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Resolvent and lattice points on symmetric spaces
of strictly negative curvature

R.W. Bruggeman- R.J. Miatello* - N.R. Wallach**
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Abstract. We study the asymptotics of the lattice point counting functoix, y; r) = #{y €
I : d(x, yy)} for a Riemannian symmetric spageobtained from a semisimple Lie group of
real rank one and a discontinuous grduf motions inX, such that™\ X has finite volume. We
show that
m
NG yin = Y cjgj e (el + 0y ¢ (204Dt
j=0
asr — oo, for eache > 0. The constant 2 corresponds to the sum of the positive roots of
the Lie group associated %, andn = dim X. The sum in the main term runs over a system of
orthonormal eigenfunctions; e L?(I"\X) of the Laplacian, such that the eigenvalyés— vjz

are less thanb?/(n + 1)2.
Mathematics Subject Classification (1991)1P21, (53C35, 58G25, 22E40)

1. Introduction

Let X be a Riemannian symmetric space of strictly negative curvature. Then
X = G/K, with G a semisimple Lie group of rank one o@landK a maximal
compact subgroup @ . Let I" be a discrete subgroup 6fof finite covolume. A
classical problem is the determination of the asymptotic behavior of the counting
function

N(Fr)=N(x,y;r)y=card{y e I' : d(x,yy) <r},

R.W. BRUGGEMAN

Mathematisch Instituut, Universiteit Utrecht, Postbus 80010, NL-3508 TA Utrecht, Nederland
(e-mail:bruggeman@math.uu.nl )

R.J. MIATELLO

Facultad de Mateatica, Astronoma y Fsica, Universidad Nacional deo@oba, ®rdoba 5000,
Argentina (e-mailmiatello@mate.uncor.edu )

N.R. WALLACH

Department of Mathematics, University of California San Diego, La Jolla, California 92093, USA
(e-mail:nwallach@math.ucsd.edu )

* Partially supported by Conicet, Conicor, Secyt U.N.C., and Funda&iitorchas.
** Research partially supported by an NSF grant.



618 R.W. Bruggeman, R.J. Miatello, N.R. Wallach

asr — oo, for fixed x, y € X. This problem has been investigated by many
authors. For instance, in the case wheris cocompact, it was treated in [Hbr],
[Ma], [G], and in [B]. In the case when is of finite covolume, the main results
in the literature concentrate on the case of hyperbolgpaceH". There are
results of Selberg (unpublished) and Pattersorkfes H2, and of Lax-Phillips
for H". (See [Pa], [LP]; see also [Le] and [MWH5.) The main theme in these
papers links the asymptotic behavior/étr) with spectral data of the Laplacian
onI"\X.Thereisamainternv(r) ~ coe? ", wherecg, p are positive constants
depending only orX (20 =n — 1if X = H"). More precisely,

1) N@r) =coe™ + Z cj @i (X)p; () e + E(r)
J

where 0< v; < p, 1 < j < marechosensuchthatthéy;) := p>—v;2arethe
eigenvalues of-A on I"\ X with value in(0, p?), with corresponding orthonor-
mal eigenfunctiong;. These eigenvalues are called exceptional. Furthermore,
thec;’s are constants involving values of Gamma functions onjhs and the
constanb satisfies O< b < p. Finally E(r) = O (r¢e®*+”"), for some positive
constantsi, b.

In the case oH" forn > 2, the best result is due to Lax-Phillips ([LP]), who

have proved thak(r) = O (¥ tDetotrry with by = ggn‘j)li (Actually they
prove this result under a condition weaker than finite volume.)

In the present paper we will use some results in [MW] on the meromorphic
continuation of the resolvent of the Laplacian &nand I"\ X, to obtain an
estimate forN (r), for any X andI" as above, witleg = Zp\‘;j—;\x) o = p(G)

. 1—n . .
andc; = % Here¢ is a constant depending only 6Ghandc(v) denotes the

Harish Chandra-function. Theorem 4.1 gives the full statement; see Remark 4.2,
(i) for a comparison with [LP]. In the case &, we obtainE (r) = ¢®*”" for
eachb > by = é’;n‘l)lz) Our methods are different from those in [LP], who use
the wave equation. We shall follow the approach in [MW], via functions related
to the resolvent ofA. The main tools in the proof are certain estimates of a
truncation of the resolvent, d#fnander’s theorem on the spectral function of an

elliptic operator, and a suitable Tauberian theorem (Proposition 5.1).

2. Preliminaries

Let G be a connected semisimple Lie group of real rank one and finite center. Let
K be a maximal compact subgroup@fwith corresponding Cartan involutieh

and Cartan decompositign= ¢@p. Fix G = NAK an lwasawa decomposition

of G and letg = ¢® a®n be the corresponding decomposition at the Lie algebra
level. LetM be the centralizer o in K, P = M AN and denote by the Lie
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algebra ofM. (Note thatp is not the Lie algebra oP.) If « is the simple root
of (P, A) thenn = n, ® ny, Wwheren,(resp.ny,) is the root space associated
to « (resp. ). Setp = dim(n,), ¢ = dim(nz), p = 3(p + 29)a. Then
n=p+qg+1=dmX, X =G/K.

Fix Hy € a such thaw(Hp) = 1. We shall work with the multiplé3 of the
Killing form of g, Bk, for which B(Hy, Hy) = 1. Note thatBx (Hy, Hp) =
2p + 8¢ and hence3 = 5 B

With this choice,H, = Hp. If X,Y € g, let(X,Y) = —B(X,0Y). Then
(, ) defines an inner product gnwhich coincides withB on a. We will also
denote by{ , ) the bilinear extension oB to a. = a ®r C, and its dual form
on a?. All characters ofA are of the forma — a"* with v e C. Often we
write a” instead ofa"*, that is, we identifya, and a} with C via the maps
H — B(H, Hp), . — A(Hp). We also set, ift € R, a, = exp(tHp), and
a® = e*1°99 Thusa® = ¢'. If A* = {a, : t > 0}, we have the decomposition
G = G' U K, a disjoint union, withGt = KATK . If g € G*, andg =
ki(g)a(g)ka(g), with k;(g) € K, j =1,2,a(g) € A", thena(g) is uniquely
determined by.

We choose the Riemannian metficonX = G/K ,induced by the restriction
B|, of B top. We then have that(xK, yK) = B(tHo, tHo)Y?> =tif x,y € G
anda(x~1y) = exp(tHp), with t = ¢(x, y) > 0. Given our choices this implies
that

(2) a(x—ly)a — ed(xK,yK) — et

In the sequel, we will often use elements Gfto denote the corresponding
elements oX = G/K.

We letdg (resp.dg) be the Haar measure @h(resp.G/K) such thatig =
y(a;) dky dadky on K AT K, wherey (a) = (a“ - a“")p (az‘” - a‘z"‘)q, anddk
is the Haar measure di normalized so thak has volume 1.

We claim thatdx = ¢27777dg, where¢ = vol(K /M), the volume with re-
spect to the measure induced by the restriction Bfto enm*. Actually, this will
follow from Proposition 10.1.17 in [He]. Indeed, &tx be the measure axiin-
duced by the restrictioB |, of the Killing form. Sodx = (2p + 8¢) /% dy x.
Let dcg be the measure oK induced by the Haar measuwieg on G such
thatdcg = y(a)dkidcadk, on Gt = KATK, wheredka is the measure
on A induced by the Killing formBk. Now by Proposition 10.1.17 in [He] we
havedxx = ¢c2 7 9dx g. Heregx = volk (K /M), the volume computed with
respect to the measure induced by the restriction B§ to £ N m*. This rela-
tionship betweerdk x anddy g implies thatdx = ¢27777dg, using thatlka, =
V2p+8qdr, and¢ = (1/y2p +8)"" Mok = (2p +89)" T2 g =
2p +89) 2 ¢

We wish to point out that in [MW], beginning of Sect. 5, the factoP 2 is
missing in the right hand side of the formula relating the measiirenddg.
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3. The resolvent of the Laplacian

The discrete subgroup c G with cofinite covolume satisfies the condition on
p. 16 of [Langl]. (See Theorems 0.6 and 0.7 in [GR].) This allows us to use the
well known spectral theory fak?(1"\G). OnI"\ X we use the measure induced
by the measuréx on X.

Let A be the Laplacian oX (or I'\ X). We identify — A with the Casimir
elementC of G, with respect to the forn®. One has a spectral decomposition

L*(I'\X) = Li(I'\X) & LA(I'\X)

where the spectrum of is discrete (resp. continuous) b3 (I'\X) (resp.
L2(I'\X)). We fix a complete orthonormal sgt; } ;- of real valuedeigenfunc-
tions of C in L2 (I"\ X), with eigenvalues,; = p? — vj? arranged in increasing
order, with Rev; > 0. Sogy is constant, and the other eigenvalues are positive.
The explicit determination of such a basis is an open problem, even in the sim-
plest cases. By a fundamental theorem of Langlahd&™\ X) is generated by
eigenpackets of Eisenstein series, one of these for each cup of

We note that thg, here coincide with the; in [MW], Sect. 5, which differ

from theg; in [MW], Sect. 4, by a factol;‘% 2"3" since they are an orthonormal
basis ofL3(1"\ X) with respect to the Riemannian measuse(and notdg).

We now recapitulate some results on powers of the resolvet oh X
andI"\X.

Up to a meromorphic factor(v), the resolvent of on X is given by convo-
lution with a K -biinvariant functionQ,,, real analytic orG \ K. The following
result summarizes the main propertiegf (see [MW] Sect. 1, Sect. 2).

Theorem 3.1. LetRe v > 0. There exists a functio@, € C*(K\G*/K) such
that

() CQ,=xr()Q,onGT,withi(v) = p?—v2 Furthermore, ifg € G*, the
map v — Q,(g) is holomorphic foRe v > 0 and admits a meromorphic
continuation taC.

(i) @, =c(—v)Q,+c(v)Q_, .Hereyp, isthe zonal spherical function aadv)
denotes Harish-Chandra's-function (normalized as i§1, (3) of [MW],
i.e. sothatc(p) = 1).

(iii) If n = 2, then Q,(a,) ~ d(v) |log(t)| ast | 0,andQ,(a;) ~ d(v)t?>™"

otherwise, with?(v) meromorphic inC. Also, Q,(a;) ~ a; **” ast —
+o00. Moreover, there is an expansion

o0
3) Qu(@) =a """ " a;(vya¥*

j=0

whereag(v) = 1anda;(v) are rational functions, holomorphic fdRe v >
0, and uniformly bounded on vertical strips. This series is uniformly con-
vergent fora® > T, for a sufficiently large positive constait
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(iv) If Q, is defined therQ, € L}UC(G). Furthermore, folRe v > p, we have
Q, € L?(G),forl< p <2(Q, &€ L*G),ifn > 3).
IfreN, r>1letQ,, = Q,*..xQ, (rtimes).lfRev > p, r > n/4,

thenQ,, € L?(G), forl < p <2+ ¢, for somes > 0. Furthermore,
(C=A() Qry =515
with s(v) = —2vc(v) ands(f) = f () for f € C(G).

The next theorem from [MW] shows that thetimes iterated resolvent on
'\ X has a kernel as well.

Theorem 3.2. Letr € NT.

(i) Let[x] and [y] be distinct points of "\ X, and letRev > p. The sum
P.v(x,y) =s(w)™ Zyer Q,.,(x~1yy) converges absolutely and defines
P..,(x, y) holomorphic inv and smooth inc and y, in the complement of
the diagonal on(I"'\ X) x (I'\ X).

(i) (C —r(W) P.y(x,) =¢277P7498,, withs, f = f(x) for f € C® (I'\X)
andRev > p.

(iii) P,,(x,-) admits a meromorphic continuation @, as a distribution. The
only singularities inRe v > 0, v # 0, occur at pointse such that.(u) is
an eigenvalue of in L2 (I"'\ X), and have principal part

Z (vj2 — vz)_r L2777 9;(x)g;.

Jvi=p

Proof. See [MW],53, and Theorem 4.5, taking into account, for (ii) and (iii), the
discussion on normalizations of measures at the end of Sect. 2. Note in particular,
that we use in Part ii) the measwie to identify functions with distributions.
Also, the proof of Theorem 3.5 in [MW], implies that (ii) holds for Re- p. O

We now expand several results from [MW, Sect. 3] in the gasel that
will be used in this paper.

We write P, instead ofPy .

In the domain Re > p we haveP,(x, y) = P,(x, y) + P (x, y), with

Po(r, y) = s BGTyy) Qux Ty y)

yell

P,(r, ) =s)™ ) (1—BGyy) Quxtyy)

yell

whereg is a smoottK -biinvariant function orG, suchtha(a;) = Ofor|z| < T,
andpB(a;) = 1for|¢t| > T + 1. In particular,8Q, is smooth. In principle any
T > O will do. Later on we shall need to talieas in Part (iii) of Proposition 3.1.
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In this way, we obtaiP, as a function irC> ((I'\ X) x (I"\X)) for Rev >
p. Theremaining sumis locally finite i y , and define® as a smooth function
outside the diagonal aff"\ X) x (I"'\X), meromorphic inv € C, holomorphic
on Rev > 0.

Proposition 3.3. B, = P, is a smooth function o(/"\ X) x (I"\X), outside
the diagonal, for allv where it is holomorphic. It is holomorphic in the dat :
u # 0, Reu > 0}, except for possible simple poles that may occur orily;if)
is in the discrete spectrum.

P, is a smooth function ol"\ X) x (I"\X), for all v at which it is holo-
morphic. In the closed right half plane, it has the same singularitieB,a3 he
residue ofv — P,(x, y)atv = u # 0, Rep > 0iis

—r2—r—4
gT > e ).

Jovi=p
for each(x, y). If [x] # [y], then this is also the residue of— P, (x, y).

Proof. Once Theorem 4.5 of [MW] has given the meromorphic continuation
of P, (x, -), we obtain also the meromorphic continuatiorCtof P,(x, ) in the
sense of distributions, with the same singularitie®as Rev > 0. Proposi-
tion 4.6 of [MW] implies that this distribution is given by a smooth function on
(I'\X) x (I'\X) for each value of with Rev > 0 where it is holomorphic.

Theorem 4.1 in [MW] gives for > 7 and Rev > p a family (v, x)
P..(x, -) of elements of.2(I"\ X). The estimate in Theorem 4.2 is used in Propo-
sition 4.3 to obtain the meromorphic continuation as a function doreover,
the uniformity in Theorem 4.2 implies théat, x) — P, ,(x, -) is continuous in
(v, x) outside the singularities. Furthermoreyat © with Reu > 0, u # 0,
the singularity is determined by the finitely many terms in the discrete sum
corresponding to the; such thab? = u2.

This family of L?-elements determines a family of distributions X¥nFor
eachtestfunctiogr onX,weformpP, : y — Zy Y (yy)in L?(I'\X) and define
P.v(x; ¥) := (P.,(x, "), Py). This result is meromorphic in, and continuous
in (x, v) outside the singularities. In particular, for- 7 We have

2—P—4
@) Py =— S 0 (07, Py)+ R 1),

2 2\r
(s =9 e
whereR, , (x) is a distribution andv, x) — R, (x; ¥) is continuous and holo-
morphic atv = u. In fact, R, is given by the remaining part of the expansion
in Theorem 4.1, to which we can apply the estimate in Theorem 4.2.
Furthermore, if Re > p we have(Cy — A(v)) Prv(x,) = P,_1,(x,-) for
r > 2. Since for large we have alread®, , (x, -) as a meromorphic family of
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distributions, this gives successively the extensid®,Qfx, -) as a meromorphic
family for those values of for which Theorem 4.2 does not apply. Moreover, if
we defineR, , (x) as the distributional derivatiie”, — A(v)) R,41,,(x), the fact
thaty; is an eigenfunction of shows that (4) remains valid for amy> 1. So
R.v(x; ¥) = R41, (x; (Cy — A()¥) is continuous in(v, x) and holomorphic
atv = u.

In particular, we havé, , (x; ) = P, (x; (Cy — A(1))"*¢). The expan-
sion in Theorem 4.1 shows thBY ,(x; ) is continuous in(v, x) and mero-
morphic inv, and that it is, uniformly fore in compact sets, bounded by the
supremum norm ofC, — )L(u))"*l ¥ times the volume of the support ¢f. So
P1.,(x, -) is a family of distributions of order at most 2- 2. The same holds for
Ry, (x), but here we have holomorphyat= 1 as well.

P1,(x,y) is well defined forx # yy forall y € I'. The asymptotics in
part iv) of Theorem 1.1, and the formula for the Haar measure on page 667
make clear thay — P} ,(x, y) is locally integrable. So we have a family of
distributions(v, x) — Py, (x,-) that turns out to be continuous {m, x) and
holomorphic on Re > —¢ for somes > 0.

Thus we have the meromorphyirand the continuity iy, x) of the differ-
ence ofdlstrlbut|on§>1 v(x, ) =Py, (x,)—P;,(x,-),andalso oRlv(x D=
Ry, (x,-) — Py, (x, -). For each test functlomr we have

20
Br(x; ¥) = ZZq),mf I dy + Rey(x; ).

Integrating the first term with respect iogives a distribution orX x X,
given by2" i v2 Z,; @; (x)p;(y). By the properties olf?,,v(x; ) mentioned pre-
viously, the second term gives a distributi® ,(-,-) on X x X : ¢ >
fX Rl,U(X; l//(x? )) dx.

Let U be a simply connected open neighborhoog @f which i is the only
singular point and with the condition th&t has a non-empty intersection with
the region of absolute convergenice: Rev > p }. Integrating ovel/ as well,
we obtain a distributiof onU x X x X:

f<w)=/ f Ry (x; ¥ (v, x, ) dx dvdy
UJX —

Forv e U, v # u, we can defind®, (-, -) as a distribution o x X in
a similar way. The reasoning in the proofs of Lemma 3.2 and Proposition 4.6
shows that it satisfies

(Ci = A(V) + Cy — A(v)) Py(, ) = F

for some smooth functiof, on X x X, which is holomorphic fov € U \ {u}.



624 R.W. Bruggeman, R.J. Miatello, N.R. Wallach

Similarly, Z,- ¢; ® g; satisfies a differential equation of the same type, and
so doeRy ,:

(Ci —A(v) + Cy — A(M)) R1y (-, ) = F,

for some smooth functio, on X x X depending meromorphically an But
the holomorphy oﬂil,,,(-, ) on U implies thatF, is holomorphic onU as a
distribution onX x X.

We now apply the differential operatdrd; to 7. For a test functiony on
U x X x X, we find

dvdv

—2i

0,35 (V) = / / f Ry, ) (Cy — A1) 35,9 (v, x, y) dy dx
UJX JX

- dvdv
=///Rr,v<x,y)avavwl<v,x,y> Y4V ix dy,
xJxJu —2i

whereyr, is another test function (obtained by interchanging the differentiations)
andf(,,v(x, y) given by a representation as in Theorem 4.1, but with a few terms
omitted. Aslfz,,v is holomorphic onJ, we find zero after partial integration in
thev-variable. S®,0;7 = 0.

Let us now consider the elliptic operatbr= —9,9; +Cy —A(v) +C, —A(v)
onU x X x X.We havel7 = F, in distribution sense ob/ x X x X. But
F, is smooth in all three variables jointly. The conclusion is thit given by a
smooth function o/ x X x X which is holomorphic iy € U. We denote this
function byr (v, x, y) as well.

Finally, p : (v, x,y) — ifz:’u_; >, 9;(X)@;(y) + F(v, x, y) determines a
distribution onU x X x X. This function is smooth outside its singularities, and
its principal part is explicitly given.

As a distribution onU x X x X, it is the meromorphic continuation of the
function|51’v(x, y) given by a convergent series for Re- p. So, the distribution
on X obtained by integrating againgiv, x, -) is the same as the distribution
|51,U(x, -). This completes the proof. O

We now prove an estimate which will play a fundamental role in the sequel.

Lemma3.4.If r € Nt, then(C — A(v)) P,(x,-) € L2(I'\X). Lets(v) =
—2vc(v), fixo, o’ with0 < o < o/, and let2 C X, a compact subset. Then
there isCg, »,» > 0 such that

(1) (C — A(1)" Pu(x, )ll2 < Ca.o0r (14 [V])
forall x e 2 andvinS,, :=={v:o <Rev <o'}.

We give a proof that does not use the fact thatas finite covolume iiG.
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Proof. We claim thats(v)(C — A(v))"P,(x, -) can be written as a finite sum of
functions of the form

(5) D Vi Y BGTyy) - Xy X, 00 yy)
yel’

withr <k <2r, 0<h <r,andally;, X; € g. Indeed ifr = 1 and Rev > p,
since(C — A(v))Q, = 0, where defined, we get thatv)(C — A(v))P,(x, y) is
a sum of terms of the form

Y OXiX B Tyy) - Qo) + ) XIBG YY) - X0, ().

ver yell

Now, if we applyC — A(v) to an expression as in (5), this will introduce either
two more derivatives o8, or one derivative o8 and one onQ,, hence the
inductive step fromr to r 4 1 follows.

We also note that iX € g, thenXpg is compactly supported o@, hence,
locally in x, y, the sums in (5) have finitely many non-zero terms. Hence the
expansion (5) is valid for € C, outside the singularities @,. This implies in
particular that ifr > 1,x, y € G, s(v)(C — A(v))"P,(x, y) has a meromorphic
continuation toC, with possible poles at the poles ¢f,, in particular, it is
holomorphic for Re > 0. Furthermore, this continuation is given by a smooth
function on(I"'\X) x (I'\X).

We now prove that for anyq, ... , X; € g, there exist€ = Co 5 x,... x,,
such that

(6) X1...X,0.(g) <C|*

uniformly for g in compact subsets ¢f.a,k, : k1,k, € K, t > T } with T as
in Part (iii) of Proposition 3.1, and in the stripoc < Rev < o”.

If we sety(x) = a(loga(x)), using the expansion (3) fap,, we see that
the left hand side of (6) equals

d d
—_— .. v(gexp(riXq)...exp(r, X
a6 dt1|oQ(g P(71X1) Pt X 1))
@) = Z aj(v)di . 4 e~ (VP2 Y (g XpiLX1)... expltn Xn))
=0 hio dhyp

Now an inductive argument shows that

d d o~ P2V (g eXpr1X1)... eXPlt X))

dtp o dh

is a sum of terms of the form

(—(v 4 p +2)) e VTPV O X, () X (g) ... X ¥ (g)
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where; U...U L = {1,... h} and X ;¥ (g) = X,'j,l...X,-j_l/_l/f(g), if I; =
{ij1, ... . i, }.Wehave 1< I < hand}_i;, = h. Hence (7) can be estimated
by

( +p+ 2]) (g)—(Rev-i-p—i-Zj)a

® Iv+aol Z|w,<g>| 2 la | =5

j=0

where eachy;(g) is a finite sum of functions of the for ;¥ (g) ... X, ¥ (g).

Sincel < h, (8) together with the uniform convergence of (3) implies that
the series in (7) converges uniformly fofg) > 7 > 0, andv on the stripS, .,
with sum uniformly bounded o8, ,- by C|v|". This implies (6).

We now claim that the lemma follows from (5) and (6). We denptg) =
Yi,...Y, B(g)-X;,...X;,0.,(g). The properties of the cut-off functighimply
thatg, has compact suppof?’ in G. In particular, this support is contained in
the region for which we have proved (6).

We denote left translation by € G, by L, f(g) = f(x1g). If x € £,
compact, all theL,q, have support contained in the compact Qap’ = 2”.
For eachx € £2, the average of..q, over I' has compact support i\G
included inw (2”), 7 : G — F\G the quotient map. Now

2
E QV ;{ d) § Q\) ;C

dy
< Vol m(2")SuBcgr | Y qu(xyy)
Y

2
©) <vol (2" || ¢ ||ooz\r N 99’9”*1\

2

This clearly implies the assertion in the lemma in the light of (5) and (6)O

In the sequel, we shall use the spectral function of the Laplaciafi\ox,
which we define by

e, yin) = Y @) (y)

+Z“Qz/ E(Qr, i1t 0 E(Q0, i, y) e

I} weR, p?+u2<i

A
_ f d(e(x, y: 1),
t=0—

wherex, y € X, 1 > 0.Thec, are the constants needed in the spectral expansion
in eigenfunctions of the Casimir operator. They are proportional toctha
Theorem 4.1 of [MW].
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Note thate(x, y; A) is I'-invariant inx as well as iny. We shall use the
following result:

Lemma 3.5. For eachx € X we have

(20) e(x,x;\) =0 (A”/z) (A = 00),

and, ifA < A1 < 2X:

(11) e(x,x; A1) —e(x, x52) = O ((hg — WAYZLL207D2) () - ).
The estimate if10)is uniform forx in compact subsets ¢\ X.

The proof shows that for torsion freé we also have uniformity of the esti-
mate (11).

Proof. Borel shows in Proposition 17.6 and Corollaire 17.7 of [Bo], that any
finitely generated subgroup of Gk, K) over afieldK of characteristic zero has
a “net” subgroup of finite index. The concapttimplies torsion free. To get
inside a suitable general linear group, we take it in its adjoint form. This does not
change the problem, as we are only interested in the quotieatG /K. Going
over to a covering involves a finite center, which is contained iriThis does
not change the spectral function. This means thats a torsion-free subgroup
I’ of finite index. We can suppogé to be normal in/".

We shall derive the lemma from a result adktiander, see [bl, Theorem 5.1.
It implies, sincel’ is torsion free, that there is a smooth functipion X such
that the spectral function satisfies

(12) er/(x,x; 1) = p)A"?+ 0 (A"P?) (> o),
uniform forx in compact subsets df’\ X, and
(13) er(x,y;2) = 0 (A"P%) (= 00),

uniformly for (x, y) in compact subsets ¢f™\X) x (I""\X) that do not meet
the diagonal.
It follows that the lemma is clear in the case tiiahas no torsion, even with
uniformity in (11). We shall reduce the general case to the torsion-free case.
As above, let”™’ be a normal torsion-free subgroupf of finite index. The
spectral functiore - satisfies the assertions (12) and (13). The spectral function
e for the group!” is given by

e(x,y;h) = Y er(yx,y; A
yel'\I"

(This relation is based on the assumption that the invariant measurgs, &n
andI"\ X come from the same Haar measure(®i
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The Cauchy-Schwartz inequality implies
ler (x, y; M| < err(x, x; MY 2er(y, y: W2

for all x, y € X. For a fixed systenR of representatives af’\I" and a com-
pact set2 C X, the unionUyeR y§2 is also compact. So (12) implies that

e(x, y; 1) = O(A"/?), uniform forx andy in compact sets iX . Thus we obtain
assertion (10) uniformly o'\ X.

Let x € X be fixed, and denote b¥, the subgroup of” leavingx fixed.
Then

e(x,x;2) =u(x) Y ep(yx,x;h),

T\
whereu(x) = #((I"' N I'y)\Ty) = #I,. From (12) and (13) it follows that
(14)  e(x,x;0) = u@er A2+ 0 (A"P2) (L - o0),

wheregr is a smooth function oX. This gives (11) by a short computation.
Note thatx — u(x)er (x) need not be continuous dn O

Theorem 3.6. Leto, ¢ > 0, and letx, y € G. There exist€,, . such that

()P, (x, VI < Coel IM| 7+
uniformly forv e S, ={v:o <Rev<p+o},|Imv|> 1.

In the case of torsion freE, this estimate can be shown to be uniform for
andy in compact sets.

Proof. Let Rev > p. Lemma 3.2 in [MW] shows tha®, (x,) € L* (I'\X)
for eachs > 2. The derivativeicy — A(v))’ P, (x, y) have compact support in
y € I'\X for j > 1. Theorem 4.7 in [MW] shows thatifis any integer > n/4,
there is an absolutely convergent representation:

Bute. ) = Y UC 2Pt ) 20
(Vj —v9)

’

o] e . E(Qéaiﬂay)
+ %:CQe f_oo((C — AP, E(Qes it =

valid for Rev > p.
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By applying the Cauchy-Schwartz inequality to the right hand side, we see
thats(v)P, (x, y) is estimated in absolute value by

1/2 1/2
L~ » lo; (V)7
< s) | DHE =2 Pu(x, ), ¢))] >
J

2 _ 212
j w7 — 7]

15 Y co, (/ I
4

—0o0

. 1/2
</°° E(Qu, ip, y>|2du) /
o |Iu2 + V2|2r
1/2

, eI ®|E(Qeip, y)I?
<L A+ |v) Z 2 +Z Wflﬂ ,
J

N 1/2
(C = A(W)'Pu(x, ), E(Qe, ip, -))Izdu>

with use of the uniform estimate o8, for ||s(v)(C —A(W)'P,(x, 9|, in
Lemma 3.4.
Now we note that

Z |(P](X)| Z co / T—p? |E(Qq, i, X)|2
n/2+e ¢ n/2+e
p2<A(j)<T ()‘(Uj) + 1 /= N/ T—p? M +,0 + 1) /2+

(T d(ex,x; 1)
_/;20 ()\’+1)n/2+8

e(x,x;A)

= — dA T7¢,
(k + l)n/2+s <

T +<n ) T e(x, x; M)

2 t+e 2 (A + Lyn/2+lte

0?0

by (10). 3
This implies the convergence of the estimatdpfobtained above, for any

reR,r>%:

(15)  s(P,(x, y) < L+ [v])

Iso,(y)l ©|E(Qq,ip, y)I?
Z — 2 +Z €0 2+ 022 du

J

1/2

Inthe sequel, we shall use (11) to give an estimate for (15), uniform on vertical
strips. We consider the following quantity, whose square root occurs in (15):

E(Qqu, i, x)|?
J
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withr e N, r > zto be chosen later. We take aparkQv; < pforl < j <m,
corresponding to the exceptional eigenvalues. The other eigenvalues correspond
tov; =itj, t; € R, for j > m.Also setv = s +it,s,t € R. Thus, if j > m,

V2 — 2|2 (s + (t; — ) (s? + (t; +1)?). We note that it is sufficient to prove

the estimate for > 0, so we may and will assume that> O for all j > m. Fix

0 < ¥ < 1,tobe determined later. We spitv) = S.(v)+S1(v) + S2(v), where

()2 S .
S,(v) = 27:1 Il;ﬁf_(v;'lzr , the contribution of the exceptional spectrum to (16), and

~ | ()2
S1(v) = l; 2+ — D2 2+ (1 + )2

|E(Q. i, x)|
du.
* ZCQf / o 2+ (L= D2+ (02
So(v) = S(v) — S.(v) — S1(v)

_ Z l; (x)]
(5?4 (t; — )2 (s2+ (t; + 1))

|tj—t|<t?

lgj ()]
NP DY e e e e

|tj+1]<t?
|E(Qq, i, x)|?
+ c / du
2;‘ % Jpnier 52+ (= 0 (2 + (u+ )2

|E(Qg,i/L,)C)|2
du.
+ZCQ£ /M«z» G2+ (-0 (s2+ (u+ 0y "

We first estimates; (v), uniformly onsS,,. We will use the following estimate: For
0 < a < 1, there exist&, > 0 such that for, u € R* we have the following
inequality:

(17) A+ (¢ +u)? > Co(l+D)*A+ud)re.

We obtain the following estimates:

1 |§0](-x)|
i) L Ty 2 A+ (4 + 12

|ty |=1?

IE(Qﬁa iM»x)|2
+ ——d
ZCQ{ ‘/ll«:l:t|>tl7 A+ (u+ 02 M)

4
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1 lg; ()2
18 o —_—
( ) < (l+ t2)r19+r(1—01) Xj: (1+ tjz)rot

®E(Qy,ipk, x)|?
+ CQe/ —mdﬂ>
; oo (1412

< t—Zrﬁ—Zr(l—a)

providedra > 3, so that (18) is convergent.

Relative toS,(v) we note that since we assume; > 0, the second sum is
empty and the first one is the sum over t/heuch that — ¢” < i <t+17,
or equwalentlyat » < Aty < afy, wherea;", = (t £17)? + p? andA(it;) =
t] + p2. Similarly, the sum of the integrals equals the integral taken over the set:
a5 < Aip) < atfﬂ. We note that, ifu is so thati (i) is in this interval, we
have, uniformly forv € S, (sinces > 0),

(19) 2+ (=0 (?+ (n+0D3 > DA+17)

with D = D,. We can use this estimate also in the terms of the sum,ith
place ofu. Therefore,

) KA+ YT g

at,z?<)”(”1)<az,ﬁ

+ ZCQ[/
=1A+)7 (e(x, X, atﬁ) —e(x, x, a;ﬂ))
<177 ((a,*,lg —a,) (240" T+ (24 D)"Y 2)
< tn71+1972r’

forv e S,, by (11).

The contributionsS, (v) of the exceptional spectrum & ~%).

We haveS(v) « t=% ¢~ 20r—2r+2ra o n=149-2r \pjith the conditions > —,
ra > 3,0<a <1,and0< ¥ < 1. Foragiven smah‘ > O0and agiver > 7,
we first takey — L 1 (% +¢). This imposes the condition> % + & onr. Next,
we taked = %fj:l so that the second and third summands be equaisismall

enough, we have & ¥ < 1. We end up with

|E(Qy, m,x)|2du>

a, Z,<)L(zu)<a

sWPL(x, y) € L+ |v]) T+ |

We can take: € N as large as we want, and obtain the estimate in the theorem.
O
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4. Distribution of lattice points

This section will be devoted to the proof of our main result.
We introduce the Dirichlet series

(20) L(v) =L(x.y.v) =) ja lyy) V0 =} jendtkmie

yell yell

by (2). As shown in [MW], Sect.5, this series converges absolutely, uniformly
for Re v > o + p. The convergence is even uniform foandy in compact sets.
The series defines a holomorphic function in the half-plame Rev > p}.
Moreover,L (v) admits a meromorphic continuation@and its poles in the open
right half-plane are simple and locatedvat- 2/ > 0 wherel e NU {0}, 0 <

Un < Vp—1... < V1 < vg = p andi(v;) is an exceptional eigenvalue Gf,

1 < j < m. The desired result on the counting functirix, y; r) will follow

from some uniform estimates fé(v) on vertical strips and a Tauberian theorem.

Theorem 4.1. Letx, y € X, and letN (x, y; r) be as in the introduction. Let;,
1 < j < m, be an orthonormal system of eigenfunctions of the Casimir operator
C with exceptional eigenvaluesy;) = p? — v/?, 0 <v; < p.Then

;- 21—}1
2pvol(I\X)©

+e2t Yy uc.(ij )pw./ (X)g;(y) et 4+ 0 (e(zp"i“ﬁ)r)
j_

(21)  N(x,y;r) = 2pr

asr — oo, for anye > 0. Herec(v) is the Harish-Chandra-function,n =
dim X, and¢ =vol(K /M) (see Sect. 2).

Proof. Fix £2 a compact subset @ containingx, y and leto > 0. Let T be as
in Part (iii) of Proposition 3.1. We note that

I'o={yerl:du,yv) <T+1, for someu,v € 2}

is afinite set. Sincg(x1yy) = 1fory ¢ I'o, we may writeL(v) forRe v > p,
as follows:

L)= Y ablyy) "+ Y (acTyy) T — 0,07 yy)

yelg yel—-TIg

(22) +sIPy(x, y) = D BTy Qu(xtyy)

vele

The first and fourth summands are given by finite sums and define holo-
morphic functions in the closed right half-plane, uniformly bounded on vertical
strips. On the other hand, by using the expansion (3aiu) and the fact that
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the valuesQ, (g) are uniformly bounded on vertical strips (c.f. [MW]) we see
that the second term is estimated in absolute value by

0 Z a(xflyy)f(Re v+p+2—¢)
yel'—To

for any positives, hence it is a holomorphic function in the regipn: Rev >
p—2}, uniformly bounded on vertical strips with Re> p—2+-¢ foreache > 0.
Now, sinces(v)P, (x, y) satisfies the estimate in Theorem 3.6, it follows from
(22) thatL (v) satisfies this same estimate, uniformly#2+o0c < Rev < p+o,

for any positives. By an iteration of this argument, in which we treat leading
terms in (3) separately, we conclude that there exists> 0 such that

(23) IL(x,y,v)| < Coollm v|"Z ¥

forimv>1 o <Rev<p+ a;vFurthermore the poles df(v) with Rev >

p — 2 coincide with those of (v)P, (x, y) and lie at thev;, 0 < j < m, such
that(v;) is an exceptional eigenvalue 6f (We here include G= 1(vo), with

vo = p, among the exceptional eigenvalues.) Also, the residue at such apole
is given byzj! b= & 27779¢c(vj) @;(x) @j(y), by Proposition 3.3. In the case
j =0, we havggo| = vol(I"\X)~%2, and residue 2=7~9/vol(I"\ X).

We now consider the Assumptions i),... ,iv) in the Appendix, in the case of
D(s) = L(s — p). So the region of absolute convergence isRet := 2p.

As the setC, we take{a(x~1yy)* : y € I'}, anda(c) := #{y € I :
a(x~1yy)* = c}. The discreteness in Assumption i) follows from the fact that
{y eI :d(x,yy) < L}isfinite for eachL.

The numbeft in Assumption iii) can be any numbére (p, 2p) not equal
to somev; + p — 2¢, £ > O integral.

The exponentinthe estimate in Assumption iv) can be any ”—gl (2 — % :

We have used the Phragmen-Linafdlieorem (see for instance [La], Ch.14,
p.236.)

As the numbera(c) are positive, Proposition 5.1 in the Appendix yields
#ly el acyy <x} =Y 2x" 40 (X)) (X - o),
— Si

whereb = ﬁ(Zk,o + 7), s; runs through the poles db(s) andw; denotes the
residue ak;. The optimal choice of is slightly larger tharp. Thus we find

(24) #ly el :axyy)* <X}
— Zﬂxsl‘ 4 0 (sz—ZP/(n-‘rl)-‘ré‘) (X — OO),
Si

i
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for eache > 0. Only thes; € (nz—”,o, 2p] are relevant. The largest exponent is

1
s1=vo+p=2p. ’

For all rank-one groups, we have A1+n) < 2. Indeed (see [BM], Table 1,
p.110), if G = SOr(,1), with F = R, F = Cor F = H, thenX ~ FH',
we haven = dland 2 = n — 2 +d, d = 1,2, 4 respectively. IfG ~ F},
then 2o = 22 andn = 16. This implies that all relevant terms in (24) cor-
respond to eigenvalues of the Casimir operator: the{ﬁet .. ,sq} (without
multiplicities) is equal to the sef2p, vi + p, ..., v, + p} and furthermore,
w; = Z/ vtp=si 27774 c(v;); (x)p;(y); in particular,wg = ﬁoz(;—\qx)

To make the transition t&/ (r), we takeX = ¢" in the resulting asymptotic
expression, and use thatx 'y y)* = ¢?“X-»%) The resultis

;27r4 )
25) # I':dxK,yyK)<r}=-———¢€""
(25) #{y e (xK,yyK) =r} 2o vol(I\X)
N Z ¢ 27779 (v (x)@; (¥) SO 4 0 (e,(zpﬁﬂ)) ’
i1 Vi +p
asr — oo, for anye > 0. The theorem is now proved. O

Remarks 4.2 (i) We compare Theorem 4.1 with [LP], (1.3) in the case when
G = S0O(n, 1). The theorem of Lax-Phillips implies that

2T (p+ 3T (v ,
26 N((r) = (x . e(”j“‘ﬁ)r
(26) (r) ;2ﬁf(w+p+l)¢’( )9; ()
+ 0 <rn73-1€r(2pﬁ)> (r — 00).
1
Inthiscase, 2 = p = n —1andc(v) = % (see [He2], Thm

6.14; recall that(p) = 1). As all roots have the same length+= vol(K /M) is
equal to the volume of the unit spherepinvith respect to the measure induced
by restriction of the formB to p. Thus,

g2779c(y)  (F(p+ 3T
vi+p  2ymT(vj+p+1)

hence Theorem 4.1 yields (26) witfi', for anyes > 0, in place ofr .

(i) The determination of the optimal estimate for the error term in (21) is
an open problem. In the case whEnis cocompact, this question was studied
by Huber ([Hbr]) forX = H?, by Margulis ([Ma]) for manifolds of negative
curvature), by @nther (forX as above) and by Bartels ([B]) whehis a general
symmetric space of non positive curvature. In the case whenSO (n, 1) and
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n > 3, the best result is (26). In the case wher= 2, Selberg, Philips and
Rudnick, and Patterson had before obtained the same exponentiaéfaimes
alower power of (see[LP], Introduction [Pa], [PR]). We should also remark that
Lax and Phillips work with the condition thdt be geometrically finite, which

is weaker than finite volume. We need the finite volume condition to be able to
use the spectral theory &f(I"\ X) and the results in [MW]. However, many of

the arguments work in a greater generality. By refining the methods in this paper,
one should be able to extend Theorem 4.1 to Argatisfying the Lax-Phillips
condition.

(iii) The formulation of Theorem 4.1 depends on our normalization of the
Riemannian structure. Let us consider what happens if we replace the distance
by d™(x,y) = ©d(x, y) for somer > 0, that is, if we let the new metric be
B® = 12B.

The Riemannian measure changes accordinfjto= t” dx. So the factors
voI(F\X) andg; (x)g;(y) in (21) are multiplied byr .

We have to replace by ¢* = vol* (K /M), where the measure is induced by
the restriction of-B* to ¢ N m*. Hencer ™ = tdmE/my — pn=1r

The Casimir operator associatedRd is C* = t=2C. So the eigenvalues
are multiplied byr 2, and the spectral parameter satisfi€s= 1. In the
new norm, the length of the simple ramis equal tor %, and the identification
betweenC anda’ is given byv® — v7ra. The Harish Chandra function is a
function ona?, so we have (v’ ra) = c(va).

The factors— and " ip in (21) are multiplied byr, which makes that the
coefficientscy, cl, ... in the asymptotic expansion do not change under the
normalization.

The counting function become®™ (x, y,r) = N(x,y,r/t). Inserting =
for r into the exponential factors in (21), changes these into respect¥ely
e® )" ande@ " #1127 So Theorem 4.1 does not depend on the choice of the
Riemannian metric.

5. Appendix. A Tauberian result

The purpose of this section is to study the asymptotic properties of the partial
sums of the coefficients of a Dirichlet series satisfying i),...,v) below. We make
no claim to originality, but we include a proof , since we have been unable to
find a reference for the result we need.

We start with the following assumptions:

i) C C (0, 00) isaclosed infinite discrete setlih Sooco is its only accumulation
point.

i) Leta : C — [0, 0o). The Dirichlet serieD(s) := Y. a(c)c™* converges
absolutely on the region Re> 1, with 7 > 0.
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iii) D has a meromorphic continuation to the half planesRe 7, with 0 <
T < . In this half plane, there are finitely many first order poles at points
§1=T1,S82,...,5, With Res,, € (7, 7]. Letw,, be the residue at,.

iv) D(s) = O, ((1+|Ims|)*) onastript < Res < o, outside a neighborhood
of the singularities, withr > .

Proposition 5.1. If the conditions i)—iv) are satisfied, then
q
w
27 =) Zxon x? X .
(27) §a<c> m;sm +0(X") (X - o0)

: _ kt+T
with b = kf+1’

Only them with Res,, > b are relevant.

The conditiona(c) > 0 in Assumption ii) is necessary. We shall start the
proof with arbitrarya(c) € C such that the series converges absolutely. This also
means that at first the maximum of Reneed not be equal to.

Proof. The main idea is to approximat&(X) := > ._y a(c) by
(28) S@) =) al)y(o),
ceC

for suitabley € C°(0, 00).
For any suchy, the Mellin transform

o0 dx
(29) MyGs)i= [ v
0 X
is quickly decreasing on vertical strips. The inversion is given by
1
(30) vx) =5 x My (s)ds
2mi Res=o

foranyo € R. ThisimpliesS(y) = %fRex:” D(s)M1(s) ds foreachr > t.
Assumption iv) shows that we can transform this into

1 1
B1) S = mX_jlme(sm) +o f

Res=

) D(s)Myr(s)ds.

The following choice of the test functiofr has examples in the work of
Iwaniec.y = yx y depends on two large parametéfs> 10,Y > 10. It
is an element ofC2°(0, co) approximating the characteristic function of the
interval [0, X]. The auxiliary parameter governs the steepness on the right.
Putu := min(C). The properties ofy = yx y are

a) 0< ¢,y =00n[0, u/2land on[X + X/Y, 0c0), andyy = 1 on[u, X].
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b) OnJO, u] the functiomyx y does not depend ok andY .
C) On[X, oo) we takeyx y(X + x) := w(Yx/X), wherew € C*(0, 00) is

a decreasing function, equal to 1 on a neighborhood of 0, and equal to 0 on

[1, 00).

This implies thafy®| « Y*X~‘on[X, X + X/Y].

We derive some estimates for the Mellin transform of this test function. For
all + € R we have

X+X/Y

(32) My (F +it)| < / xf7 <z X©.

0
For¢ > 1, ando > 0 we have

My O +it)| < (/ f ) W(x>|

Lo L+ YXX YV 14 YO
FromMuy©(s) = (s — 1) --- (s — £) My (s — £) we conclude that
(33) MY (F +it)| Kz YIXT A+ [t)7°
for each? > 1.
We estimate the integral
1
271 JRes=¢

by using various boundsinthe casés s| € [0, 1],[1, Y],andY, co). From (32)
we obtain for the integral ovd0, 1] the boundX™. For[1, Y] we use (33) with
¢ = 1and findf," X**"1dr « X7Y*. For the last interval we use= L + 1
with L € (k, k + 1]. This gives/;” Y X% t*~L=1dr « Y*X*. Thus we obtain

D(S)My(s)ds

(34) D(s)My(s)ds <« XTY*.

271 JRes=7
For Res = o € (7, ], we have the following estimate:

X X+X/Y
My (s) = / *rdx+0Q)+0 (/ x"_ldx>
0 X

= £+0(1+X"Y—1).
N

We apply this to the terms,, M(s,,) in (31), and obtain the final estimate of
S):
q

(35) SWxw) = Y ZEXT 40 (XY + XYY,

m=1""
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wheren := max-,<, Res,. If there are no singularities, thefi(y,) =
O (XTY%).

The problem left is to estimate the difference betw&eény y) and A(X).
Without the conditiorz(¢) > 0, we do not see another way than to estimate the
difference trivially:

(36) AX) =S < > la(o)l
X<c<X+X/Y
<X° Y a@le =X - o(D),
X<c<X+X/Y

foranyo > 1. As we do not have precise information efl), even the explicit
terms in (35) may be overwhelmed by the differedqel) — S(¥).

Now we use the non-negativity in Assumption ii). The right-mgstsayss,
coincides witht. Hencen = 7 in (35). We haveS(yzy) < A(X) < SWx.y),
with Z = X/(1+1/Y). We find

SWx,y) —SWzy)
il Wi s 1 —s Tyvk Ty—1
= } :—X"" 1—(1+7) )40 (XY 4+ XTY Y
Sm
m=1

=0 (XY +XxvY).
So the estimate of (¥x.y) in (35) is valid forA(X) as well. The choic& =
X=9/&+D gives the assertion in the proposition. ]

Integrality assumptionin the application of the present paper, it is improbable
that the elements @f are integral. But in an arithmetic situation, one may obtain
better estimates than in (36), without the assumpti@n > 0. We need infor-
mation on the spacing of thee C, and on the growth of the(c). We give the
following result as an example.

Proposition 5.2. Suppose thaf = N in Assumption i), and that(n) € C,
a(n) = O(n*™"1), in Assumption ii). With these modifications, Assumptions i)—
iv) imply

q
Yol =) X 0K (X > oo,

n<X m=1 "™
withb; = max(kt + 7)/(k + 1), Tt — 1).

Proof. We now have} y ..y, yyla(e)] < (1+X/Y)(X +X/Y)"*, and
obtain instead of (36):

JAX) = S| <« XY 1+ XL
We combine this with (35) to obtain the proposition. |
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