that crosses the real
line to the left of — d/c.

Integral representation for Pca g d (— π, 0). Let z e §*. To combine (39) and (41), we
use another function ωζ, which is equal to χζ on a neighborhood of (- oo, d/c], and has
its discontinuities along the lines /[l, oo) and (- /)[!, oo), and along a path from z to ±i
inside §*. Hence

with the Standard choice of arg (l + τ2) e (— π, π), and arg (z — τ) tending to 0 s τ ap-
proaches oo along the negative real axis. So arg (z — τ) is discontinuous along a path from
z via ± / to oo inside §*.

If we move the vertical part of the contours +(oo, —d/c) far enough to the left,
then the integral in (39) does not change if we replace χζ by ω2, provided ze C \R. The
function

V ~ 1 / 2 / T 7V-1 /2

is a multiple of ωζ on a neighborhood of [-d/c, oo). Let τ tend to oo along the positive
axis to see that the factor equals 1. We replace (41) by

^ r , χ , , Λ drPcefgd(-7c,j/)(z) = L J (οζ(τ)Η(τ) 2 .
± Q(-<f/c,oo) 7 CV1 T" τ J

We combine the integrals over ±(oo, - d/c) and D±(- d/c, oo), and obtain contours
7+ s in Figure 3. (We take care to have z e §* inside 7±.) For z E C \R, we find

(42) P^gd(- *, 0)(z) = Σ J ω,(τ)Α(τ) π(1^Τ2} ·

CAoice o/a representative ofa. The automorphic hyperfunction α is cuspidal at oo.
We replace h in (42) by gl in (24):

Pca α(_π?θ)(ζ)= Σ ίωζ(τ0)—. Χ | + TT°/«C(^)(1 + ^2)'

with the contours /ε of the same type s 7ζ, in such a way that 7ζ is inside /ζ.
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38 Bruggeman, Period functions

Next we shrink the /ε such that they are inside the 7ε. This gives a similar double
integral, plus terms coming from the residues. The latter yield, for ze §±:

ζ ε { + , - } Ιζ ζε{ + ,-} Ιζ

The argument of z — τ0 follows the conventions given above. The Fourier expansion (23)
of f£ converges absolutely on the path of Integration. Let us look at one term ζ^ζη(α)βζ2πι"το,
with neZ^i- If ^ e £Γζ, then we move off the path of Integration toward ζ i oo, and we
obtain 0 s the value of the integral. We are left with

(43) +
n = l

: ±niv ±2ninzq: 2ie±niv
 e

Γ(1-2ν)(2π/π)2

In particular, this contribution vanishes if v e - Z^0 .

In the remaining sum of double integrals, we interchange the order of Integration.
In the interior integrals

ζ€{ + ,~} Ιζ τ Τ0

2the integrand is Ο(το2) s |τ0| -* oo, and there are no singularities between 7+ and /_. So
this sum vanishes.

We conclude that Pca>gd(- π, 0)(z) is given by (43). Here z e C \R, and v e C.

Isomorphism. Now we suppose that v φ - + Z, and use the isomorphism ι (ν) deter-

mined by (18). Corollary 4.7 gives a relation between the coefficients An(a) and An(i(v)a).
From (43) we conclude, for z E §* :

— 2i]/ne±niv

*(- », o) W = r(1_v)V(i /2 + v)

This is (13) in Proposition 2.8. (Use (33).)

Modular case. Let Γ = rmod and v e C \ ( ^ + Z ) . We have the following equalities:

Pca.gd(-7i,0)(z) = ~ ( ν )Λ-2ν(ΐ -^(-π)) (just proved),
|/π M1 — v)

Pca,gd(-π,0) = Pcligd( - i 0) {l + £( - J ) ) (cocycle relation),
V -4 / l - 2 v \ \ 1·))
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Bruggeman, Period functions 39

,( )« = / < v ) J i - 2 v i l ~^\~2 (Proposition 2.3).

As v < £ - + Z, the map ̂ _ 2 v -> ^_ 2 v : h*-*hl_2v(l - k (-n)) is invertible. Write it äs

the product of the commuting operators

to prove the relation (14) in Proposition 2.8. D
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