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1. Introduction

The aim of this article is to discuss some of the analytic aspects of the group G =

PSL2(R) acting on the hyperbolic plane and its boundary. Everything we do is related
in some way with the (spherical) principal series representations of the group G.

These principal series representations are among the best known and most basic ob-
jects of all of representation theory. In this article, we will review the standard models
used to realize these representations and then describe a number of new properties and
new models. Some of these are surprising and interesting in their own right, while
others have already proved useful in connection with the study of cohomological ap-
plications of automorphic forms [2] and may potentially have other applications in the
future. The construction of new models may at first sight seem superfluous, since by
definition any two models of the same representation are equivariantly isomorphic,
but nevertheless gives new information because the isomorphisms between the models
are not trivial and also because each model consists of the global sections of a cer-
tain G-equivariant sheaf, and these sheaves are completely different even if they have
isomorphic spaces of global sections.

The principal series representations of G are indexed by a complex number s, called
the spectral parameter, which we will always assume to have real part between 0
and 1. (The condition Re (s) = 1

2 , corresponding to unitarizability, will play no role
in this paper.) There are two basic realizations. One is the spaceVs of functions on R
with the (right) action of G given by

(ϕ | g)(t) = |ct + d|−2s ϕ
(at + b
ct + d

)
(
t ∈ R, g =

[a
c

b
d

]
∈ G

)
. (1.1)

The other is the space Es of functions u on H (complex upper half-plane) satisfying

∆ u(z) = s(1 − s) u(z) (z ∈ H), (1.2)

where ∆ = −y2( ∂2

∂x2 + ∂2

∂x2

)
(z = x + iy ∈ H) is the hyperbolic Laplace operator,

with the action u 7→ u ◦ g. They are related by Helgason’s Poisson transform (thus
named because it is the analogue of the corresponding formula given by Poisson for
holomorphic functions)

ϕ(t) 7→ (Psϕ)(z) =
1
π

∫ ∞

−∞

ϕ(t) R(t; z)1−s dt , (1.3)

where R(t; z) = Rt(z) =
y

(z−t)(z̄−t) for z = x + iy ∈ H and t ∈ C. The three main
themes of this paper are: the explicit inversion of the Poisson transformation, the study
of germs of Laplace eigenfunctions near the boundary P1

R = R ∪ {∞} of H, and the
construction of a new model of the principal series representation which is a kind of
hybrid ofVs and Es. We now describe each of these briefly.
• Inverse Poisson transform. We would like to describe the inverse map of Ps ex-
plicitly. The right-hand side of (1.3) can be interpreted as it stands if ϕ is a smooth
vector in Vs (corresponding to a function ϕ(x) which is C∞ on R and such that t 7→
|t|−2sϕ(1/t) is C∞ at t = 0). To get an isomorphism betweenVs and all of Es, one has
to allow hyperfunctions ϕ(t). The precise definition, which is somewhat subtle in the
model used in (1), will be reviewed in §1.2; for now we recall only that a hyperfunction
on I ⊂ R is represented by a holomorphic function on U r I, where U is a neighbor-
hood U of I in C with U ∩ R = I and where two holomorphic functions represent the
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same hyperfunction if their difference is holomorphic on all of U. We will show in §4
that for u ∈ Es the vector Ps

−1u ∈ Vs can be represented by the hyperfunction

hz0(ζ) =

 u(z0) +
∫ ζ

z0

[
u(z),

(
Rζ(z)/Rζ(z0)

)s] if ζ ∈ U ∩ H∫ z0

ζ̄

[(
Rζ(z)/Rζ(z0)

)s, u(z)
]

if ζ ∈ U ∩ H−
(1.4)

for any z0 ∈ U ∩H, where H− = {z = x + iy ∈ C : y < 0} denotes the lower half-plane
and [u(z), v(z)] for any functions u and v in H is the Green’s form

[u(z), v(z)] =
∂u(z)
∂z

v(z) dz + u(z)
∂v(z)
∂z̄

dz̄ , (1.5)

which is a closed 1-form if u and v both satisfy the Laplace equation (1.2). The asym-
metry in (1.4) is necessary because, although R(ζ; z)s tends to zero at z = ζ and z = ζ̄,
both its z-derivative at ζ and its z̄-derivative at ζ̄ become infinite, forcing us to change
the order of the arguments in the Green’s form in the two components of UrI. That the
two different-looking expressions in (1.4) are nevertheless formally the same follows
from the fact that [u, v] + [v, u] = d(uv) for any functions u and v.
• Boundary eigenfunctions. If one looks at known examples of solutions of the
Laplace equation (1.2), then it is very striking that many of these functions decom-
pose into two pieces of the form ysA(z) and y1−sB(z) as z = x + iy tends to a point of
R ⊂ P1

R = ∂H, where A(z) and B(z) are functions which extend analytically across the
boundary. For instance, the eigenfunctions that occur as building blocks in the Fourier
expansions of Maass wave forms for a Fuchsian group G ⊂ G are the functions

ks,2πn(z) = y1/2 Ks−1/2(2π|n|y) e2πinx (z = x + iy ∈ R, n ∈ Z, n , 0), (1.6)

where Ks−1/2(t) is the standard K-Bessel function which decays exponentially as t →
∞. The function Kν(t) has the form

π

sin πν
(
Iν(t) − I−ν(t)

)
with

Iν(t) =

∞∑
n=0

(−1/4)n t2n+ν

n! Γ(n + ν)
,

so ks,2πn(z) decomposes into two pieces of the form ys×(analytic near the boundary)
and y1−s×(analytic near the boundary). The same is true for other elements of Es,
involving other special functions like Legendre or hypergeometric functions, that play
a role in the spectral analysis of automorphic forms. A second main theme of this
paper is to understand this phenomenon. We will show that to every analytic function
ϕ on an interval I ⊂ R there is a unique solution u of (1.2) in U ∩H (where U as before
is a neighborhood of I in Cwith U∩R = I, supposed simply connected and sufficiently
small) such that u(x+ iy) = ys Φ(x+ iy) for an analytic function Φ on U with restriction
Φ|I = ϕ. In §5 we will call the (locally defined) map ϕ 7→ u the transverse Poisson
transform of ϕ and will show that it can be described by both a Taylor series in y and
an integral formula, the latter bearing a striking resemblance to the original (globally
defined) Poisson transform (1.3) :

(P†s ϕ)(z) =
−i Γ(s + 1

2 )

Γ(s)Γ( 1
2 )

∫ z

z̄
ϕ(ζ) R(ζ; z)1−s dζ , (1.7)

where the function ϕ(ζ) in the integral is the unique holomorphic extension of ϕ(t) to U
and the integral is along any path connecting z̄ and z within U. The transverse Poisson
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map produces an eigenfunction u from a real-analytic function ϕ on an interval I in P1
R.

We also give an explicit integral formula representing the holomorphic function ϕ in U
in terms of the eigenfunction u = P†s ϕ.

As an application, we will show in §7 that the elements of Es corresponding under
the Poisson transform to analytic vectors in Vs (which in the model (1.1) are repre-
sented by analytic functions ϕ on R for which t 7→ |t|−2sϕ(1/t) is analytic at t = 0) are
precisely those which have a decomposition u = P†s ϕ1 + P†1−sϕ2 near the boundary of
H, where ϕ1 and ϕ2, which are uniquely determined by u, are analytic functions on P1

R.
• Canonical model. We spoke above of two realizations of the principal series, asVs
(functions on ∂H = P1

R) and as Es (eigenfunctions of the Laplace operator in H). In
fact Vs comes in many different variants, discussed in detail in §1, each of which
resolves various of the defects of the others at the expense of introducing new ones. For
instance, the “line model” (1.1) which we have been using up to now has a very simple
description of the group action, but needs special treatment of the point ∞ ∈ P1

R, as
one could already see several times in the discussion above (e.g. in the description of
smooth and analytic vectors or in the definition of hyperfunctions). One can correct
this by working on the projective rather than the real line, but then the description of the
group action becomes very messy, while yet other models (circle model, plane model,
induced representation model, . . . ) have other drawbacks. In §4 we will introduce a
new realization Cs (“canonical model”) that has many advantages:

• all points in hyperbolic space, and all points on its boundary, are treated in an
equal way;
• the formula for the group action is very simple;
• its objects are actual functions, not equivalence classes of functions;
• the Poisson transformation is given by an extremely simple formula;
• the canonical model Cs coincides with the image of a canonical inversion for-

mula for the Poisson transformation;
• the elements of Cs satisfy differential equations, discussed below, which lead

to a sheafDs that is interesting in itself;
• it uses two variables, one in H and one in P1

C
rP1
R, and therefore gives a natural

bridge between the models of the principal series representations as eigenfunc-
tions in H or as hyperfunctions in a deleted neighborhood of P1

R in P1
C

.
The elements of the space Cs are precisely the functions (z, z0) 7→ hz0(z) arising as

in (1.4) for some eigenfunction u ∈ Es, but also have several intrinsic descriptions,
of which perhaps the most surprising is a characterization by a system of two linear
differential equations:

∂h
∂z

= −s
ζ − z̄
z − z̄

h∗ ,
∂h∗

∂z̄
=

s
(ζ − z̄)(z − z̄)

h , (1.8)

where h(ζ, z) is a function on
(
P1
C
r P1
R) × H which is holomorphic in the first variable

and where h∗(ζ, z) := (h(ζ, z) − h(z, z))/(ζ − z). The “Poisson transform” in this model
is very simple: it simply assigns to h(ζ, z) the function u(z) = h(z, z), which turns out
to be an eigenfunction of the Laplace operator. The name “canonical model” refers to
the fact that Vs consists of hyperfunctions and that in Cs we have chosen a family of
canonical representatives of these hyperfunctions, indexed in a G-equivariant way by
a parameter in the upper half-plane: h( · , z) for each z ∈ H is the unique representative
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of the hyperfunction ϕ(t)R(t; z)−s on P1
R which is holomorphic in all of P1

C
r P1

R and
vanishes at z̄.
• Further remarks. The known or potential applications of the ideas in this paper
are to automorphic forms in the upper half-plane. When dealing with such forms, one
needs to work with functions of general weight, not just weight 0 as considered here.
We expect that many of our results can be modified to the context of general weights,
where the group G = PSL2(R) has to be replaced by SL2(R) or its universal covering
group.

Some parts of what we do in this paper are available in the literature, but often in
a different form or with another emphasis. In §4 of the introduction of [6], Helgason
gives an overview of analysis on the upper half-plane. One finds there the Poisson
transformation; the injectivity is proved by a polar decomposition. As far as we know,
our approach in Theorem 4.2 with the Green’s form is new, and in [2] it is an essential
tool to build cocycles. Helgason gives also the asymptotic expansion near the boundary
of eigenfunctions of the Laplace operator, from which the results in Section 7 may also
be derived. For these asymptotic expansions one may also consult the work of Van
den Ban and Schlichtkrull, [1]. A more detailed and deeper discussion can be found
in [7], where Section 0 discusses the inverse Poisson transformation in the context of
the upper half-plane. Our presentation stresses the transverse Poisson transformation,
which also seems not to have been treated in the earlier literature and which we use
in [2] to recover Maass wave forms from their associated cocycles. Finally, the hybrid
models in Section 4 and the related sheafDs are, as far as we know, new.

The paper ends with an appendix giving a number of explicit formulas, including
descriptions of various eigenfunctions of the Laplace operator and tables of Poisson
transforms and transverse Poisson transforms.

Acknowledgments. The two first-named authors would like to thank the Max Planck
Institute in Bonn and the Collège de France in Paris for their repeated hospitality and
for the excellent working conditions they provided. We thank YoungJu Choie for her
comments on an earlier version.

Conventions and notations. We work with the Lie group

G = PSL2(R) = SL2(R)/{±Id} .

We denote the element ±
(a

c
b
d
)

of G by
[a

c
b
d
]
. A maximal compact subgroup is K =

PSO(2) =
{
k(θ) : θ ∈ R/πZ

}
, with

k(θ) =

[ cos θ
− sin θ

sin θ
cos θ

]
. (1.9a)

We also use the Borel subgroup NA, with the unipotent subgroup N =
{
n(x) : x ∈ R

}
and the torus A =

{
a(y) : y > 0

}
, with

a(y) =

[ √y
0

0
1/
√
y

]
, n(x) =

[1
0

x
1

]
. (1.9b)

We use H as a generic letter to denote the hyperbolic plane. We use two concrete
models: the unit disk D =

{
w ∈ C : |w| < 1

}
, and the upper half plane H =

{
z ∈ C :

Im z > 0
}
. We will denote by x and y the real and imaginary part of z ∈ H respectively.

The boundary ∂H of the hyperbolic plane is in these models ∂H = P1
R = R ∪ {∞}, the
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real projective line, and ∂D = S1, the unit circle. Both models of H∪∂H are contained
in P1

C
, on which G acts in the upper half plane model by

[ a
c

b
d
]

: z 7→ az+b
cz+d , and in the

disk model by
[ a

c
b
d
]

: w 7→ Aw+B
B̄w+Ā , with

[A
B̄

B
Ā
]

=
[1

1
−i

i
][ a

c
b
d
][ 1

1
−i

i
]
−1.

All the representations that we discuss in the first five sections depend on s ∈ C, the
spectral parameter; it determines the eigenvalue λs = s− s2 of the Laplace operator ∆,
which is given in the upper half-plane model by −y2∂2

x−y
2∂2

y, and in the disk model by
−(1−|w|2)2 ∂w ∂w̄. We will always assume s < Z, and usually restrict to 0 < Re (s) < 1.
We work with right representations of G, denoted by v 7→ v|2s g or v 7→ v | g.

2. The principal series representationVs

This section serves to discuss general facts concerning the principal series represen-
tation. Much of this is standard, but quite a lot of it is not, and the material presented
here will be used extensively in the rest of the paper. We will therefore give a self-
contained and fairly detailed presentation.

The principal series representations can be realized in various ways. One of the aims
of this paper is to gain insight by combining several of these models. Subsection 2.1
gives six standard models for the continuous vectors in the principal series represen-
tation. Subsection 2.2 presents the larger space of hyperfunction vectors in some of
these models, and in Subsection 2.3 we discuss the isomorphism (for 0 < Re s < 1)
between the principal series representations with the values s and 1 − s of the spectral
parameter.

2.1. Six models of the principal series representation. In this subsection we look at
six models to realize the principal series representation Vs, each of which is the most
convenient in certain contexts. Three of these models are realized on the boundary
∂H of the hyperbolic plane. Five of the six models have easy algebraic isomorphisms
between them. The sixth has a more subtle isomorphism with the others, but gives
explicit matrix coefficients. In later sections we will describe more models ofVs with
a more complicated relation to the models here. We also describe the duality between
Vs andV1−s in the various models. (Note. We will use the letterVs somewhat loosely
to denote “the” principal series representation in a generic way, or when the particu-
lar space of functions under consideration plays no role. The spaces V∞s and Vω

s of
smooth and analytic vectors, and the spacesV−∞s andV−ωs of distributions and hyper-
functions introduced in §2.2, will be identified by the appropriate superscript. Other
superscripts such as P and S will be used to distinguish vectors in the different models
when needed.)
• Line model. This well-known model of the principal series consists of complex
valued functions on R with the action of G given by

ϕ
∣∣∣
2s

[a
c

b
d

]
(t) = |ct + d|−2s ϕ

(at + b
ct + d

)
. (2.1)

Since G acts on P1
R = R ∪ {∞}, and not on R, the point at infinity plays a special

role in this model and a more correct description requires the use of a pair (ϕ, ϕ∞)
of functions R → C related by ϕ(t) = |t|−2sϕ∞(−1/t) for t , 0, and with the right
hand side in (2.1) replaced by |at + b|−2sϕ∞

(
− ct+d

at+b
)

if ct + d vanishes, together with the
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obvious corresponding formula for ϕ∞. However, we will usually work with ϕ alone
and leave the required verification at∞ to the reader.

The spaceV∞s of smooth vectors in this model consists of the functions ϕ ∈ C∞(R)
with an asymptotic expansion

ϕ(t) ∼ |t|−2s
∞∑

n=0

cn t−n (2.2)

as |t| → ∞. Similarly, we define the space Vω
s of analytic vectors as the space of

ϕ ∈ Cω(R) (real-analytic functions on R) for which the series appearing on the right-
hand side of (2.2) converges to ϕ(t) for |t| ≥ t0 for some t0. Replacing C∞(R) or Cω(R)
by Cp(R) and the expansion (2.2) with a Taylor expansion of order p, we define the
spaceVp

s for p ∈ N.

• Plane model. The line model has the advantage that the action (2.1) of G is very
simple and corresponds to the standard formula for its action on the complex upper
half-plane H, but the disadvantage that we have to either cover the boundary R ∪ {∞}
of H by two charts and work with pairs of functions or else give a special treatment
to the point at infinity, thus breaking the inherent G-symmetry. Each of the next five
models eliminates this problem, at the expense of introducing complexities elsewhere.
The first of these is the plane model, consisting of even functions Φ : R2 r {0} → C
satisfying Φ(tx, ty) = |t|−2sΦ(x, y) for t , 0, with the action

Φ
∣∣∣ [a

c
b
d

]
(x, y) = Φ(ax + by, cx + dy) . (2.3)

The relation with the line model is
ϕ(t) = Φ(t, 1) , ϕ∞(t) = Φ(−1, t) ,

Φ(x, y) =

 |y|−2s ϕ(x/y) if y , 0 ,
|x|−2s ϕ∞(−y/x) if x , 0 ,

(2.4)

and of course the elements in Vp
s , for p = 0, 1, . . . ,∞, ω, are now just given by Φ ∈

Cp(R2 r {0}). This model has the advantage of being completely G-symmetric, but
requires functions of two variables rather than just one.

• Projective model. If (ϕ, ϕ∞) represents an element of the line model, we put

ϕP(t) =

 (1 + t2)s ϕ(t) if t ∈ P1
R r {∞} = R ,

(1 + t−2)s ϕ∞(−1/t) if t ∈ P1
R r {0} = R∗ ∪ {∞} .

(2.5)

The functions ϕP form the projective model ofVs, consisting of functions f on the real
projective line P1

R with the action

f
∣∣∣P
2s

[a
c

b
d

](
t
)

=

( t2 + 1
(at + b)2 + (ct + d)2

)s
f
(at + b
ct + d

)
. (2.6)

Note that the factor
(

t2+1
(at+b)2+(ct+d)2

)s
is real-analytic on the whole of P1

R, since the factor
in parentheses is analytic and strictly positive on P1

R. This model has the advantage that
all points of P1

R get equal treatment, but the disadvantage that the formula for the action
is complicated and unnatural.
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• Circle model. The transformation ξ = t−i
t+i in P1

C
, with inverse t = i 1+ξ

1−ξ , maps P1
R

isomorphically to the unit circle S1 =
{
ξ ∈ C : |ξ| = 1

}
in C, and leads to the circle

model ofVs , related to the three previous models by

ϕS(e−2iθ) = ϕP
(
cot θ

)
= Φ(cos θ, sin θ) = | sin θ|−2s ϕ(cot θ) . (2.7)

The action of g =
[a

c
b
d
]
∈ PSL2(R) is described by g̃ =

[1
1
−i
i
]
g
[ 1

1
−i
i
]
−1 =

[A
B̄

B
Ā
]

in
PSU(1, 1) ⊂ PSL2(C), with A = 1

2 (a + ib − ic + d), B = 1
2 (a − ib − ic − d) :

f
∣∣∣S
2s g

(
ξ
)

= |Aξ + B|−2s f
(

Aξ + B
B̄ξ + Ā

)
(|ξ| = 1) . (2.8)

Since |A|2 − |B|2 = 1, the factor |Aξ + B| is non-zero on the unit circle.
Note that in both the projective and circle models, the elements inVp

s are simply the
elements of Cp(P1

R) or Cp(S1), so that as vector spaces these models are independent
of s.
• Induced representation model. The principal series is frequently defined as the
induced representation from the Borel group NA to G of the character n(x)a(y) 7→ y−s,
in the notation in (1.9b). (See for instance Chap. VII in [8].) This is the space of
functions F on G transforming on the right according to this character of AN, with G
acting by left translation. Identifying G/N with R2 r {(0, 0)} leads to the plane model,
via F

[a
c

b
d
]

= Φ(a, c). On the other hand, the functions in the induced representation
model are determined by their values on K, leading to the relation ϕS(e2iθ) = F(k(θ))
with the circle model, with k(θ) as in (1.9a).

We should warn the reader that in defining the induced representation one often
considers functions whose restrictions to K are square integrable, obtaining a Hilbert
space isomorphic to L2(K). The action of G in this space is a bounded representation,
unitary if Re s = 1

2 . Since not all square integrable functions are continuous, this
Hilbert space is larger thanV0

s . For p ∈ N, the space of p times differentiable vectors
in this Hilbert space is larger than our Vp

s . (It is between Vp−1
s and Vp

s .) However,
V∞s and Vω

s coincide with the spaces of infinitely-often differentiable, respectively
analytic, vectors in this Hilbert space.
• Sequence model. We define elements es,n ∈ V

ω
s , n ∈ Z, represented in our five

models as follows:

es,n(t) = (t2 + 1)−s
( t − i
t + i

)n
, (2.9a)

eR
2

s,n(x, y) = (x2 + y2)−s
( x − iy

x + iy

)n
, (2.9b)

ePs,n(t) =

( t − i
t + i

)n
, (2.9c)

eSs,n(ξ) = ξn , (2.9d)

eind repr
s,n

([a
c

b
d

])
=

(
a2 + c2)−s

(a − ic
a + ic

)n
. (2.9e)

Fourier expansion gives a convergent representation ϕS(ξ) =
∑

n cnes,n(ξ) for each ele-
ment ofV0

s . This gives the sequence model, consisting of the sequences of coefficients
c = (cn)n∈Z . The action of G is described by c 7→ c′ with c′m =

∑
n Am,n(g)cn, where the
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matrix coefficients Am,n(g) are given (by the binomial theorem) in terms of g̃ =
[A

B̄
B
Ā
]

as

Am,n(g) =
(A/B)m (A/B̄)n

|A|2s

∑
l≥max(m,n)

(n − s
l − m

) (
−n − s
l − n

) ∣∣∣∣∣BA
∣∣∣∣∣2l
, (2.10)

which can be written in closed form in terms of hypergeometric functions as
Am,n(g)

=

 An+m B̄m−n

|A|2s+2m

(
−s−n
m−n

)
F
(
s − n, s + m; m − n + 1;

∣∣∣ B
A

∣∣∣2 )
if m ≥ n ,

An+mBn−m

|A|2s+2n

(
−s+n
n−m

)
F
(
s + n, s − m; n − m + 1;

∣∣∣ B
A

∣∣∣2 )
if n ≥ m .

(2.11)

The description of the smooth and analytic vectors is easy in the sequence model:

Vω
s =

{
(cn) : cn = O

(
e−a|n|

)
for some a > 0

}
,

V∞s =
{
(cn) : cn = O

(
(1 + |n|)−a) for all a ∈ R

}
.

(2.12)

The precise description ofVp
s for finite p ∈ N is less obvious in this model, but at least

we have (cn) ∈ Vp
s ⇒ cn = o(|n|−p) as |n| → ∞, and, conversely, cn = O(|n|−ρ) with

ρ > p + 1 implies (cn) ∈ Vp
s .

• Duality. There is a duality between V0
s and V0

1−s , given in the six models by the
formulas

〈ϕ, ψ〉 =
1
π

∫
R
ϕ(t)ψ(t) dt , (2.13a)

〈Φ,Ψ〉 =
1

2π

∫ 2π

0
Φ(cos θ, sin θ) Ψ(cos θ, sin θ) dθ , (2.13b)

〈ϕP, ψP〉 =
1
π

∫
P1
R

ϕP(t)ψP(t)
dt

1 + t2 , (2.13c)

〈ϕS, ψS〉 =
1

2πi

∫
S1
ϕS(ξ)ψS(ξ)

dξ
ξ
, (2.13d)

〈F, F1〉 =

∫ π

0
F
(
k(θ)

)
F1

(
k(θ)

) dθ
π
, (2.13e)〈

c,d
〉

=
∑

n

cnd−n . (2.13f)

This bilinear form onV0
s ×V

0
1−s is G-invariant:

〈ϕ|2s g, ψ|2−2s g〉 = 〈ϕ, ψ〉 (g ∈ G) . (2.14)

Furthermore we have for n,m ∈ Z:

〈e1−s,n, es,m〉 = δn,−m . (2.15)

• Topology. The natural topology of Vp
s with p ∈ N ∪ {∞} is given by seminorms

which we define with use of the action ϕ 7→ ϕ|W = d
dtϕ|e

tW
∣∣∣
t=0 where W =

(0
1
−1

0
)

is
in the Lie algebra. The differential operator W is given by 2iξ ∂ξ in the circle model,
by (1 + t2) ∂t in the projective model, and by (1 + x2) ∂x + 2sx in the line model. For
p ∈ N the space Vp

s is a Banach space with norm equal to the sum over j = 0, . . . , p
of the seminorms

‖ϕ‖ j = sup
x∈∂H

∣∣∣ϕ|W j(x)
∣∣∣ . (2.16)
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The collection of all seminorms ‖ · ‖ j, j ∈ N, gives the natural topology of V∞s =⋂
p∈NV

p
s . In §2.2 we shall discuss the natural topology onVω

s .
Although we have strict inclusions V∞s ⊂ · · · ⊂ V1

s ⊂ V
0

s , all these representa-
tion spaces of G are irreducible as topological G-representations, due to our standing
assumptions 0 < Re s < 1, which implies s < Z.

• Sheaf aspects. In the line model, the projective model and the circle model, we
can extend the definition of the G-equivariant spaces Vp

s for p = 0, 1, . . . ,∞, ω of
functions on ∂H to G-equivariant sheaves on ∂H. For instance, in the circle model we
can define Vω

s (I) for any open subset I ⊂ S1 as the space of real-analytic functions
on I. The action of G induces linear maps f 7→ f | g, fromVω

s (I) toVω
s (g−1I), so that

I 7→ Vω
s (I) is a G-equivariant sheaf on the G-space S1 whose space of global sections

is the representationVω
s of G. For the line model and the projective model we proceed

similarly.

2.2. Hyperfunctions. So far we have consideredVs as a space of functions. We now
want to include generalized functions: distributions and hyperfunctions. We shall be
most interested in hyperfunctions on ∂H, in the projective model and the circle model.
• Vω

s and holomorphic functions. Before we discuss hyperfunctions, let us first
consider Vω

s . In the circle model, it is the space Cω(S1) of real-analytic functions
on S1, with the action (2.8). Since the restriction of a holomorphic function on a
neighborhood of S1 in C to S1 is real-analytic, and since every real-analytic function
on S1 is such a restriction, Cω(S1) can be identified with the space lim

−→
O(U), where

U in the inductive limit runs over all open neighborhoods of S1 and O(U) denotes the
space of holomorphic functions on U.

• Hyperfunctions. We can also consider the space H(S1) = lim
−→
O(U r S1) (with

U running over the same sets as before) of germs of holomorphic functions in deleted
neighborhoods of S1 in C. The space C−ω(S1) of hyperfunctions on S1 is the quotient
in the exact sequence

0 −→ Cω(S1) −→ H(S1) −→ C−ω(S1) −→ 0 ; (2.17)

see e.g. §1.1 of [11]. So C−ω(S1) = lim
−→

U

O(U \ S1)/O(U) where U is as above, and

where restriction gives an injective map O(U) → O(U r S1). Actually, the quotient
O(UrS1)/O(U) does not depend on the choice of U, so it gives a model for C−ω(S1) for
any choice of U. Intuitively, a hyperfunction is the jump across S1 of a holomorphic
function on U r S1.

• Embedding. The image of Cω(S1) in C−ω(S1) in (2.17) is of course zero. There is
an embedding Cω(S1)→ C−ω(S1) induced by

(
ϕ ∈ O(U)

)
7→

(
ϕ1 ∈ Hs(S1)

)
, ϕ1(w) =

 ϕ(w) if w ∈ U , |w| < 1 ,
0 if w ∈ U , |w| > 1 .

(2.18)

• Pairing. We next define a pairing between hyperfunctions and analytic functions
on S1. We begin with a pairing on H(S1) × H(S1). Let ϕ, ψ ∈ H(S1) be represented
by f , h ∈ O(UrS1) for some U. Let C+ and C− be closed curves in U r S1 which
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are small deformations of S1 to the inside and outside, respectively, traversed in the
positive direction, e.g. C± =

{
|w| = e∓ε

}
with ε sufficiently small. Then the integral

〈ϕ, ψ〉 =
1

2πi

(∫
C+

−

∫
C−

)
f (w) h(w)

dw
w

(2.19)

is independent of the choice of the contours C± and of the neighborhood U. Moreover,
if f and h are both in O(U), then Cauchy’s theorem gives 〈ϕ, ψ〉 = 0. Hence if ψ ∈
Cω(S1), then the right-hand side of (2.19) depends only on the image (also denoted
ϕ) of ϕ in C−ω(S1) and we get an induced pairing C−ω(S1) × Cω(S1) → C, which
we also denote by 〈 · , · 〉. Similarly, 〈· , ·〉 gives a pairing Cω(S1) × C−ω(S1) → C.
Finally, if ϕ belongs to the space Cω(S1), embedded into C−ω(S1) as explained in the
preceding paragraph, then it is easily seen that 〈ϕ, ψ〉 is the same as the value of the
pairing Cω(S1) ×Cω(S1)→ C already defined in (2.13d).
• Group action. We now define the action of G. We had identified Vω

s in the circle
model with Cω(S1) together with the action (2.8) of G = PSL2(R) � PSU(1, 1). For
g̃ =

[A
B̄

B
Ā
]

and ξ ∈ S1 we have |Aξ + B|2 = (A + Bξ−1)(Ā + B̄ξ), which is holomorphic
and takes values near the positive real axis for ξ close to S1 (because |A| > |B|). So if
we rewrite the automorphy factor in (2.8) as

[
(Ā + B̄ξ)(A + B/ξ)

]−s, then we see that it
extends to a single-valued and holomorphic function on a neighborhood of S1 (in fact,
outside a path from 0 to −B/A and a path from ∞ to −Ā/B̄). In other words, in the
description ofVω

s as lim
−→
O(U), the G-action becomes

ϕ|2sg (w) =
[
(Ā + B̄w)(A + B/w)

]−s ϕ(g̃w) . (2.20)

This description makes sense on O(U rS1), and hence also on H(S1) and C−ω(S1). We
define V−ωs as C−ω(S1) together with this G-action. It is then easy to check that the
embeddingVω

s ⊂ V
−ω

s induced by the embedding C∞(S1) ⊂ C−ω(S1) described above
is G-equivariant, and also that the pairing (2.19) satisfies (2.14) and hence defines an
equivariant pairingV−ωs ×Vω

1−s → C extending the pairing (2.13d) onVω
s ×V

ω
1−s.

Note also that, if we denote by Hs the space H(S1) equipped with the action (2.20),
then (2.17) becomes a short exact sequence

0 −→ Vω
s −→ Hs

π
−→ V−ωs −→ 0 (2.21)

of G-modules and (2.19) defines an equivariant pairing Hs ×H1−s → C.
The equivariant duality identifiesV−ωs with a space of linear forms onVω

1−s, namely
(in the circle model) the space of all linear forms that are continuous for the induc-
tive limit topology on C−ω(S1) induced by the topologies on the spaces O(U) given by
supremum norms on annuli 1 − ε < |w| < 1 + ε. Similarly, the spaceV−∞s of distribu-
tional vectors in Vs can be defined in the circle model as the space of linear forms on
V

p
s that are continuous for the topology with supremum norms of all derivatives as its

set of seminorms. We thus have an increasing sequence of spaces:

Vω
s (analytic functions) ⊂ V∞s (smooth functions) ⊂ · · ·

⊂ V−∞s (distributions) ⊂ V−ωs (hyperfunctions) ,
(2.22)

where all of the inclusions commute with the action of G.
• Hyperfunctions in other models. The descriptions of the spaces V−ωs and V−∞s
in the projective model are similar. The space of hyperfunctions C−ω(P1

R) is defined



12 R. BRUGGEMAN, J. LEWIS, AND D. ZAGIER

similarly to (2.17), where we now let U run through neighborhoods of P1
R in P1

C
. The

formula (2.6) describing the action of G on functions on P1
R makes sense on a neigh-

borhood of P1
R in P1

C
and can be rewritten

f |P2s

[a
c

b
d

]
(τ) =

(
a2 + c2)−s

(
τ − i

τ − g−1(i)

)s (
τ + i

τ − g−1(−i)

)s

f
(
aτ + b
cτ + d

)
. (2.23)

where the automorphy factor now makes sense and is holomorphic and single-valued
outside a path from i to g−1(i) and a path from −i to g−1(−i). The duality in this model
is given by

〈ϕ, ψ〉 =
1
π

(∫
C+

−

∫
C−

)
ϕ(τ)ψ(τ)

dτ
1 + τ2 (2.24)

where the contour C+ runs in the upper half-plane H, slightly above the real axis in the
positive direction, and returning along a wide half circle in the positive direction and
the contour C− is defined similarly, but in the lower half-plane H−, going clockwise.
Everything else goes through exactly as before.

The kernel function

k(ζ, τ) =
(ζ + i)(τ − i)

2i(τ − ζ)
(2.25)

can be used to obtain a representative in Hs (in the projective model) for any α ∈ V−ωs :
if we think of α as a linear form onVω

1−s, then

g(ζ) =
〈
k(ζ, · ), α

〉
(2.26)

is a holomorphic function on P1
C
r P1
R such that π(g) = α. Cauchy’s theorem implies

that g and any representative ψ ∈ Hs of α differ by a holomorphic function on a
neighborhood of P1

R. The particular representative g has the nice properties of being
holomorphic on H ∪ H−, and being normalized by g(−i) = 0.

If one wants to handle hyperfunctions in the line model, one has to use both hyper-
functions ϕ and ϕ∞ on R, glued by ϕ(τ) = (τ2)−sϕ∞(−1/τ) on neighborhoods of (0,∞)
and (−∞, 0). For instance, for Re s < 1

2 the linear form ϕ 7→ 1
π

∫ ∞
−∞

ϕ(t) dt onV0
1−s de-

fines a distribution 1s ∈ V
−∞

s . In §A.2 we use (2.26) to describe 1s ∈ V
−ω

s in the line
model. The plane model seems not to be convenient for working with hyperfunctions.

Finally, in the sequence model there is the advantage that one can describe all four
of the spaces in (2.22) very easily, since the descriptions in (2.12) applied toVω

1−s and
V∞1−s lead immediately to the descriptions

V−ωs =
{
(cn) : cn = O

(
ea|n|) for all a > 0

}
,

V−∞s =
{
(cn) : cn = O

(
(1 + |n|)a) for some a ∈ R

} (2.27)

of their dual spaces, where a sequence c corresponds to the hyperfunction represented
by the function which is

∑
n≥0 cnw

n for 1 − ε < |w| < 1 and −
∑

n<0 cnw
n for 1 <

|w| < 1 + ε; the action of G still makes sense here because the matrix coefficients
as given in (2.11) decay exponentially (like (|B|/|A|)|n| ) as |n| → ∞ for any g ∈ G.
Thus in the sequence model, the four spaces in (2.22) correspond to sequences {cn}

of complex numbers having exponential decay, superpolynomial decay, polynomial
growth, or subexponential growth, respectively. (See (2.12) and (2.27).)
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2.3. The intertwining map V−ωs → V−ω1−s . The representations V−ωs and V−ω1−s , with
the same eigenvalue s(1− s) for the Casimir operator, are not only dual to one another,
but are also isomorphic (for s < Z). Suppose first that F ∈ Cp(G) is in the induced
representation model of Vp

s with Re s > 1
2 and p = 0, 1, . . . ,∞. With n(x) =

[1
0

x
1
]

as
in (1.9b) and w =

[0
1
−1

0
]

we define

IsF(g) =
1

b(s − 1
2 )

∫ ∞

−∞

F(gn(x)w) dx , b
(
s
)

= B
(
s,

1
2

) =
Γ
(
s
)
Γ
(1

2
)

Γ(s + 1
2 )
, (2.28)

where the gamma factor b
(
s − 1

2
)

is a normalization the reason of which will become
clear later. The shift over 1

2 is chosen since we will meet the same gamma factor
unshifted in §5. From n(x)w ∈ k(−arccot x)a

(√
1 + x2) N we find

IsF(g) = b
(
s −

1
2
)−1

∫ ∞

−∞

F
(
gk(−arccot x)

)
(1 + x2)−s dx ,

which shows that the integral converges absolutely for Re s > 1
2 . By differentiating

under the integral in (2.28) we see that IsF ∈ Cp(G). From a(y)n(x)w = n(yx)wa(y)−1 it
follows that IsF(ga(y)n(x′)) = ys−1F(g). The action of G in the induced representation
model is by left translation, hence Is is an intertwining operatorVp

s →V
p

1−s:

(IsF) |1−s g1 = Is(F |s g1) for g1 ∈ G . (2.29)

To describe Is in the plane model, we choose for a given (ξ, η) ∈ R2r{0} the element
gξ,η =

[ ξ
η
−η/(ξ2+η2)
ξ/(ξ2+η2)

]
∈ G to obtain

IsΦ(ξ, η) = b
(
s −

1
2
)−1

∫ ∞

−∞

Φ

(
gξ,η

[ x
1
−1

0

])
dx

= b
(
s −

1
2
)−1

∫ ∞

−∞

Φ

(
x (ξ, η) +

1
ξ2 + η2 (−η, ξ)

)
dx . (2.30a)

By relatively straightforward computations, we find that the formulas for Is in the other
models (still for Re s > 1

2 ) are given by:

Isϕ(t) = b
(
s −

1
2
)−1

∫ ∞

−∞

|t − x|2s−2 ϕ(x) dx , (2.30b)

Isϕ
P(t) = b

(
s −

1
2
)−1

∫
P1
R

( (t − x)2

(1 + t2)(1 + x2)

)s−1
ϕP(x)

dx
x2 + 1

, (2.30c)

Isϕ
S(ξ) =

21−2s

i
b
(
s −

1
2
)−1

∫
S1

(1 − ξ/η)s−1(1 − η/ξ)s−1ϕS(η)
dη
η
, (2.30d)

(Isc)n =
Γ(s)

Γ(1 − s)
Γ(1 − s + n)

Γ(s + n)
cn =

(1 − s)|n|
(s)|n|

cn , (2.30e)

with in the last line the Pochhammer symbol given by (a)k =
∏k−1

j=0(a+ j) for k ≥ 1 and
(a)0 = 1. The factor (1−s)|n|/(s)|n| is holomorphic on 0 < Re s < 1. Hence Ises,n is well
defined for these values of the spectral parameter. The polynomial growth of the factor
shows that Is extends to a map Is : Vp

s →V
p

1−s for 0 < Re s < 1 for p = ω,∞,−∞,−ω,
but for finite p we have only IsV

p
s ⊂ V

p−1
1−s if 0 < Re s < 1. See the characterizations

(2.12) and (2.27). The intertwining property (2.29) extends holomorphically. The
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choice of the normalization factor in (2.28) implies that I1−s ◦ Is = Id, as is more easily
seen from formula (2.30e). From this formula we also see that 〈I1−sϕ, Isα〉 = 〈ϕ, α〉
for ϕ ∈ Vω

1−s, α ∈ V
−ω

s , and that I1/2 = Id.
For ϕ ∈ Vp

s , p ≥ 1, we have in the line model ϕ′(x) = O(|x|−2s−1) as |x| → ∞. For
Re s > 1

2 , integration by parts gives

Isϕ(t) =
−Γ(s)

2
√
πΓ(s + 1

2 )

∫ ∞

−∞

sign (t − x) |t − x|2s−1 ϕ′(x) dx , (2.31)

and this now defines Isϕ for Re s > 0, and shows that IsV
1

s ⊂ V
0

1−s.
We can describe the operator Is : V−ωs →V−ω1−s on the representatives of hyperfunc-

tions in Hs by sending a Laurent series
∑

n∈Z bnw
n on an annulus α < |w| < β in C∗

to
∑

n∈Z
(1−s)|n|

(s)|n|
bnw

n converging on the same annulus. One can check that this gives an
intertwining operator Is : Hs → H1−s. (Since G is connected, it suffices to check this
for generators of the Lie algebra, for which the action on the es,n is relatively simple.
See §A.5.)

3. Laplace eigenfunctions and the Poisson transformation

The principal series representations can also be realized as the space of eigenfunc-
tions of the Laplace operator ∆ in the hyperbolic plane H. This model has several
advantages: the action of G involves no automorphy factor at all, the model does not
give a preferential treatment to any point, all vectors correspond to actual functions,
with no need to work with distributions or hyperfunctions, and the values s and 1− s of
the spectral parameter give the same space. The isomorphism from the models on the
boundary used so far to the hyperbolic plane model is given by a simple integral trans-
form (Poisson map). Before discussing this transformation in Section 3.3, we consider
in Section 3.1 eigenfunctions of the Laplace operator on hyperbolic space, and discuss
in Section 3.2 the Green’s form already used in [10].

Finally, in Section 3.4 we consider second order eigenfunctions, i.e., functions on H
that are annihilated by

(
∆ − s(1 − s)

)2.

3.1. The space Es and some of its elements. We use H as general notation for the
hyperbolic 2-space. For computations it is convenient to work in a realization of H. In
this paper we use the realization as the complex upper half-plane and a realization as
the complex unit disk.

The upper half-plane model of H is H = {z = x + iy : y > 0}, with boundary
P1
R. Lengths of curves in H are determined by integration of y−1

√
(dx)2 + (dy)2. To

this metric are associated the Laplace operator ∆ = −y2(∂2
x + ∂2

y

)
= (z − z̄)2∂z∂z̄ and

the volume element dµ =
dx dy
y2 . The hyperbolic distance d(z, z′) between two points

z, z′ ∈ H is given in the upper half-plane model by

cosh dH(z, z′) = ρH(z, z′) = 1 +
|z − z′|2

2yy′
(z, z′ ∈ H) . (3.1)

The isometry group of H is the group G = PSL2(R), acting as usual by fractional linear
transformations z 7→ az+b

cz+d . The subgroup leaving fixed i is K = PSO(2). So G/K � H.
The action of G leaves invariant the metric and the volume element and commutes
with ∆.
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We use also the disk model D = {w ∈ C : |w| < 1} of H, with boundary S1. It is
related to the upper half-plane model by w = z−i

z+i , z = i 1+w
1−w . The corresponding metric

is 2
√

(d Rew)2+(d Imw)2

1−|w|2 , and the Laplace operator ∆ = −
(
1 − |w|2

)2∂w∂w̄. The formula for
hyperbolic distance becomes

cosh dD(w, w′) = ρD(w, w′) = 1 +
2|w − w′|2(

1 − |w|2
)(

1 − |w′|2
) . (3.2)

Here the group of isometries, still denoted G, is the group PSU(1, 1) of matrices
[A

B̄
B
Ā
]

(A, B ∈ C, |A|2 − |B|2 = 1), again acting via fractional linear transformations.
By Es we denote the space of solutions of ∆u = λs u in H, where λs = s(1 − s).

Since ∆ is an elliptic differential operator with real-analytic coefficients, all elements
of Es are real-analytic functions. The group G acts by (u|g)(z) = u(gz). (We will use z
to denote the coordinate in both H and D when we make statements applying to both
models of H.) Obviously, Es = E1−s. If U is an open subset of H, we denote by Es(U)
the space of solutions of ∆u = λsu on U.

There are a number of special elements of Es which we will use in the sequel. Each
of these elements is invariant or transforms with some character under the action of
a one-parameter subgroup H ⊂ G. The simplest are z = x + iy 7→ ys and z 7→
y1−s, which are invariant under N =

{[ 1
0

x
1
]

: x ∈ R
}
, and transform according

to a character of A =
{[ √y

0
0

1/
√
y

]
: y > 0

}
. More generally, the functions in Es

transforming according to non-trivial characters of N are written in terms of Bessel
functions. These are important in describing Maass forms with respect to a discrete
subgroup of G that contains

[1
0

1
1
]
. The functions transforming according to a character

of A are described in terms of hypergeometric functions. (The details, and properties
of all special functions used, are given in §A.1.)

If we choose the subgroup H to be K = PSO(2), we are led to the functions Ps,n
described in the disk model with polar coordinates w = reiθ by

Ps,n(reiθ) := P n
s−1

(1 + r2

1 − r2

)
einθ (n ∈ Z) , (3.3)

where Pn
s−1 denotes the Legendre function of the first kind. Note the shift of the spectral

parameter in Pn
s−1 and Ps,n. If n = 0 one usually writes Ps−1 instead of P0

s−1; but to avoid
confusion we will not omit the 0 in Ps,0.

Every function in Es can be described in terms of the Ps,n: if we write the Fourier
expansion of u ∈ Es as u(reiθ) =

∑
n∈Z An(r)einθ, then An(r) has the form an Pn

s−1
( 1+r2

1−r2

)
for some an ∈ C, so we have an expansion

u(w) =
∑
n∈Z

an Ps,n(w) , an ∈ C . (3.4)

Sometimes it will be convenient to consider also subgroups of G conjugate to K.
For a given z′ = x′ + iy′ ∈ H we choose gz′ =

[ √y′
0

x′/
√
y′

1/
√
y′

]
∈ NA ⊂ G to obtain an

automorphism of H sending i to z′. If we combine this with our standard identification
of H and D, we get a new identification sending the chosen point z′ to 0 ∈ D, and the
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function Ps,n on D becomes the following function on H × H :

ps,n(z, z′) := Ps,n

(z − z′

z − z′

)
. (3.5)

This definition of Ps,n depends in general on the choice of gz′ in the coset gz′K.
In the case n = 0 the choice has no influence, and we obtain the the very important
point-pair invariant ps(z, z′), defined, in either the disk or the upper half plane, by the
formula

ps(z, z′) := ps,0(z, z′) = Ps−1
(
ρH(z, z′)

)
(z, z′ in H) , (3.6)

with the argument ρ(z, z′) = cosh d(z, z′) of the Legendre function Ps−1 = P0
s−1 being

given algebraically in terms of the coordinates of z and z′ by formulas (3.1) or (3.2),
respectively. This function is defined on the product H × H, is invariant with respect
to the diagonal action of G on this product, and satisfies the Laplace equation with
respect to each variable separately.

The Legendre function Qn
s−1 in equation (A.8) in the appendix provides elements of

Es(D r {0}):

Qs,n
(
reiθ) = Q n

s−1

(1 + r2

1 − r2

)
einθ (n ∈ Z) . (3.7)

The corresponding point-pair invariant with Q0
s−1 = Qs−1

qs(z, z′) = Qs−1
(
ρH(z, z′)

)
(z, z′ in H) (3.8)

is the well-known Green’s function for ∆ (integral kernel function of (∆ − λs)−1), has
a logarithmic singularity as z → z′ and grows like the s-th power of the Euclidean
distance (in the disk model) from z to the boundary as z → ∂H with z′ fixed. This
latter property will be crucial in §5, where we will study a space Wω

s of germs of
eigenfunctions near ∂H having precisely this boundary behavior.

The eigenfunction R(t; · )s, given in the H-model by

R(t; z)s =
ys

|t − z|2s (t ∈ R , z = x + iy ∈ H) , (3.9)

is the image under the action of
[ 0
−1

1
t
]
∈ G on the eigenfunction z 7→ ys. This function

was already used extensively in [10] (§2 and §5 of Chapter II). For fixed t ∈ R, the
functions R(t; · )s and R(t; · )1−s are both in Es. For fixed z ∈ H, we have R( · ; z)s in the
line model ofVω

s . The basic invariance property

|ct + d|−2sR(gt; gz)s = R(t, z)s (
g =

[a
c

b
d

]
∈ G

)
(3.10)

may be viewed as the statement that (t, z) 7→ R(t; z)s belongs to (Vω
s ⊗ Es)G. The

function R( · ; · )1−s is the kernel function of the Poisson transform in §3.3.
We may allow t to move off R, in such a way that R(t, z)s becomes holomorphic in

this variable:

R(ζ; z)s =
( y

(ζ − z)(ζ − z̄)

)s
(ζ ∈ C , z = x + iy ∈ H) . (3.11)

However, this not only has singularities at z = ζ or z = ζ̄, but is also many-valued. To
make a well-defined function we have to choose a path C from ζ to ζ̄, in which case
R(ζ; · )s becomes single-valued on U = H r C and lies in Es(U). (Cf. [10], Chap. II,
§1.) Sometimes it is convenient to write Rs

ζ instead of R(ζ; · )s.
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Occasionally, we will choose other branches of the multivalued function R( · ; · )s.
We have

∂zR(ζ; z)s =
s

z − z̄
ζ − z̄
ζ − z

R(ζ; z)s , ∂z̄R(ζ; z)s = −
s

z − z̄
ζ − z
ζ − z̄

R(ζ; z)s , (3.12)

provided we use the same branch on the left and the right.

3.2. The Green’s form and a Cauchy formula for Es. Next we recall the bracket
operation from [10], which associates to a pair of eigenfunctions of ∆ with the same
eigenvalue1 a closed 1-form (Green’s form). It comes in two versions, differing by an
exact form:

[u, v] = uz v dz + u vz̄ dz̄ , {u, v} = 2i [u, v] − i d(uv) . (3.13)

Because [u|g, v|g] = [u, v] ◦ g for any locally defined holomorphic map g (cf. [10],
lemma in §2 of Chapter II), these formulas make sense and define the same 1-form
whether we use the H- or D-model of H, and define G-equivariant maps Es × Es →

Ω1(H) (or Es(U) × Es(U)→ Ω1(U) for any open subset U of H). The {u, v}-version of
the bracket, which is antisymmetric, is given in (x, y)-coordinates z = x + iy ∈ H by

{u, v} =

∣∣∣∣∣∣∣∣
u ux uy
v vx vy
0 dx dy

∣∣∣∣∣∣∣∣ (3.14)

and in (r, θ)-coordinates w = reiθ ∈ D by

{u, v} =

∣∣∣∣∣∣∣∣
u r ur uθ
v r vr vθ
0 dr/r dθ

∣∣∣∣∣∣∣∣ . (3.15)

We can apply the Green’s form in particular to any two of the special functions
discussed above, and in some cases the resulting closed form can be written as the total
differential of an explicit function. A trivial example is 2i [ys, y1−s] = s dz− (1 − s) dz̄,
{ys, y1−s} = (2s − 1) dx. A less obvious example is

[Rs
a, R1−s

b ](z) =
1

b − a
d
( (z̄ − a)(z − b)

z − z̄
Rs

a(z) R1−s
b (z)

)
, (3.16)

where a and b are either distinct real numbers or distinct complex numbers and z <
{a, b, ā, b̄}. On both sides we take the same branches of Rs

a and R1−s
b . This formula,

which can be verified by direct computation, can be used to prove the Poisson inversion
formula discussed below (cf. Remark 1, §4.2). Some other examples are given in §A.4.

We can also consider the brackets of any function u ∈ Es with the point-pair invari-
ants ps(z, z′) or qs(z, z′). The latter is especially useful since it gives us the following
Es-analogue of Cauchy’s formula:

1More generally, for any differentiable functions u and v on H we have

d{u, v} = 2i d[u, v] =
(
(∆u) v − u (∆v)

)
dµ ,

where dµ ( = y−2 dx dy in the upper half-plane model) is the invariant measure in H.
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Theorem 3.1. Let C be a piecewise smooth simple closed curve in H and u an element
of Es(U), where U ⊂ H is some open set containing C and its interior. Then for
w ∈ H rC we have

1
πi

∫
C

[
u, qs( · , w)

]
=

 u(w) if w is inside C,
0 if w is outside C,

(3.17)

where the curve C is traversed is the positive direction.

Proof. Since [u, qs( · , w)] is a closed form, the value of the integral in (3.17) does not
change if we deform the path C, so long as we avoid the point w where the form
becomes singular. The vanishing of the integral when w is outside of C is therefore
clear, since we can simply contract C to a point. If w is inside C, then we can deform
C to a small hyperbolic circle around w. We can use the G-equivariance to put w =

0, so that this hyperbolic circle is also a Euclidean one, say z = εeiθ. We can also
replace [u, qs( · , 0)] by {u, qs( · , 0)}/2i, since their difference is exact. From (3.15)
and the asymptotic result (A.11) we find that the closed form − i

2 {u, qs( · , 0)} equals( i
2 u(0) + O(ε log ε)

)
dθ on the circle. The result follows. �

The method of the proof just given can also be used to check that for a contour C in
D encircling 0 once in positive direction we have for all n ∈ Z∫

C
[Ps,n, Qs,m] = πi (−1)n δn,−m . (3.18)

Combining this formula with the expansion (3.4), we arrive at the following general-
ization of the standard formula for the Taylor expansion of holomorphic functions:

Proposition 3.2. For each u ∈ Es:

u(w) =
∑
n∈Z

(−1)n

πi
Ps,n(w)

∫
C

[u,Qs,−n] . (3.19)

If u ∈ Es(A), where A is some annulus of the form r1 < |w| < r2 in D, there is a
more complicated expansion of the form

u(w) =
∑
n∈Z

(
anPs,n(w) + bnQs,n(w)

)
. (3.20)

For fixed w′ ∈ D the function w 7→ qs(w, w′) has only one singularity, at w = w′.
So both on the disk |w| < |w′| and on the annulus |w| > |w′| the function qs( · , w′) has a
polar Fourier expansion, which can be given explicitly:

Proposition 3.3. For w, w′ ∈ D with |w| , |w′|:

qs(w, w′) =


∑

n∈Z(−1)n Ps,−n(w′) Qs,n(w) if |w| > |w′| ,∑
n∈Z(−1)n Ps,−n(w) Qs,n(w′) if |w| < |w′| .

(3.21)

Proof. Apply (3.20) to qs( · , w′) on the annulus A = {w ∈ D : |w′| < |w|}. Since
qs( · , w′) represents an element ofWω

s the expansion becomes

qs(w, w′) =
∑
n∈Z

bn(w′) Qs,n(w) (|w| > |w′|) .

From qs(eiθw, eiθw′) = qs(w, w′) it follows that bn(eiθw′) = e−inθbn(w). For w ∈ D r {0}
we have qs(w, · ) ∈ Es(B) with B = {w′ ∈ D : |w′| < |w|}. Then the coefficients bn
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are also in Es(B). Since Qs,−n has a singularity at 0 ∈ D, the coefficients have the form
bn(w′) = cn Ps,−n(w′). Now we apply (3.17) and (3.18) to obtain with a path C inside
the region A:

Ps,m(w′) =
1
πi

∫
C

[
Ps,m, qs( · , w′)

]
=

1
πi

∑
n∈Z

cnPs,−n(w′)
∫

C

[
Ps,m,Qs,n

]
= c−m Ps,m(w′) (−1)m .

Hence cm = (−1)m, and the proposition follows, with the symmetry of qs. �

3.3. The Poisson transformation. There is a well-known isomorphism Ps fromV−ωs
to Es. This enables us to view Es as a model of the principal series. We first describe
Ps abstractly and then more explicitly in various models of V−ωs . In Section 4.2 we
will describe the inverse isomorphism from Es toV−ωs .

For α ∈ V−ωs and g ∈ G

(Psα)(g) = 〈α|2s g, e1−s,0〉 = 〈α, e1−s,0|2−2s g
−1〉 (3.22)

describes a function on G that is K-invariant on the right. Hence it is a function on
G/K � H. The center of the enveloping algebra is generated by the Casimir operator.
It gives rise to a differential operator on G that gives, suitably normalized, the Laplace
operator ∆ on the right-K-invariant functions. Since the Casimir operator acts onV−ω1−s
as multiplication by λs = (1− s)s, the function Psα defines an element of Es. We write
in the upper half-plane model

Psα(z) = Psα
(
n(x)a(y)

)
, (3.23)

with the notation in (1.9b). The definition in (3.22) implies that the Poisson transfor-
mation is G-equivariant:

Ps(α|2sg)(z) = Psα(gz) . (3.24)
The fact that the intertwining operator Is : V−ωs → V−ω1−s preserves the duality implies
that the following diagram commutes:

V−ωs

Is

��

Ps
))
Es = E1−s

V−ω1−s

P1−s 66

(3.25)

If α ∈ V0
s , we can describe Psα by a simple integral formula. In the line model this

takes the form

Psα(z) =
〈
e1−s,0, α|2sn(x)a(y)

〉
=

1
π

∫ ∞

−∞

e1−s,0|2−2s
(
n(x)a(y)

)−1(t)α(t) dt

=
1
π

∫ ∞

−∞

y−1+s(( t − x
y

)2 + 1
)s−1 α(t) dt =

1
π

∫ ∞

−∞

R(t; z)1−sα(t) dt ,
(3.26)

so that R1−s is the kernel of the Poisson transformation in the line model. If α is a
hyperfunction, the pairing in (3.22) has to be interpreted as discussed in §2.2 as the
difference of two integrals over contours close to and on opposite sides of ∂H (equa-
tion (2.19) in the circle model), with R( · ; z)1−s extended analytically to a neighborhood
of ∂H.
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In the projective model and the circle model we find:

Psα(z) = 〈R( · ; z)1−s, α〉 , (3.27a)

with R( · ; z)1−s in the various models given by

RP(ζ; z)1−s = y1−s
(
ζ − i
ζ − z

)1−s( ζ + i
ζ − z̄

)1−s
=

(R(ζ; z)
R(ζ; i)

)1−s
, (3.27b)

RS(ξ;w)1−s =

( 1 − |w|2

(1 − w/ξ)(1 − w̄ξ)

)1−s
. (3.27c)

By R( · , · )1−s, without superscript on the R, we denote the Poisson kernel in the line
model (as in (3.11)). We take the branch for which arg R(ζ; z) = 0 for ζ on R.

In the circle model we have for each α ∈ V−ωs :

Psα(w) =
(1 − |w|2)1−s

2πi

(∫
C+

−

∫
C−

)
g(ξ)

(
(1 − w/ξ)(1 − w̄ξ)

)s−1 dξ
ξ
, (3.28)

with C+ and C− as in (2.19), adapted to the domain of the representative g ∈ Hs of the
hyperfunction α.

For the values of s we are interested in, Helgason has shown that the Poisson trans-
formation is an isomorphism:

Theorem 3.4. (Theorem 4.3 in [5]). The Poisson map Ps : V−ωs → Es is a bijection
for 0 < Re s < 1.

The usual proof of this uses the K-Fourier expansion, where K (� PSO(2) ) is the
standard maximal compact subgroup of G. One first checks by explicit integration the
formula

Pses,m = (−1)m Γ(s)
Γ(s + m)

Ps,m (n ∈ Z), (3.29)

with es,m and Ps,m as defined in (2.9d) and (3.3) respectively. (Indeed, with (3.27b) and
(3.28) we obtain the Poisson integral

Pses,m(w) =
(1 − |w|2)1−s

2πi

∫
|ξ|=1

ξm (
(1 − w/ξ)(1 − w̄ξ)

)s−1 dξ
ξ
.

Since |w/ξ| < 1 and |w̄ξ| < 1 this leads to the expansion

(1−|w|2)1−s
∑

n1,n2≥0,−n1+n2=m

(1 − s)n1 (1 − s)n2

n1! n2!
wn1 w̄n2

= (1 − |w|2)1−s (1 − s)|m|
|m|!

∑
n≥0

(1 − s)n (1 − s + |m|)n

(1 + |m|)n n!
|w|2n ·

 wm if m ≥ 0 ,
w̄−m if m ≤ 0 .

This is (−1)mΓ(s)/Γ(s + m) times Ps,m as defined in (A.8) and (A.9).) Then one uses
the fact that the elements of V−ωs are given by sums

∑
cn es,n with coefficients cn of

subexponential growth (eq. (2.27)), and shows that the coefficients in the expansion
(3.19) also have subexponential growth for each u ∈ Es. This is the analogue of
the fact that a holomorphic function in the unit disk has Taylor coefficients at 0 of
subexponential growth, and can be proved the same way. An alternative proof of
Theorem 3.4 will follow from the results of §4.2, where we shall give an explicit
inverse map for Ps.
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Thus, Es is a model of the principal series representation V−ωs , and also of V−ω1−s ,
that does not change under the transformation s 7→ 1 − s of the spectral parameter. It
is completely G-equivariant. The action of G is simply given by u | g = u ◦ g.

As discussed in §1, the spaceV−ωs (hyperfunctions on ∂H) contains three canonical
subspacesV−∞s (distributions),V∞s (smooth functions) andVω

s (analytic functions on
∂H), and we can ask whether there is an intrinsic characterization of the corresponding
subspaces E−∞s , E∞s , and Eωs of Es. For E−∞s the answer is simple and depends only on
the asymptotic properties of the eigenfunctions near the boundary, namely:

Theorem 3.5. ( [9], Theorem 4.1 and Theorem 5.3.) Let 0 < Re s < 1. The space
E−∞s = Ps

(
V−∞s

)
consists of the functions in Es having at most polynomial growth near

the boundary.
(“At most polynomial growth near the boundary” means�

(
1 − |w|2

)−C for some C in
the disk model and�

((
|z + i|2

)
/y

)C in the upper half-plane model.)

The corresponding theorems for the spaces E∞s and Eωs , which do not only involve
estimates of the speed of growth of functions near ∂H, are considerably more compli-
cated. We will return to the description of these spaces in Section 7.

• Explicit examples. One example is given in (3.29). Another example is

Psδs,∞(z) = RP(∞; z)1−s = y1−s , (3.30)

where δs,∞ ∈ V
−∞

s is the distribution associating to ϕ ∈ V∞1−s, in the projective model,
its value at ∞. As a third example we consider the element R( · ; z0)s ∈ Vω

s . For
convenience we use the circle model. Then a(w, w′) =

(
PsRS( · ;w′)s)(w) satisfies the

relation a(gw′, gw) = a(w′, w) for all g ∈ G, by equivariance of the Poisson transform
and of the function Rs. So a is a point-pair invariant. Since a(w, · ) ∈ Es, it has to be a
multiple of ps. We compute the factor by taking w′ = w = 0 ∈ D:

PsRS( · ; 0)s(0) =
1

2πi

∫
S1

RS(ξ; 0)sRS(ξ; 0)1−s dξ
ξ

=
1

2πi

∫
S1

1 · 1
dξ
ξ

= 1 .

Thus we have
PsR( · ;w′)s(w) = ps(w′, w) . (3.31)

With (3.25) and the fact that P1−s,0 = Ps,0 this implies

Is R( · ;w′)s = R( · ;w′)1−s . (3.32)

3.4. Second order eigenfunctions. The Poisson transformation allows us to prove
results concerning the space

E′s := Ker
(
(∆ − λs)2 : C∞(H) −→ C∞(H)

)
. (3.33)

Proposition 3.6. The following sequence is exact:

0 −→ Es −→ E
′
s

∆−λs
−→ Es −→ 0 . (3.34)

Proof. Only the surjectivity of E′s → Es is not immediately clear.
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Let 0 < Re s0 < 1. Suppose we have a family s 7→ fs on a neighborhood of s0
such that fs ∈ Es for all s near s0, and suppose that this family is C∞ in (s, z) and
holomorphic in s. Then

(∆ − λs0)
(
∂s fs|s=s0

)
− (1 − 2s0) fs0 = 0 .

For s0 ,
1
2 , this gives an element of E′s0

that is mapped to fs0 by ∆ − λs0 . If s0 = 1
2 , we

replace fs by 1
2 ( fs + f1−s), and differentiate twice.

To produce such a family, we use the Poisson transformation. By Theorem 3.4 there
is a unique α ∈ V−ωs0

such that f = Ps0α. We fix a representative g ∈ O(U r S1) of α
in the circle model, which represents a hyperfunction αs for all s ∈ C. (The projective
model works as well.) We put

fs(w) = Psαs(w) =
1

2πi

(∫
C+

−

∫
C−

)
RS(ζ;w)1−sg(ζ)

dζ
ζ
.

The contours C+ and C− have to be adapted to w, but can stay the same when w varies
through a compact subset of H. Differentiating this family provides us with a lift of f
in E′s0

. �

This proof gives an explicit element

f̃ (w) =
−1
2πi

(∫
C+

−

∫
C−

)
RS(ζ;w)1−s0 (log RS(ζ;w)) g(ζ)

dζ
ζ

(3.35)

of E′s with (∆ − λs) f̃ = (1 − 2s) f . Note that for s = 1
2 the function f̃ belongs to E1/2,

giving an interesting map E1/2 → E1/2. As an example, if f (z) = y1/2, then we can take
g(ζ) =

ζ
2i as the representative of the hyperfunction α = δ1/2,∞ with P1/2α = h, and by

deforming the contours C+ and C− into one circle |ζ | = R with R large we obtain (in
the projective model):

f̃ (z) =
−1
π

∫
|ζ |=R

RP(ζ; z)1/2
(
log y + log

ζ2 + 1
(ζ − z)(ζ − z̄)

)
ζ

2i
dζ

ζ2 + 1

= −y1/2 log y .
(3.36)

In part C of Table 1 in §A.2 we describe the distribution inV−∞1/2 corresponding to this
element of E1/2 .

Theorem 3.5 shows that the subspace E−∞s corresponding to V−∞s under the Pois-
son transformation is the space of elements of Es with polynomial growth. We define
(E′s)

−∞ as the subspace of E′s of elements with polynomial growth. The following
proposition, including the somewhat technical second statement, is needed in Chap-
ter V of [2].

Proposition 3.7. The sequence

0 −→ E−∞s −→ (E′s)
−∞ ∆−λs
−→ E−∞s −→ 0 (3.37)

is exact. All derivatives ∂l
w∂

m
w̄ f (w), l,m ≥ 0, of f ∈ (E′s)

−∞, in the disk model, have
polynomial growth.
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Proof. We use the construction in the proof of Proposition 3.6. We use

fs(w) = 〈RS( · ;w)1−s, α〉 ,

with α ∈ V−∞s0
. For ζ ∈ S1 we obtain by differentiating the expression for RS in (3.27c)

(ζ∂ζ)n∂l
w∂

m
w̄ RS(ζ;w)1−s �n,l,m (1 − |w|2)s−l−m−n .

With the seminorm ‖ · ‖n in (2.16) we can reformulate this as

‖∂l
w∂

m
w̄RS( · ;w)1−s‖n �n,l,m (1 − |w|2)s−l−m−n . (3.38)

Since α determines a continuous linear form on Vp
s for some p ∈ N, this gives an

estimate
∂l
w∂

m
w̄ f (w) �α,l,m (1 − |w|2)Re s−1−l−m−p

for f ∈ E−∞s0
.

Differentiating RS( · ;w)1−s once or twice with respect to s multiplies the estimate
in (3.38) with at most a factor

∣∣∣log(1 − |w|2)
∣∣∣2. The lift f̃ ∈ E′s0

of fs0 in the proof of
Proposition 3.6 satisfies

∂l
w∂

m
w̄ f̃ (w) �α,l,m,ε (1 − |w|2)Re s−1−l−m−p−ε

for each ε > 0. �

4. Hybrid models for the principal series representation

In this section we introduce the canonical model of the principal series, discussed
in the introduction. In Subsection 4.1 we define first two other models of Vs in func-
tions or hyperfunctions on ∂H × H, which we call hybrid models, since they mix the
properties of the model of Vs in eigenfunctions, as discussed in Section 3, with the
models discussed in Section 2. The second of these, called the flabby hybrid model,
contains the canonical model as a special subspace. The advantage of the canonical
model becomes very clear in Subsection 4.2, where we give an explicit inverse for the
Poisson transformation whose image coincides exactly with the canonical model.

In Subsection 4.3 we will characterize the canonical model as a space of functions
on (P1

C
r P1

R) × H satisfying a certain system of differential equations. We use these
differential equations to define a sheafDs on P1

C
×H, the sheaf of mixed eigenfunctions.

The properties of this sheaf and of its sections over other natural subsets of P1
C
×H are

studied in the remainder of the subsection and in more detail in Section 6.

4.1. The hybrid models and the canonical model. The line model of principal se-
ries representations is based on giving ∞ ∈ ∂H a special role. The projective model
eliminated the special role of the point at infinity in the line model, at the expense of
a more complicated description of the action of G = PSL2(R), but it also broke the
G-symmetry in a different way by singling out the point i ∈ H. The corresponding
point 0 ∈ D plays a special role in the circle model. The sequence model is based on
the characters of the specific maximal compact subgroup K = PSO(2) ⊂ G and not of
its conjugates, again breaking the G-symmetry. The induced representation model de-
pends on the choice of the Borel group NA. Thus none of the one-variable models for
Vs discussed in Section 2 reflects fully the intrinsic symmetry under the action of G.
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To remedy these defects, we will replace our previous functions ϕ on ∂H by func-
tions ϕ̃ on ∂H × H, where the second variable plays the role of a base point, with
ϕ̃( · , i) being equal to the function ϕP of the projective model. This has the disadvan-
tage of replacing functions of one variable by functions of two, but gives a very simple
formula for the G-action, is completely symmetric, and will also turn out to be very
convenient for the Poisson transform. Explicitly, given (ϕ, ϕ∞) in the line model, we
define ϕ̃ : P1

R × H→ C by

ϕ̃(t, z) =


(
|z − t|2

y

)s
ϕ(t) if t ∈ P1

R r {∞} ,(
|1 + z/t|2

y

)s
ϕ∞

(
−

1
t

)
if t ∈ P1

R r {0}
(4.1)

(here y = Im (z) as usual), generalizing equation (2.5) for z = i. The function ϕ̃ then
satisfies

ϕ̃(t, z1) =

(
|z1 − t|2/y1

|z2 − t|2/y2

)s
ϕ̃(t, z2) =

(R(t; z2)
R(t; z1)

)s
ϕ̃(t, z2) (4.2)

for t ∈ P1
R and z1, z2 ∈ H. A short calculation, with use of (3.10), shows that the action

of G becomes simply

ϕ̃|g(t, z) = ϕ̃(gt, gz) (t ∈ P1
R, z ∈ H, g ∈ G) (4.3)

in this model. From equations (4.1), (2.5) and (4.2), we find

ϕP(t) = ϕ(t, i) , ϕ̃(t, z) =

( (t − z)(t − z̄)
(t2 + 1) y

)s
ϕP(t) , (4.4)

giving the relation between the new model and the projective model. And we see that
only the complicated factor relating ϕ̃ to ϕP is responsible for the complicated action
of G in the projective model.

We define the rigid hybrid model to be the space of functions h : P1
R × H → C

satisfying (4.2) with ϕ̃ replaced by h. The G-action is given by F 7→ F ◦ g, where
G acts diagonally on P1

R × H. The smooth (resp. analytic) vectors are those for which
F( · , z) is smooth (resp. analytic) on P1

R for any z ∈ H; this is independent of the choice
of z because the expression in parentheses in (4.2) is analytic and strictly positive on
P1
R . These spaces are models for V∞s and Vω

s , respectively, but when needed will be
denoted V∞,rigs and Vω,rig

s to avoid confusion. We may view the elements of the rigid
hybrid model as a family of functions t 7→ ϕ̃(t, z) in projective models with a varying
special point z ∈ H. The isomorphism relating the rigid hybrid model and the line
(respectively projective) model is then given by (4.1) (respectively (4.4)).

In the case of Vω,rig
s we can replace t in (4.2) or (4.4) by a variable ζ on a neigh-

borhood of P1
R. We observe that, although R(ζ; z)s is multivalued in ζ, the quotient(R(ζ; z1)

R(ζ; z)

)s
in (4.2) is holomorphic in ζ on a neighborhood (depending on z and z1) of

P1
R in P1

C
. In the rigid hybrid model, the space Hrig

s consists of germs of functions h on
a deleted neighborhood U r (P1

R × H) which are holomorphic in the first variable and
satisfy

h(ζ, z1) =

(R(ζ; z2)
R(ζ; z1)

)s
h(ζ, z2) (z1, z2 ∈ H , ζ near P1

R) , (4.5)
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where “near P1
R” means that ζ is sufficiently far in the hyperbolic metric from the

geodesic joining z1 and z2. This condition ensures that (ζ, z1) and (ζ, z2) belong to U
and the multiplicative factor in (4.5) is a power of a complex number not in (−∞, 0]
and is therefore well defined. The action of G on Hrig

s is given by h(ζ, z) 7→ h(gζ, gz).
In this modelV−ωs is represented as Hrig

s /V
ω,rig

s . The pairing between hyperfunctions
and test functions in this model is given by〈

h, ψ̃
〉

=
1
π

(∫
C+

−

∫
C−

)
h(ζ, z) ψ̃(ζ, z) R(ζ; z) dζ (4.6)

with the contours C+ and C− as in (2.24). Provided we adapt the contours to z, we can
use any z ∈ H in this formula for the pairing.

The rigid hybrid model, as described above, solves all of the problems of the vari-
ous models ofVs as function spaces on ∂H, but it is in some sense artificial, since the
elements h depend in a fixed way on the second variable, and the use of this variable
is therefore in principle superfluous. We address the remaining artificiality by replac-
ing the rigid hybrid model by another model. The intuition is to replace functions
satisfying (4.5) by hyperfunctions satisfying this relation.

Specifically, we define the flabby hybrid model as

M−ωs := Hs/M
ω
s ,

where Hs is the space of functions2 h(ζ, z) that are defined on U r
(
P1
R × H

)
for some

neighborhood U of P1
R × H in P1

C
× H, are holomorphic in ζ, and satisfy

ζ 7→ h(ζ, z1) −
(R(ζ; z2)
R(ζ; z1)

)s
h(ζ, z2) ∈ O(Uz1,z2) for all z1, z2 ∈ H , (4.7)

where Uz1,z2 = {ζ ∈ P1
C

: (ζ, z1), (ζ, z2) ∈ U}, whileMω
s consists of functions defined

on a neighborhood U of P1
R × H in P1

C
× H and holomorphic in the first variable. The

action of G inHs is by h | g (ζ, z) = h(gζ, gz). The pairing between hyperfunctions and
analytic functions is given by the same formula (4.6) as in the rigid hybrid model.

An element h ∈ Hs can thus be viewed as a family
{
h( · , z)

}
z∈H of representatives

of hyperfunctions parametrized by H. Adding an element of Mω
s does not change

this family of hyperfunctions. The requirement (4.7) on h means that the family of
hyperfunctions satisfies (4.5) in hyperfunction sense.

Finally, we describe a subspace Cs ⊂ Hs which maps isomorphically toV−ωs under
the projection Hs � V

−ω
s and hence gives a canonical choice of representatives of

the hyperfunctions in M−ωs . We will call Cs the canonical hybrid model, or simply
the canonical model for the principal series representation V−ωs . To define Cs we
recall that any hyperfunction on P1

R can be represented by a holomorphic function on
P1
C
r P1
R with the freedom only of an additive constant. One usually fixes the constant

by requiring h(i) = 0 or h(i) + h(−i) = 0, which is of course not G-equivariant. Here

2Here one has the choice to impose any desired regularity conditions (C0, C∞, Cω, . . . ) in the second
variable or in both variables jointly. We do not fix any such choice since none of our considerations
depend on which choice is made and since in any case the most interesting elements of this space, like
the canonical representative introduced below, are analytic in both variables.
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we can exploit the fact that we have two variables to make the normalization in a
G-equivariant way, by requiring that

h(z̄, z) = 0 . (4.8)

We thus define Cs as the space of functions on
(
P1
C
r P1
R

)
× H that are holomorphic in

the first variable and satisfy (4.7) and (4.8). We will see below (Theorem 4.2) that the
Poisson transform Ps : V−ωs → Es becomes extremely simple when restricted to Cs,
and also that Cs coincides with the image of a canonical lifting of the inverse Poisson
map Ps

−1 : Es →V
−ω

s from the space of hyperfunctions to the space of hyperfunction
representatives.

Remark. We will also occasionally use the slightly larger space C+
s (no longer mapped

injectively to Es by Ps) consisting of functions in Hs that that are defined on all of(
P1
C
r P1
R

)
× H, without the requirement (4.8). Functions in this space will be called

semicanonical representatives of the hyperfunctions they represent. The decomposi-
tion h(ζ, z) =

(
h(ζ, z) − h(z̄, z)

)
+ h(z̄, z) gives a canonical and G-equivariant splitting

of C+
s as the direct sum of Cs and the space of functions on H, so that there is no new

content here, but specific hyperfunctions sometimes have a particularly simple semi-
canonical representative (an example is given below), and it is not always natural to
require (4.8).

• Summary. We have introduced a “rigid”, a “flabby”, and a “canonical” hybrid
model, related by

V−ωs � Hrig
s /V

ω,rig
s � M−ωs = Hs/M

ω
s � Cs ⊂ Hs . (4.9)

In the flabby hybrid model, the space Hs consists of functions on a deleted neigh-
borhood Ur(P1

R×H) that may depend on the function, holomorphic in the first variable,
and satisfying (4.7). The subspaceMω

s consists of the functions on the whole of some
neighborhood U of P1

R × H, holomorphic in the first variable.
For the elements of Hs and Mω

s ⊂ Hs we do not require any regularity in the
second variable. In the rigid hybrid model the spaces Hrig

s ⊂ Hs andVω,rig
s ⊂ Mω

s are
characterized by the condition in (4.5), which forces a strong regularity in the second
variable. The canonical hybrid model Cs consists of a specific element from each class
of Hs/M

ω
s that is defined on (P1

C
× H) r (P1

R × H) and is normalized by (4.8). In §4.3
we will see that this implies analyticity in both variables jointly.

• Examples. As an example we represent the distribution δs,∞ in all three hybrid
models. This distribution, which was defined by ϕP 7→ ϕP(∞) in the projective model
(cf. (3.30)), is represented in the projective model by hP(ζ) = 1

2iζ, and hence, by (4.4),
by

h̃(ζ, z) =
ζ

2i
y−s

( (ζ − z)(ζ − z̄)
(ζ − i)(ζ + i)

)s
(4.10)

in the rigid hybrid model. Since the difference ζ
2iys

(( 1−z/ζ
1−i/z

)s(1−z̄/ζ
1+iζ

)s
−1

)
is holomorphic

in ζ on a neighborhood of P1
R in P1

C
for each z, we obtain the much simpler semicanon-

ical representative

hs(ζ, z) =
ζ

2i ys , (4.11)
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of δs,∞ in the flabby hybrid model. Finally, subtracting hs(z̄, z) we obtain the (unique)
representative of δs,∞ in the canonical hybrid model:

hc(ζ, z) =
ζ − z̄

2i
y−s . (4.12)

We obtain other elements of Cs by the action of G. For g ∈ G with g∞ = a ∈ R we get

hc|g
−1(ζ, z) =

ζ − z̄
z − z̄

z − a
ζ − a

R(a; z)1−s . (4.13)

Here property (4.8) is obvious, and (4.7) holds because the only singularity of (4.13)
on P1

R is a simple pole of residue (i/2) R(a; z)−s at ζ = a.

• Duality and Poisson transform. From (2.24) we find that if h ∈ Hs and f ∈ Mω
1−s

are defined on U r (P1
R × H), respectively U, for the same neighborhood U of P1

R × H,
then

〈 f , h〉 =
1
π

(∫
C+

−

∫
C−

)
f (ζ, z) h(ζ, z) R(ζ; z) dζ , (4.14)

where C+ and C− are contours encircling z in H and z̄ in H−, respectively, such that
C+×{z} and C−×{z} are contained in U. The result 〈 f , h〉 does not change if we replace
h by another element of h +Mω

s ⊂ Hs.
We apply this to the Poisson kernel f Pz (ζ) = RP(ζ; z)1−s =

(R(ζ;z)
R(ζ;i)

)1−s, for z ∈ H. The
corresponding element in the rigid pair model is

f̃z(ζ, z1) =

(R(ζ; z)
R(ζ; i)

)1−s ( R(ζ; i)
R(ζ; z1)

)1−s
=

( R(ζ; z)
R(ζ, z1)

)1−s
.

Applying (4.14) we find for z, z1 ∈ H:

Psh(z) =
1
π

(∫
C+

−

∫
C−

) ( R(ζ; z)
R(ζ; z1)

)1−s
h(ζ, z1)R(ζ; z1) dζ

=
1
π

(∫
C+

−

∫
C−

) (R(ζ; z1)
R(ζ; z)

)s
h(ζ, z1) R(ζ; z) dζ ,

(4.15)

where C+ encircles z and z1, and C− encircles z̄ and z1. Since this does not depend on
z1, we can choose z1 = z to get

Psh(z) =
1
π

(∫
C+

−

∫
C−

)
h(ζ, z) R(ζ; z) dζ

=
1

2πi

(∫
C+

−

∫
C−

)
h(ζ, z)

(z − z̄)
(ζ − z)(ζ − z̄)

dζ .
(4.16)

The representation of the Poisson transformation given by formula (4.16) has a very
simple form. The dependence on the spectral parameter s is provided by the model, not
by the Poisson kernel. But a really amazing simplification occurs if we assume that the
function h ∈ Hs belongs to the subspaceCs of canonical hyperfunction representatives.
In that case h(ζ, z) is holomorphic in ζ in all of C r R, so we can evaluate the integral
by Cauchy’s theorem. In the lower half-plane there is no pole, since h(z̄, z) vanishes, so
the integral over C− vanishes. In the upper half-plane there is a simple pole of residue
h(z, z) at ζ = z. Hence we obtain:
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Proposition 4.1. The Poisson transform of a function h ∈ Cs is the function

Rsh(z) = h(z, z) , (4.17)

defined by restriction to the diagonal.

As examples of the proposition we set ζ = z in equations (4.12) and (4.13) to get

u(z) = y1−s ⇒
(
Ps
−1u

)
can(ζ, z) =

ζ − z̄
2i

y−s

u(z) = R(a; z)1−s ⇒
(
Ps
−1u

)
can(ζ, z) =

ζ − z̄
z − z̄

z − a
ζ − a

u(z) .
(4.18)

Finally, we remark that on the larger space C+
s introduced in the Remark above, we

have two restriction maps

R+
s h(z) = h(z, z) , R−s h(z) = h(z̄, z) (4.19)

to the space of functions on H. The analogue of the proposition just given is then that
the restriction of Ps to C+

s equals the difference Rs = R+
s − R−s .

4.2. Poisson inversion and the canonical model. The canonical model is particu-
larly suitable to give an integral formula for the inverse Poisson transformation, as we
see in the main result of this subsection, Theorem 4.2. In Proposition 4.4 we give an
integral formula for the canonical representative of a hyperfunction in terms of an ar-
bitrary representative inHs. Proposition 4.6 relates, for u ∈ Es, the Taylor expansions
in the upper and lower half-plane of the canonical representative of Ps

−1u to the polar
expansion of u with the functions ps,n.

To determine the image Ps
−1u under the inverse Poisson transform for a given u ∈

Es, we have to construct a hyperfunction on ∂H which maps under Ps to u. A first
attempt, based on [10], Chap. II, §2, would be (in the line model) to integrate the
Green’s form {u,R(ζ; · )s} from some base point to ζ. This does not make sense at ∞
since R(ζ; · ) has a singularity there and one cannot take a well-defined s-th power of it,
so we should renormalize by dividing R(ζ; · )s by R(ζ; i)s, or better, to avoid destroying
the G-equivariance of the construction, by R(ζ; z)s with a variable point z ∈ H. This
suggests the formula

h(ζ, z) =


∫ ζ

z0

{
u, (Rζ( · )/Rζ(z))s} if ζ ∈ H ,∫ ζ̄

z0

{
u, (Rζ( · )/Rζ(z))s} if ζ ∈ H− ,

(4.20)

in the hybrid model, where z0 ∈ H is a base point, as a second attempt. This almost
works: the fact that the Green’s form is closed implies that the integrals are indepen-
dent of the path of integration, and changing the base-point z0 changes h( · , z) by a
function holomorphic near P1

R and hence does not change the hyperfunction it rep-
resents. The problem is that both integrals in (4.20) diverge, because R(ζ; z′)s has a
singularity like (ζ − z′)−s near ζ and like (ζ − z′)−s near ζ̄ and the differentiation im-
plicit in the bracket { · , · } turns these into singularities like (ζ − z′)−s−1 and (ζ − z′)−s−1

which are no longer integrable at z′ = ζ or z′ = ζ̄, respectively. To remedy this in
the upper half-plane, we replace {u, (Rζ( · )/Rζ(z))s} by [u, (Rζ( · )/Rζ(z))s], which dif-
fers from it by a harmless exact 1-form but is now integrable at ζ. (The same trick
was already used in §2, Chap. II of [10], where z0 was ∞ .) In the lower half-plane,
[u, (Rζ( · )/Rζ(z)s] is not small near z′ = ζ̄, so here we must replace the differential
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form {u, (Rζ( · )/Rζ(z))s} = −{(Rζ( · )/Rζ(z))s, u} by −[(Rζ( · )/Rζ(z))s, u] instead. (We
recall that { · , · } is antisymmetric but [ · , · ] is not.) However, since the differential
forms [u, (Rζ( · )/Rζ(z))s] and −[(Rζ( · )/Rζ(z))s, u] differ by the exact form d(u (Rζ( · )/
Rζ(z))s), this change requires correcting the formula in one of the half-planes. (We
choose the upper half-plane.) This gives the formula

h(ζ; z) =

 u(z0)
(R(ζ;z0)

R(ζ;z)
)s

+
∫ ζ

z0

[
u,

(R(ζ; · )
R(ζ;z)

)s] if ζ ∈ H ,∫ z0

ζ̄

[(R(ζ; · )
R(ζ;z)

)s, u
]

if ζ ∈ H− .
(4.21)

We note that in this formula, h(z0, z) = 0. So we can satisfy (4.8) by choosing z0 = z,
at the same time restoring the G-symmetry which was broken by the choice of a base
point z0. We can then choose the continuous branch of

(
Rζ/Rζ(z)

)s that equals 1 at the
end-point z of the path of integration. Thus we have arrived at the following Poisson
inversion formula, already given in the Introduction (eq. (1.4)):

Theorem 4.2. Let u ∈ Es. Then the function Bsu ∈ Hs defined by

(Bsu)(ζ, z) =

 u(z) +
∫ ζ

z

[
u,

(
Rζ/Rζ(z)

)s] if ζ ∈ H ,∫ z
ζ̄

[(
Rζ/Rζ(z)

)s, u
]

if ζ ∈ H−
(4.22)

along any piecewise C1-path of integration in H r {ζ}, respectively H r {ζ̄}, with the
branch of

(
Rζ/Rζ(z)

)s chosen to be 1 at the end-point z, belongs to Cs and is a repre-
sentative of the hyperfunction Ps

−1u ∈ M−ωs = Hs/M
ω
s .

Corollary 4.3. The maps Bs : Es → Cs and Rs : Cs → Es defined by (4.22) and
(4.17) are inverse isomorphisms, and we have a commutative diagram

Hs // // V−ωs

Ps
��

Cs
?�

OO

Rs

//

�
::

Es
Bsoo

(4.23)

Proof. Let u ∈ Es. First we check that h = Bsu is well defined and determines an
element of Cs. The convergence of the integrals in (4.22) requires an estimate of the
integrand at the boundaries. For ζ ∈ H r {z} we use[

u(z′),
(
Rζ(z′)/Rζ(z)

)s]
z′ =

(R(ζ; z′)
R(ζ; z)

)s(
uz(z′) dz′ +

is
2y′

u(z′)
ζ − z′

ζ − z′
dz′

)
. (4.24)

The factor in front is 1 for z′ = z and O
(
(ζ−z′)−s) for z′ near ζ. The other contributions

stay finite, so the integral for ζ ∈ H r {z} converges. (Recall that Re (s) is always
supposed to be < 1.) For ζ ∈ H− r {z̄} we use in a similar way[(

Rζ(z′)/Rζ(z)
)s, u(z′)

]
z′ =

(R(ζ; z′)
R(ζ; z)

)s( is
2y′

u(z′)
ζ − z′

ζ − z′
dz′ + uz̄(z′) dz′

)
.

We have normalized the branch of
(
R(ζ; z′)/R(ζ; z)

)s by prescribing the value 1
at z′ = z. This choice fixes

(
R(ζ; z′)/R(ζ; z)

)s as a continuous function on the paths
of integration. The result of the integration does not depend on the path, since the
differential form is closed and since we have convergence at the other end point ζ or ζ̄.
Any continuous deformation of the path within H r {ζ} or H r {ζ̄} is allowed, even if
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the path intersects itself with different values of
(
R(ζ; z′)/R(ζ; z)

)s at the intersection
point.

r
r

ζ

z

r
r

ζ

z
�
�

If we choose the geodesic path from z to ζ, and if ζ is very near the real line, then the
branch of

(
Rζ(z′)/Rζ(z)

)s near z′ = ζ is the principal one (argument between −π and π).
The holomorphy in ζ follows from a reasoning already present in [10], Chap. II, §2,

and hence given here in a condensed form. Since the form (4.24) is holomorphic in ζ,
a contribution to ∂ζ̄h could only come from the upper limit of integration, but in fact
vanishes since O

(
(ζ − z′)−s) (ζ − z′) = o(1) as ζ → z′. Hence h( · , z) is holomorphic on

H r {z}. For ζ near z we integrate a quantity O
(
(ζ − z′)−s) from z to ζ, which results in

an integral estimated by O
(
(ζ − z)1−s). So (Bsu)(ζ, z) is bounded for ζ near z. Hence

h(ζ, z) = (Bsu)(ζ, z) is holomorphic at ζ = z as well. For the holomorphy on H− we
proceed similarly. This also shows that h(z̄, z) = 0, which is condition (4.8) in the
definition of Cs.

For condition (4.7) we note that

h(ζ; z) −
(R(ζ; z1)

R(ζ; z)

)s
h(ζ; z1) = u(z) − u(z1)

(R(ζ; z1)
R(ζ; z)

)s
+

∫ z1

z

[
u,

(R(ζ; · )
R(ζ; z)

)s]
if ζ ∈ H r {z, z1} and

h(ζ; z) −
(R(ζ; z1)

R(ζ; z)

)s
h(ζ; z1) =

∫ z

z1

[(R(ζ; · )
R(ζ; z)

)s
, u

]
if ζ ∈ H− r {z̄, z̄1}. The right-hand sides both have holomorphic extensions in ζ to a
neighborhood of P1

R, and the difference of these two extensions is seen, using (3.13)
and the antisymmetry of { · , · }, to be equal to

u(z) − u(z1)
(R(ζ; z1)

R(ζ; z)

)s
+

∫ z1

z
d
(
u(z′)

(R(ζ; z′)
R(ζ; z)

)s)
= 0 .

In summary, the function Bsu belongs toHs, is defined in all of
(
P1
C
r P1
R

)
× H, and

vanishes on the anti-diagonal, so Bsu ∈ Cs, which is the first statement of the theorem.
The second follows immediately from Proposition 4.1, since it is obvious from (4.22)
that RsBsu = u and the proposition says that Rs is the restriction of Ps to Cs . �

The corollary follows immediately from the theorem if we use Helgason’s result
(Theorem 3.4) that the Poisson transformation is an isomorphism. However, given that
we have now constructed an explicit inverse map for the Poisson transformation, we
should be able to give a more direct proof of this result, not based on polar expansions,
and indeed this is the case. Since PsBsu = RsBsu = u, it suffices to show that Rs is
injective. To see this, assume that h ∈ Cs satisfies h(z, z) = 0 for all z ∈ H. For fixed
z1, z2 ∈ H let c(ζ) denote the difference in (4.7). This function is holomorphic near P1

R,
and extends to P1

C
in a multi-valued way with branch-points of mild growth, (ζ − ζ0)±s

with 0 < Re s < 1, at z1, z1, z2 and z2. Moreover, c(ζ) tends to 0 as ζ tends to z1 or
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z1 (because Re s > 0) and also as ζ tends to z2 or z2 (because h(z2, z2) = h(z2, z2) = 0
and Re s < 1). Suppose that c is not identically zero. The differential form d log c(ζ) is
meromorphic on all of P1

C
and its residues at ζ0 ∈ {zz, z2, z1, z2} have positive real part.

Since c is finite elsewhere on P1
C

, any other residue is non-negative. This contradicts
the fact that the sum of all residues of a meromorphic differential on P1

C
is zero. Hence

we conclude that c = 0. Then the local behavior of h(ζ, z1) = h(ζ, z2)
(
Rζ(z2)/Rζ(z1)

)s

at the branch points shows that both h( · , z1) and h( · , z2) vanish identically.

Remarks.

1. It is also possible to prove that BsPsϕ = ϕ and PsBsu = u by using complex contour
integration and equation (3.16), and our original proof that Bs = Ps

−1 went this way,
but the above proof using the canonical space Cs is much simpler.

2. Taking z = i in formula (4.22) gives a representative for Ps
−1u in the projective

model, and using the various isomorphisms discussed in Section 1, we can also adapt
it to the other ∂H models of the principal representation.

We know that each element of V−ωs has a unique canonical representative lying
in Cs. The following proposition, in which k(τ, ζ; z) denotes the kernel function

k(τ, ζ; z) =
1

2i (τ − ζ)
ζ − z̄
τ − z̄

, (4.25)

tells us how to determine it starting from an arbitrary representative.

Proposition 4.4. Suppose that g ∈ Hs represents α ∈ V−ωs . The canonical represen-
tative gc ∈ Cs of α is given, for each z0 ∈ H by

gc(ζ, z) =
1
π

(∫
C+

−

∫
C−

)
g(τ, z0)

(R(τ; z0)
R(τ; z)

)s
k(τ, ζ; z) dτ , (4.26)

with contours C+ and C− homotopic to P1
R inside the domain of g, encircling z and

z0, respectively z̄ and z0, with C+ positively oriented in H and C− negatively oriented
in H−, and ζ inside C+ or inside C−.

Note that this can be applied when a representative g0 of α in the projective model
is given: simply apply the proposition to the corresponding representative in the rigid
hybrid model as given by (4.4).

Proof. Consider k( · , ζ; z) as an element ofVω
s in the projective model. Then gc(ζ, z) =

〈α, k( · , ζ; z)〉. Adapting the contours, we see that gc( · , z) is holomorphic on H ∪ H−.
For a fixed ζ ∈ dom g we deform the contours such that ζ is between the new

contours. This gives a term g(ζ, z) plus the same integral, but now representing a
holomorphic function in ζ on the region between C+ and C−, which is a neighborhood
of P1

R. So g and gc represent the same hyperfunction. Condition (4.8) follows from
k(τ, z̄; z) = 0. �

Choosing z0 = z in (4.26) gives the simpler formula

gc(ζ, z) =
1
π

(∫
C+

−

∫
C−

)
g(τ, z) k(τ, ζ; z) dτ , (4.27)



32 R. BRUGGEMAN, J. LEWIS, AND D. ZAGIER

(which is, of courses, identical to (4.26) if g belongs to Vω,rig
s ). In terms of α ∈ V−ωs

as a linear form onVω
1−s we can write this as

gc(ζ, z) =
〈

fζ , α
〉

with fζ(τ, z) =
(ζ − z̄)(τ − z)
(z − z̄)(τ − ζ)

. (4.28)

The integral representation (4.26) has the following consequence:

Corollary 4.5. All elements of Cs are real-analytic on (P1
C
r P1
R) × H.

• Expansions in the canonical model. For u ∈ Es the polar expansion (3.4) can be
generalized, with the shifted functions ps,n in (3.5), to an arbitrary central point:

u(z) =
∑
n∈Z

an(u, z′) ps,n(z, z′) (z′ ∈ H arbitrary). . (4.29)

Let h = Bsu ∈ Cs be the canonical representative of Ps
−1u ∈ V−ωs . For z′ ∈ H fixed,

h(ζ, z′) is a holomorphic function of ζ ∈ C r R and has Taylor expansions in ζ−z′

ζ−z′
on H

and in ζ−z′
ζ−z′ on H−. Since h(z̄, z) = 0, the constant term in the expansion on H− vanishes.

Thus there are An(h, z′) ∈ C such that

h(ζ, z′) =


∑
n≥0

An(h, z′)
(
ζ − z′

ζ − z′

)n
for ζ ∈ H ,

−
∑
n<0

An(h, z′)
(
ζ − z′

ζ − z′

)n
for ζ ∈ H− .

(4.30)

(We use a minus sign in the expansion on H− because then

(ζ, z′) 7→
∑
n≥n0

An(h, z′)
(
ζ − z′

ζ − z′

)n
for ζ ∈ H , −

∑
n<n0

An(h, z′)
(
ζ − z′

ζ − z′

)n
for ζ ∈ H− ,

represents the same hyperfunction Ps
−1u for any choice of n0 ∈ Z.) From gζ−gz′

gζ−gz′
=

cz′+d
cz′+d

ζ−z′

ζ−z′
for g =

[ a
c

b
d
]
∈ G it follows that

An(h | g, z′) =

(cz′ + d
cz′ + d

)n
An(h, gz′) . (4.31)

Similarly, we have from (3.5) and (3.3):

an(u | g, z′) =

(cz′ + d
cz′ + d

)n
an(u, gz′) . (4.32)

In fact, the coefficients An( ) and an( ) are proportional:

Proposition 4.6. For u ∈ Es and h = Bsu ∈ Cs, the coefficients in the expansions
(4.29) and (4.30) are related by

an(u, z′) = (−1)n Γ(s)
Γ(s + n)

An(h, z′) . (4.33)

Proof. The expansion (4.30) for z′ = i shows that the hyperfunction Ps
−1u has the

expansion
∑

n An(h, i) es,n in the basis functions in (2.9). Then (3.28) gives

u(z) =
∑
n∈Z

(−1)n Γ(s)
Γ(s + n)

An(h, i) Ps,n(z) .
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This gives the relation in the proposition if z′ = i, and the general case follows from
the transformation rules (4.31) and (4.32). �

The transition s ↔ 1 − s does not change Es = E1−s or ps,n = p1−s,n. So the
coefficients an(u, z′) stay the same under s 7→ 1 − s. With the commutative diagram
(3.25) we get:

Corollary 4.7. The operator Cs → C1−s corresponding to Is : V−ωs → V−ω1−s acts on
the coefficients in (4.30) by

An(Ish, z′) =
(1 − s)|n|

(s)|n|
An(h, z′) .

We remark that Proposition 4.6 can also be used to give an alternative proof of
Corollary 4.5, using (3.19) with u replaced by u◦gz′ to obtain the analyticity of an(u, z′)
in z′ and then (4.33) to control the speed of convergence in (4.30).

4.3. Differential equations for the canonical model and the sheaf of mixed eigen-
functions. The canonical model provides us with an isomorphic copy Cs ofV−ωs � Es
inside the flabby hybrid model Hs. We now show that the elements of the canoni-
cal model are real-analytic in both variables jointly, and satisfy first order differential
equations in the variable z ∈ H with ζ as a parameter.

The same differential equations can be used to define a sheaf Ds on P1
C
× H. In

Proposition 4.10 and Theorem 4.13 we describe the local structure of this sheaf. It
turns out that we can identify the space Vω,rig

s of the rigid hybrid model with a space
of sections of this sheaf of a special kind. There is a sheaf morphism that relatesDs to
the sheaf Es : U 7→ Es(U) of λs-eigenfunctions on H. For elements of the full space
Es = Es(H) the canonical model gives sections ofDs over (P1

C
r P1
R) × H.

Theorem 4.8. Each h ∈ Cs and its corresponding eigenfunction u = Psh = Rsh ∈ Es
satisfy, for ζ ∈ P1

C
r P1
R, z ∈ H, ζ < {z, z̄}, the differential equations

(z − z̄) ∂zh(ζ, z) + s
ζ − z̄
ζ − z

(
h(ζ, z) − u(z)

)
= 0 , (4.34a)

(z − z̄) ∂z̄
(
h(ζ, z) − u(z)

)
− s

ζ − z
ζ − z̄

h(ζ, z) = 0 . (4.34b)

Conversely, any continuous function h on (P1
C
rP1
R)×H that is holomorphic in the first

variable, continuously differentiable in the second variable, and satisfies the differen-
tial equations (4.34) for some u ∈ C1(H) belongs to Cs, and u is Psh.

The differential equations (4.34) look complicated, but in fact are just the dz- and
dz̄-components of the identity[

R(ζ; · )s, u(ζ; · )
]

= d
(

R(ζ; · )sh(ζ; · )
)

(4.35)

between 1-forms, as one checks easily. (The function R(ζ; z)s is multivalued, but if we
take the same branch on both sides of the equality, then it makes sense locally.)
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Proof of Theorem 4.8. The remark just made shows almost immediately that the func-
tion h = Bsu ∈ Cs defined by (4.22) satisfies the differential equations (4.34): differen-
tiating (4.22) in z gives

dz
(
h(ζ, z)R(ζ; s)s) =

 d
(
u(z)R(ζ; z)s) − [u(z),R(ζ; z)s]z if z ∈ H,

+ [R(ζ; z)s, u(z)]z if z ∈ H−,

and the right-hand side equals [R(ζ; z)s, u(z)] in both cases by virtue of (3.13).
An alternative approach, not using the explicit Poisson inversion formula (4.22), is

to differentiate (4.7) with respect to z1 (resp. z1) and then set z1 = z2 = z to see that
the expression on the left-hand side of (4.34a) (resp. (4.34b)) is holomorphic in ζ near
P1
R. (Here that we use the result proved above that elements of the canonical model

are analytical in both variables jointly.) The equations h(z, z) = u(z), h(z̄, z) = 0 then
show that the expressions in (4.34), for z fixed, are holomorphic in ζ on all of P1

C
and

hence constant. To see that both constants vanish, we set ζ = z̄ in (4.34a) (resp. ζ = z
in (4.34b)) and use

∂z
(
h(ζ, z)

)
|ζ=z̄ = ∂z

(
h(z̄, z)

)
= ∂z(0) = 0 , ∂z̄

(
h(ζ, z)

)
|ζ=z = ∂z̄

(
h(z, z)

)
= ∂z̄u(z) .

This proves the forward statement of Theorem 4.8. Instead of proving the converse
immediately, we first observe that the property of satisfying the differential equations
in the theorem is a purely local one and therefore defines a sheaf of functions.

We now give a formal definition of this sheaf and then prove some general state-
ments about its local sections that include the second part of Theorem 4.8.

We note that the differential equations (4.34) make sense, not only on (P1
C
rP1
R)×H,

but on all of P1
C
× H, with singularities on the “diagonal” and “antidiagonal” defined

by
∆+ = { (z, z) : z ∈ H } , ∆− = { (z̄, z) : z ∈ H } . (4.36)

We therefore define our sheaf on open subsets of this larger space.

Definition 4.9. For every open subset U ⊂ P1
C
× H we define Ds(U) as the space of

pairs (h, u) of functions on U such that
a) h and u are continuous on U,
b) h is holomorphic in its first variable,
c) locally u is independent of the first variable,
d) h and u are continuously differentiable in the second variable and satisfy the

differential equations (4.34) on U r (∆+ ∪ ∆−), with u(z) replaced by u(ζ, z).

This defines Ds as a sheaf of pairs of functions on P1
C
× H, the sheaf of mixed

eigenfunctions. In this language, the content of Theorem 4.8 is that Cs can be identified
via h 7→ (h,Rsh) with the space of global sections ofDs

(
(P1
C
rP1
R)×H

)
. The following

proposition gives a number of properties of the local sections.

Proposition 4.10. Let (h, u) ∈ Ds(U) for some open set U ⊂ P1
C
× H. Then

i) The functions h and u are real-analytic on U. The function u is determined
by h and satisfies ∆u = s(1 − s)u.

ii) If U intersects ∆+ ∪ ∆−, then we have h = u on U ∩ ∆+ and h = 0 on U ∩ ∆−.
iii) If u = 0, then the function h locally has the form h(ζ, z) = ϕ(ζ) R(ζ; z)−s for

some branch of R(ζ; z)−s, with ϕ holomorphic.
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iv) The function h is determined by u on each connected component of U that
intersects ∆+ ∪ ∆−.

Proof. The continuity of h and u allows us to consider them and their derivatives as
distributions. We obtain from (4.34) the following equalities of distributions on U r
(∆+ ∪ ∆−):

∂z∂z̄h = ∂z

(
∂z̄u +

s
z − z̄

ζ − z
ζ − z̄

h
)

= ∂z∂z̄u −
s

(z − z̄)2 h −
s2

(z − z̄)2 (h − u) ,

∂z̄∂zh = ∂z̄

(
−s

z − z̄
ζ − z̄
ζ − z

(h − u)
)

=
−s

(z − z̄)2 (h − u) −
s2

(z − z̄)2 h .

The differential operators ∂z and ∂z̄ on distributions commute. In terms of the hyper-
bolic Laplace operator ∆ = (z − z̄)2 ∂z∂z̄, we have in distribution sense(

∆ − λs+1
)

h = (∆ + s2)u = su . (4.37)

Since u is an eigenfunction of the elliptic differential operator ∆−λs with real-analytic
coefficients, u and also h are real-analytic function in the second variable. To conclude
that h is real-analytic in both variables jointly, we note that it is also a solution of the
following elliptic differential equation with analytic coefficients(

−∂ζ∂ζ̄ + ∆ − λs+1
)
h = su .

Near∞ ∈ P1
C

we replace ζ by υ = 1/ζ in the last step.
Since u is locally independent of ζ, we conclude that u is real-analytic on the whole

of U, and satisfies ∆u = s(1 − s)u on U. Then (4.37) gives the analyticity of h on U.
Now we use (4.34a) to obtain

u(ζ, z) = h(ζ, z) +
z − z̄

s
ζ − z
ζ − z̄

∂zh(ζ, z) .

So h determines u on U r ∆−, and then by continuity on the whole of U. Furthermore
u = h on ∆+. Similarly, (4.34b) implies h = 0 on U ∩ ∆−. This proves parts i) and ii)
of the proposition.

Under the assumption u = 0 in part iii) the differential equations (4.34) become
homogeneous in h. For fixed ζ the solutions are multiples of z 7→ R(ζ; z)−s, as is
clear from (4.35). Hence h locally has the form h(ζ, z) = ϕ(ζ) R(ζ; z)−s, where ϕ is
holomorphic by condition b) in the definition ofDs. It also follows that h vanishes on
any connected component of U on which R(ζ; z)−s is multi-valued, and in particular
on any component that intersects ∆+ ∪ ∆−. Part iv) now follows by linearity. �

Proof of Theorem 4.8, converse direction. Functions h and u with the properties as-
sumed in the second part of the theorem determine a section (h, u) ∈ Ds

(
(P1
C
rP1
R)×H

)
.

Proposition 4.10 shows that u ∈ Es. By the first part of the theorem, we have (Bsu, u) ∈
Ds

(
(P1
C
r P1
R) ×H

)
. Since this has the same second component as (h, u), part iv) of the

proposition shows that h = Bsu ∈ Cs, and then part ii) gives u = Rsh = Psh. �

• Local description of h near the diagonal. Part iv) of Proposition 4.10 says that the
first component of a section (h, u) ofDs near the diagonal or antidiagonal is completely
determined by the second component, but does not tell us explicitly how. We would
like to make this explicit. We can do this in two ways, in terms of Taylor expansions
or by an integral formula. We will use this in §6
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We first consider an arbitrary real-analytic function u in a neighborhood of a point
z0 ∈ H and a real-analytic solution h of (4.34a) near (z0, z0) which is holomorphic in
the first variable. Then h has a power series expansion h(ζ, z) =

∑∞
n=0 hn(z)(ζ − z)n in

a neighborhood of (z0, z0), and (4.34a) is equivalent to the recursive formulas

hn(z) =


u(z) if n = 0 ,

1
1 − s

∂h0(z)
∂z

if n = 1 ,

1
n − s

(
∂hn−1(z)
∂z

+
s

z − z̄
hn−1(z)

)
if n ≥ 2 ,

which we can solve to get the expansion

h(ζ, z) = u(z) + y−s
∞∑

n=1

∂n−1

∂zn−1

(
ys ∂u
∂z

) (ζ − z)n

(1 − s)n
, (4.38)

where (1 − s)n = (1 − s)(2 − s) · · · (n − s) as usual is the Pochhammer symbol. Con-
versely, for any real-analytic function u(z) in a neighborhood of z0, the series in (4.38)
converges and defines a solution of (4.34a) near (z0, z0). Thus there is a bijection be-
tween germs of real-analytic functions u near z0 and germs of real-analytic solutions
of (4.34a), holomorphic in ζ, near (z0, z0). If u further satisfies ∆u = λsu, then a short
calculation shows that the function defined by (4.38) satisfies (4.34b), so we get a bi-
jection between germs of λs-eigenfunctions u near z0 and the stalk ofDs at (z0, z0). An
exactly similar argument gives, for any λs-eigenfunction u near z0, a unique solution

h(ζ, z) = − y−s
∞∑

n=1

∂n−1

∂z̄n−1

(
ys ∂u
∂z̄

) (ζ − z̄)n

(1 − s)n
, (4.39)

of equations (4.34a) and (4.34b) near the point (z̄0, z0) ∈ ∆−. This proves:

Proposition 4.11. Let u ∈ Es(U) for some open set U ⊂ H. Then there is a unique
section (h, u) of Ds in a neighborhood of { (z, z) | z ∈ U} ∪ { (z̄, z) | z ∈ U}, given by
equations (4.38) and (4.39).

The second way of writing h in terms of u near the diagonal or anti-diagonal is based
on (4.22). This equation was used to lift a global section u ∈ Es to a section (Bsu, u)
of Ds over all of

(
P1
C
r P1
R

)
× H, but its right-hand side can also be used for functions

u ∈ Es(U) for open subsets U ⊂ H to define h near points (z, z) or (z̄, z) with z ∈ U.
This gives a new proof of the first statement in Proposition 4.11, with the advantage
that we now also get some information off the diagonal and anti-diagonal:

Proposition 4.12. If U is connected and simply connected, then the section (h, u) given
in Proposition 4.11 extends analytically to

(
U ∪ Ū

)
× U.

• Formulation with sheaves. Proposition 4.10 shows that the component h of a local
section (h, u) of Ds determines the component u, which is locally independent of the
second variable and satisfies the Laplace equation. So there is a map from sections of
Ds to sections of Es. To formulate this as a sheaf morphism we need to have sheaves
on the same space. We denote the projections from P1

C
× H on P1

C
, respectively H,

by p1. We use the inverse image sheaf p−1
2 Es on P1

C
× H, associated to the presheaf

U 7→ Es(p2U). (See, e.g., §1, Chap. II, in [4].) The map p2 is open, so we do not need
a limit over open V ⊃ p2U in the description of the presheaf. Note that the functions
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in Es(p2U) depend only on z, but that the sheafification of the presheaf adds sections
to p−1

2 Es that may depend on the first variable. In this way, (h, u) 7→ u corresponds to
a sheaf morphism C : Ds → p−1

2 Es. We call the kernel Ks.
We denote the sheaf of holomorphic functions on P1

C
by O. Then p−1

1 O is also a
sheaf on P1

C
×H. The following theorem describesKs in terms of p−1

1 O and shows that
the morphism C is surjective.

Theorem 4.13. The sequence of sheaves on P1
C
× H

0 −→ Ks −→ Ds
C
−→ p−1

2 Es −→ 0 (4.40)

is exact. If a connected open set U ⊂ P1
C
× H satisfies U ∩ (∆+ ∪ ∆−) , ∅, then

Ks(U) = {0}. The restriction of Ks to
(
P1
C
× H

)
r

(
∆+ ∪ ∆−

)
is locally isomorphic to

p−1
1 O where holomorphic functions ϕ correspond to (ζ, z) 7→

(
ϕ(ζ) R(ζ; z)−s, 0

)
. The

inductive limit of Ks(U) over all neighborhoods U of P1
R × H in P1

C
× H is canonically

isomorphic to the spaceVω,rig
s .

Proof. For the exactness, we only have to check the surjectivity of C : Ds → p−1
2 Es.

For this we have to verify that for any point P0 = (ζ0, z0) ∈ P1
C
× H, any solution of

∆u = λsu lifts to a section (h, u) ∈ Ds(U) for some sufficiently small neighborhood
U of P0. If P0 ∈ ∆+ ∪ ∆−, then this is precisely the content of the first statement of
Proposition 4.11. If P0 < ∆+ ∪ ∆−, then we define h near P0 by the formula

h(ζ, z) =

∫ z

z0

[(
Rζ( · )/Rζ(z)

)s, u
]

(4.41)

instead, again with
(
Rζ(z1)/Rζ(z)

)s
= 1 at z1 = z. The next two assertions of the

theorem follow from Proposition 4.10. The relation with the rigid hybrid model is
based on (4.5). �

We end this section by making several remarks about the equations (4.34) and their
solution spaces Cs and Ds(U).

The first is that there are apparently very few solutions of these equations that can be
given in “closed form.” One example is given by the pair h(ζ, z) =

ζ−z̄
2i y

−s, u(z) = y1−s

(cf. (4.12)). Of course one also has the translations of this by the action of G, and in Ex-
ample Example 2 after Theorem 5.6 we will give further generalizations where h is still
a polynomial times y−s. One also has the local solutions of the form (ϕ(ζ)R(ζ; z)−s, 0)
for arbitrary holomorphic functions ϕ(ζ), as described in Theorem 4.13.

The second observation is that the description of Cs in terms of differential equations
can be generalized in a very simple way to the space C+

s of semicanonical hyperfunc-
tion representatives introduced in the Remark in §4.1: these are simply the functions h
on

(
P1
C
r P1
R

)
× H that satisfy the system of differential equations

∂z
(
h(ζ, z) − u−(z)

)
= −s

ζ − z̄
(z − z̄)(ζ − z)

(
h(ζ, z) − u+(z)

)
,

∂z̄
(
h(ζ, z) − u+(z)

)
= s

ζ − z
(z − z̄)(ζ − z̄)

(
h(ζ, z) − u−(z)

) (4.35)

for some function u+ and u− of z alone. This defines a sheaf D+
s which projects to

Ds by (h, u+, u−) 7→ (h, u+ − u−), and we have a map from C+
s to the space of global
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sections of D+
s defined by h 7→ (h,R+

s h,R−s h) with R±s defined as in (4.19). In some
ways C+

s is a more natural space than Cs, but we have chosen to normalize once and
for all by u−(z) = 0 in order to have something canonical.

The third remark concerns the surjectivity of C : Ds → p−1
2 Es. We know from

Theorem 4.13 that any solution u of the Laplace equation can be completed locally
to a solution (h, u) of the differential equations (4.34). We now show that such a lift
does not necessarily exist for a u defined on a non-simply connected subset of H.
Specifically, we will show that there is no section of Ds of the form (h, q1−s(z, i)) on
any open set U ⊂ P1

C
× H whose image under p2 contains a hyperbolic annulus with

center i.
Now the disk model is more appropriate. We work with coordinates ξ = i 1+ζ

1−ζ ∈ C
∗

and w = i z−i
z+i ∈ D. The differential equations (4.34a) and (4.34b) take the form

(1 − r2) ∂wh + s
1 − w̄ξ
ξ − w

(h − u) = 0 , (4.36a)

(1 − r2) ∂w̄(h − u) + s
ξ − w

1 − w̄ξ
h = 0 , (4.36b)

with r = |w|, and (4.35) becomes[
RS(ξ; · )s, u(ξ, · )

]
= d

(
RS(ξ; · ) h(ξ, · )

)
, (4.36c)

with the Poisson kernel RS in the circle model, as in (3.27c).

Proposition 4.14. Let A ⊂ D be an annulus of the form r1 < |w| < r2 with 0 ≤
r1 < r2 ≤ 1, and let V ⊂ C∗ be a connected open set that intersects the region
r1 < |ξ| < r−1

1 in C∗. Then Ds(V × A) does not contain sections of the form (h,Q1−s,n)
for any n ∈ Z.

Proof. Suppose that such a section (h,Q1−s,n) exists. Take ρ ∈ (r1, r2) such that V
intersects the annulus Aρ = {ρ < |ξ| < ρ−1}. Let C be the contour |w| = ρ. Then the
function f given by

f (ξ) =

∫
C

[
RS(ξ; · )s,Q1−s,n

]
is defined and holomorphic on Aρ. For ξ ∈ V ∩ Aρ we know from (4.36c) that the
closed differential form

[
RS(ξ; · )s,Q1−s,n] on A has a potential. Hence f (ξ) = 0 for

ξ ∈ V ∩ Aρ, and then f = 0 in Aρ. In particular, f (ξ) = 0 for ξ ∈ S1. In view
of (3.19) this implies that the expansion RS(ξ; · )s =

∑
m∈Z am(ξ) Ps,m (with ξ ∈ S1)

satisfies a−n(ξ) = 0. The function RS(ξ; · )s is the Poisson transform P1−s δ1−s,ξ of
the distribution δ1−s,ξ : ϕS 7→ ϕS(ξ) on Vω

1−s. This delta distribution has the expan-
sion δ1−s,ξ =

∑
m∈Z ξ

−me1−s,m. Hence RS(ξ; · )s =
∑

m∈Z ξ
−m (−1)mΓ(1−s)

Γ(1−s+m) P1−s,m, in which
all coefficients are non-zero. Since P1−s,m = Ps,m, this contradicts the earlier conclu-
sion. �

This non-existence result is a monodromy effect. In a small neighborhood of a point
(ξ0, w0) ∈ S1 × A we can construct a section (h,Q1−s,n) ofDs as in (4.41):

h(ξ, w) =

∫ w

w0

[(
RS(ξ;w′)/RS(ξ;w)

)s,Q1−s,n(w′)
]
w′ . (4.37)



FUNCTION THEORY RELATED TO PSL2(R) 39

If we now let the second variable go around the annulus A, then h(ξ, w) is changed to
h(ξ, w) + h0(ξ, w), where h0 is defined by the same integral as h but with the path of
integration being the circle |w′| = |w0|. Using[(

RS(ξ;w′)/RS(ξ;w)
)s,Q1−s,n(w′)

]
w′ = RS(ξ;w)−s [

RS(ξ;w′)s,Q1−s,n(w′)
]
w′

and the absolutely convergent expansion RS(ξ;w′)s =
∑

m∈Z ξ
−m (−1)m Γ(1−s)

Γ(1−s+m) Ps,m(w′)
from the proof above, we find from the explicit potentials in Table 3 in §A.4 that only
the term m = −n contributes and that h0 is given by

h0(ξ, w) = πi
(−1)n Γ(1 − s)
Γ(1 − s − n)

RS(ξ;w)−s . (4.38)

(Here we have also used (3.13) to replace [ , ] by { , }.)

5. Eigenfunctions near ∂H and the transverse Poisson transform

The space Es of λs-eigenfunctions of the Laplace operator embeds canonically into
the larger spaceFs of germs of eigenfunctions near the boundary ofH. In §5.1 we intro-
duce the subspaceWω

s of Fs consisting of eigenfunction germs that have the behavior
ys× (analytic across R) near R, together with the corresponding property near∞ ∈ P1

R,
and show that Fs splits canonically as the direct sum of Es andWω

s . In §5.2 the space
Wω

s is shown to be isomorphic to Vω
s by integral transformations, one of which is

called the transverse Poisson transformation because it is given by the same integral
as the usual Poisson transformationVω

s → Es, but with the integral taken across rather
than along P1

R. This transformation gives another model Wω
s of the principal series

representation Vω
s , which has proved to be extremely useful in the cohomological

study of Maass forms in [2]. In §5.3 we describe the duality ofVω
s andV−ω1−s in (2.19)

in terms of a pairing of the isomorphic spacesWω
s and E1−s. In §5.4 we constructed

a smooth versionW∞
s ofWω

s isomorphic toV∞s by using jets of λs-eigenfunctions of
the Laplace operator. This space is also used in [2].

5.1. Spaces of eigenfunction germs. Let Fs be the space of germs of eigenfunctions
of ∆, with eigenvalue λs = s(1 − s), near the boundary of H, i.e.,

Fs = lim
−→

U

Es(U ∩ H) , (5.1)

where the direct limit is taken over open neighborhoods U of H in P1
C

(for either of
the realizations H ⊂ P1

C
or D ⊂ P1

C
). This space canonically contains Es because an

eigenfunction in H is determined by its values near the boundary (principle of analytic
continuation). The action of G in Fs is by f | g(z) = f (gz). The functions Qs,n and
Q1−s,n in (3.7) represent elements of Fs not lying in Es. Clearly we have F1−s = Fs.

Consider u, v ∈ Fs, represented by elements of Es(U ∩ H) for some neighborhood
U of ∂H in P1

C
. Then the Green’s form [u, v] is defined and closed in U, and for a

positively oriented closed path C in U which is homotopic to ∂H in U ∩ (H ∪ ∂H), the
integral

β(u, v) =
1
πi

∫
C

[u, v] =
2
π

∫
C
{u, v} (5.2)
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is independent of the choice of C or of the set U on which the representatives of u and
v are defined. This defines a G-equivariant antisymmetric bilinear pairing

β : Fs × Fs −→ C . (5.3)

If both u and v are elements of Es we can contract C to a point, thus arriving at β(u, v) =

0. Hence β also induces a bilinear pairing Es × (Fs/Es)→ C.
For each z ∈ H, the element qs( · , z) of Fs is not in Es. By (Πsu)(z) = β

(
u, qs( · , z)

)
we define a G-equivariant linear map Πs : Fs → Es. Explicitly, uin(z) := Πsu(z) is
given by an integral 1

πi

∫
C[u(z′), qs(z′, z)]z′ , where z is inside the path of integration C.

By deforming C we thus obtain uin(z) for all z ∈ H, so uin ∈ Es. We can also define
uout(z) := −1

πi

∫
C[u(z′), qs(z′, z)]z′ where now z is between the boundary of H and the

path of integration. For u ∈ Es we see that uout = 0. More generally, Theorem 3.1
shows that

u = uout + uin (∀ u ∈ Fs) . (5.4)
The G-equivariance of [·, ·] implies that the maps Πs and 1 − Πs are G-equivariant.
This gives the following result.

Proposition 5.1. The G-equivariant maps Πs : u 7→ uin and 1 − Πs : u 7→ uout split
the exact sequence of G-modules

0 // Es // Fs //
Πs

tt
Fs/Es //

1−Πs
tt 0 (5.5)

We now define the subspaceWω
s of Fs. It is somewhat easier in the disk model:

Definition 5.2. The spaceWω
s consists of those boundary germs u ∈ Fs that are of the

form
u(w) = 2−2s(1 − |w|2)sAS(w)

where AS is a real-analytic function on a two-sided neighborhood of S1 in P1
C

.

In other words, representatives of elements ofWω
s , divided by the factor (1 − |w|)s,

extend analytically across the boundary S1. (The factor 2−2s is included for compati-
bility with other models.)

The next proposition shows thatWω
s is the canonical direct complement of Es in Fs.

Proposition 5.3. The kernel of Πs : Fs → Es is equal to the spaceWω
s , and we have

the direct sum decomposition of G-modules

Fs = Es ⊕W
ω

s , (5.6)

given by u↔ (uin, uout).

Notice that all the spaces in the exact sequence (5.5) are the same for s and 1 − s,
but that Πs and Π1−s give different splittings and thatWω

1−s ,W
ω

s (for s , 1
2 ).

Proof. In view of Proposition 5.1 it remains to show thatWω
s is equal to the image of

u 7→ uout.
The asymptotic behavior of Qs−1 in (A.13) gives for w′ on the path of integration C

and w outside C in the definition of uout(w)

qs(w, w′) =
( 2
ρD(w′, w) + 1

)s
fs
( 2
ρD(w′, w) + 1

)
,
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where fs is analytic at 0. With (3.2):

2
ρ(w′, w) + 1

=
(1 − |w′|)2

|w − w′|2 + (1 − |w′|2)(1 − |w|2)
(1 − |w|2) .

We conclude that if w′ stays in the compact set C, and w tends to S1, we have

uout(w) = (1 − |w|2)s (
analytic function of 1 − |w|2) .

So uout ∈ W
ω

s .
For the converse inclusion it suffices to show that Es ∩ W

ω
s = {0}. This follows

from the next lemma, which is slightly stronger than needed here. �

Lemma 5.4. Let u be a solution of ∆u = λsu on some annulus 1 − δ ≤ |w|2 < 1 with
δ > 0. Suppose that u is of the form

u(w) = (1 − |w|2)sA(w) + O
(
(1 − |w|2)s+1) , (5.7)

with a continuous function A on the closed annulus 1 − δ ≤ |w|2 ≤ 1. Then u = 0.

Proof. On the annulus the function u is given by its polar Fourier series, with terms

un(w) =

∫ 2π

0
e−2inθ f (eiθw)

dθ
2π

.

Each un satisfies the estimate (5.7), with A replaced by its Fourier term An. Moreover,
the G-equivariance of ∆ implies that un is a λs-eigenfunction of ∆. It is the term of
order n in the expansion (3.19). In particular, un is a multiple of Ps,n. In §A.1.2 we see
that Ps,n has a term (1− |w|2)1−s in its asymptotic behavior near the boundary, or a term
(1 − |w|2)1/2 log(1 − |w|2) if s = 1

2 . So un can satisfy (5.7) only if it is zero. �

Remark. The proof of the lemma gives the stronger assertion: If u ∈ Fs satisfies (5.7),
then u ∈ Wω

s and Πsu = 0.

Returning to the definition ofWω
s , we note that the action g : w 7→ Aw+B

B̄w+Ā in D gives
for the function AS

AS|g(w) =
∣∣∣B̄w + Ā|−2sAS

(Aw + B
B̄w + Ā

)
, (5.8)

first for w ∈ D near the boundary, and by real-analytic continuation on a neighborhood
of S1 in P1

C
. On the boundary, where |w| = 1, this coincides with the action of G in

the circle model, as given in (2.8). In (2.20) the action in the circle model of Vω
s is

extended to holomorphic functions on sets in P1
C

. That action and the action in (5.8)
coincide only on S1, but are different elsewhere. This reflects that AS is real-analytic,
but not holomorphic.

The restriction of AS to S1 induces the restriction map

ρs :Wω
s −→ V

ω
s , (5.9)

which is G-equivariant.
Examples of elements of Wω

s are the functions Qs,n, represented by elements of
Es(D r {0}), whereas the functions Q1−s,n belong to Fs but not toWω

s .
We note that the factor 2−2s(1−|w|2)s corresponds to

( y

|z+i|2
)s on the upper half-plane.

So in the upper half-plane model the elements ofWω
s are represented by functions of

the form u(z) =
( y

|z+i|2
)sAP(z) with AP real-analytic on a neighborhood of P1

R in P1
C

.
The transformation behavior for AP turns out to coincide on P1

R with the action of G in
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the projective model ofVω
s in (2.6). Outside P1

R it differs from the action in (2.23) on
holomorphic functions. The restriction map ρs :Wω

s →V
ω

s is obtained by u 7→ AP|P1
R
.

In the line model we have u(z) = ysA(z) nearR and u(z) = (y/|z|2)sA∞(−1/z) near∞,
with A and A∞ real-analytic on a neighborhood of R in C. The action on A is given by

A
∣∣∣∣ [a

c
b
d

]
(z) = |cz + d|−2s A

(az + b
cz + d

)
, (5.10)

coinciding on R with the action in the line model. Restriction of A to R induces the
description of ρs in the line model. The factors 2−2s(1 − |w|2)s,

(
y/|z + i|2

)s, ys and(
y/|z|

)s have been chosen in such a way that AS, AP, A and A∞ restrict to elements of
the circle, projective and line models, respectively, ofVω

s , related by (2.8) and (2.5).
The spaceWω

s is the space of global sections of a sheaf, also denotedWω
s , on ∂H,

where in the disk modelWω
s (I) for an open set I in S1 corresponds to the real-analytic

functions AS on a neighborhood of I in P1
C

such that (1 − |w|2)sAS(w) is annihilated
by ∆ − λs. Restriction gives ρs : Wω

s (I) → Vω
s (I) for each I ⊂ S1. In the line

model, Wω
s (I) for I ⊂ R can be identified with the space of real-analytic functions

A on a neighborhood U of I with ysA(z) ∈ Ker (∆ − λs) on U ∩ H; for I r P1
R r {0}

we use (y/|z|2)sA∞(−1/z). The function z 7→ ys is an element of Wω
s (R), but not of

Wω
s =Wω

s (P1
R).

Another example is the function z 7→ y1−s, which represents an element ofWω
1−s(R),

but not ofWω
1−s =Wω

1−s(P
1
R). It is the Poisson transform of the distribution δs,∞, which

has support {∞}.
The support Supp (α) of a hyperfunction α ∈ V−ωs is the smallest closed subset X of

∂H such that each g ∈ Hs representing α extends holomorphically to a neighborhood
of ∂H r X.

Proposition 5.5. The Poisson transform of a hyperfunction α ∈ V−ωs represents an
element ofWω

1−s
(
∂H r Supp (α)

)
.

This statement is meaningful only if Supp (α) is not the whole of ∂H. In Theo-
rem 6.4 we will continue the discussion of the relation between support of a hyper-
function and the boundary behavior of its Poisson transform.

Proof. Let g ∈ Hs be a representative of α ∈ V−ωs . In the Poisson integral in (3.28) we
can replace the integral over C+ and C− by the integral

Psα(w) =
(1 − |w|2)1−s

2πi

∫
C
g(w)

(
(1 − w/ξ)(1 − w̄ξ)

)s−1 dξ
ξ
, (5.11)

where C is a path inside the domain of g encircling Supp (α). For w outside C the in-
tegral defines a real-analytic function on a neighborhood of ∂D, so there the boundary
behavior is (1 − |w|2)1−s × (analytic). Adapting C, we can arrange that any point of
∂D r Supp (α) is inside this neighborhood. �

• Decomposition of eigenfunctions. We close this subsection by generalizing the
decomposition (5.4) from Fs to Es(R), where R is any annulus 0 ≤ r1 < |w| < r2 ≤ 1
in D. For u ∈ Es(R) we define

uin ∈ Es
(
{|w| < r2}

)
and uout ∈ Es

(
{|w| > r1}

)
,
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by uin(z) = 1
πi

∫
C[u, qs( · , z)] and uout(z) = −1

πi

∫
C[u, qs( · , z)], where C ⊂ R is a circle

containing the argument of uin in its interior, respectively the argument of uout in its
exterior. Then (5.4) holds in the annulus R. Explicitly, any u ∈ Es(R) has an expansion
of the form

u =
∑
n∈Z

(
anQs,n + bnPs,n

)
on r1 < |w| < r2 , (5.12)

and uin and uout are then given by

uin =
∑
n∈Z

bnPs,n , uout =
∑
n∈Z

anQn,s . (5.13)

5.2. The transverse Poisson map. In the last subsection we defined restriction maps
ρs : Wω

s → V
ω

s , and more generally Wω
s (I) → Vω

s (I). We now show that these
restriction maps are isomorphisms and construct the explicit inverse maps. We in
fact give two descriptions of ρ−1

s , one in terms of power series and one defined by an
integral transform (transverse Poisson map); the former is simpler, and also applies
in the C∞ setting (treated in §5.4), while the latter (which is motivated by the power
series formula) gives a much stronger statement in the context of analytic functions.
• Power series version. Let u ∈ Wω

s (I), where we work in the line model and can
assume that I ⊂ R by locality. Write z as x + iy and for x ∈ I expand the real-analytic
function A such that u(z) = ysA(z) as a power series

∑∞
n=0 an(x)yn in y, convergent in

some neighborhood of I inC. By definition, the constant term a0(x) in this expansion is
the image ϕ = ρs(u) of u under the restriction map. The differential equation ∆u = λsu
of u translates into the differential equation

y
(
Axx + Ayy

)
+ 2s Ay = 0 . (5.14)

Applying this to the power series expansion of A we find that

a′′n−2(x) + n(n + 2s − 1) an(x) = 0

for n ≥ 2, and that a1 ≡ 0. Together with the initial condition a0 = ϕ this gives

an(x) =


(−1/4)k Γ(s + 1

2 )

k! Γ(k + s + 1
2 )

ϕ(2k)(x) if n = 2k ,

0 if 2 - n ,
(5.15)

and hence a complete description of A in terms of ϕ. Conversely, if ϕ is any analytic
function in a neighborhood of x ∈ R, then its Taylor expansion at x has a positive
radius of convergence rx and we have ϕ(n)(x) = O(n! cn) for any c > r−1

x . From Stir-
ling’s formula or the Legendre duplication formula we see that 4−k/k! Γ(k + s + 1

2 ) =

O
(
k−Re (s)/(2k)!

)
, so the power series

∑
n≥0 an(x)yn with an(x) defined by (5.15) con-

verges for |y| < rx . By a straightforward uniform convergence argument, the function
A(x + iy) defined by this power series is real-analytic in a neighborhood of I, and of
course it satisfies the differential equation Axx + Ayy + 2sy−1Ay = 0, so the function
u(z) = ysA(z) is an eigenfunction of ∆ with eigenvalue λs. This proves:

Theorem 5.6. Let I be an open subset of R. Define a map from analytic functions on I
to the germs of functions on a neighborhood of I in C by

(P†s ϕ)(x + iy) = ys
∞∑

k=0

ϕ(2k)(x)
k!

(
s + 1

2
)
k

(−y2/4)k , (5.16)
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with the Pochhammer symbol
(1

2 + s
)
k =

∏k−1
j=0

( 1
2 + s + j

)
. Then P†s is an isomorphism

fromVω
s (I) toWω

s (I) with inverse ρs.

Of course, we can now use the G-equivariance to deduce that the local restriction map
ρs : Wω

s (I) → Vω
s (I) is an isomorphism for every open subset I ⊂ P1

R and that the
global restriction map ρs : Wω

s → V
ω

s is an equivariant isomorphism. The inverse
maps, which we still denote P†s , can be given explicitly in a neighborhood of infinity
using the functions ϕ∞ and A∞ as usual for the line model or by the corresponding
formulas in the circle model. The details are left to the reader.

Example 1. Take ϕ(x) = 1. Then (5.16) gives P†s ϕ(z) = ys inWω
s (R). More generally,

if ϕ(x) = eiαx with α ∈ R, then P†s ϕ is the function is,α defined in (A.3b).
Example 2. We can generalize Example 1 from ϕ = 1 to arbitrary polynomials:

ϕ(x) =

(
−2s
m

)
xm ⇒ P†s ϕ(z) = ys

∑
k+`=m

(
−s
k

) (
−s
`

)
zk z̄` . (5.17)

This can be checked either from formula (5.16) or, using the final statement of Theo-
rem 5.6, by verifying that the expression on the right belongs to Es and that its quotient
by ys is analytic near R and restricts to

(
−2s
m

)
xm when y = 0.

Example 3. Let a ∈ C r I . Then (5.16) and the binomial theorem give

ϕ(x) = (x − a)−2s ⇒ P†s ϕ(z) = ys
∞∑

k=0

(
−s
k

)
y2k

(x − a)2s+2k = R(a; z)s , (5.18)

(Here the branches in (x − a)−2s and R(a; z)s have to be taken consistently.) Again, we
could skip this calculation and simply observe that R(a; · )s ∈ Wω

s (I) and that ϕ(x) is
the restriction y−sR(a; x+iy)s

∣∣∣
y=0. If |a| > |x|, then expanding the two sides of (5.18) by

the binomial theorem gives another proof of (5.17) and makes clear where the binomial
coefficients in that formula come from.
Example 4. Our fourth example is

ϕ(x) = R(x; z0)s ⇒ P†s ϕ(z) = b(s)−1 qs(z, z0) (z0 ∈ H) , (5.19)

where the constant b(s) is given in terms of beta or gamma functions by

b(s) = B
(
s,

1
2
)

=
Γ(s) Γ( 1

2 )

Γ(s + 1
2 )

. (5.20)

Formula (5.19) is proved by remarking that the function on the right belongs toWω
s

and that its image under ρs is the function on the left (as one sees easily from the
asymptotic behavior of the Legendre function Qs−1(t) as t → ∞). Obtaining it from
the power series in (5.16) would probably be difficult, but we will see at the end of the
section how to get it from the integral formula for P†s given below.
Remark. Equation (5.15) shows that the function y−s · P†s ϕ(x + iy) is even in y (as is
visible in Examples 1 and 2 above). In the projective model, AP(z) =

( y

|z+i|2
)−s u(z) =

|z + i|2sA(z) is not even in y. In the circle model, related to the projective model by
w = z−i

z+i , the reflection z 7→ z̄ corresponds to w 7→ 1/w̄ (or r 7→ r−1 in polar coordinates
w = reiθ), and the function AS(w) = 22s(1− |w|2)−su(w) satisfies AS(1/w̄) = |w|2sAS(w).
For example, equations (A.8) and (A.9) say that the function inWω

s
(
D r {0}

)
whose
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image under ρs is wn (n ∈ Z) corresponds to AS(w) = w̄−nF
(
s − n, s; 2s; 1 − |w|2

)
,

and this equals wn|w|−2sF
(
s− n, s; 2s; 1− |w|−2) by a Kummer relation. Note that if we

had used the factor
(1−|w|

1+|w|

)s instead of 2−2s(1 − |w|2)s in Definition 5.2, we would have
obtained functions AS that are invariant under w 7→ 1/w̄.

• Integral version. If ϕ is a real-analytic function on an interval I ⊂ R, then we
can associate to it two extensions, both real-analytic on a sufficiently small complex
neighborhood of I: the holomorphic extension, which we will denote by the same
letter, and the solution A of the differential equation (5.14) given in Theorem 5.6. The
following result shows how to pass explicitly from ϕ to A, and from A to ϕ, and show
that their domains coincide.

Theorem 5.7. Let ϕ ∈ Vω
s (I) for some open interval I ⊂ R, and write P†s ϕ(z) = ys A(z)

with a real-analytic function A defined in some neighborhood of I. Let U = Ū ⊂ C be
a connected and simply connected subset of C, with I = U ∩R. Then the following two
statements are equivalent:

i) ϕ extends holomorphically to all of U.
ii) A extends real-analytically to all of U.

Moreover, the two functions define one another in the following way.

a) Suppose that ϕ is holomorphic in U. Then the function u = P†s ϕ is given for
z ∈ U ∩ H by

u(z) =
1

i b(s)

∫ z

z̄
R
(
ζ; z

)1−s ϕ(ζ) dζ , (5.21)

where b(s) is given by (5.20) and the integral is taken along any piecewise
C1-path in U from z̄ to z intersecting I only once, with the branch of R(ζ; z)1−s

continuous on the path and equal to its standard value at the intersection point
with I.

b) Suppose that u(z) = P†s ϕ(z) = ysA(z) with A real-analytic in U. Then the
holomorphic extension of ϕ to U is given by

ϕ(ζ) =



2 b(s) sin πs
π

∫ ζ

ξ0

[
u( · ),

(
−R(ζ; · )

)s] if ζ ∈ U ∩ H ,

A(ζ) if ζ ∈ I ,

2 b(s) sin πs
π

∫ ζ̄

ξ0

[(
−R(ζ; · )

)s, u( · )
]

if ζ ∈ U ∩ H−,

(5.22)

where the integrals are along piecewise C1-paths in U ∩ H from any ξ0 ∈ I
to ζ, respectively ζ̄ , with the branch of

(
−R(ζ; z)

)s fixed by | arg
(
−R(ζ; z)

)
| < π

for z near ξ0.

We note the formal similarity between the formula (5.21) for P†s ϕ and the for-
mula (3.26) for the Poisson map: the integrand is exactly the same, but in the case
of Ps the integration is over P1

R (or S1), while in the formula for P†s it is over a path
which crosses P1

R . We therefore call P†s the transverse Poisson map.
We have stated the theorem only for neighborhoods of intervals in R, but because

everything is G-equivariant they can easily be transferred to any interval in P1
R. (Details
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are left to the reader.) Alternatively, one can work in the projective or the circle model.
This will be discussed after we have given the proof.

Proof of Theorem 5.7. First we show that (5.21) gives A on U ∩ H starting from a
holomorphic ϕ on U. Define P†s ϕ locally by (5.16). For x ∈ I we denote by rx the
radius of the largest open disk with center x contained in U. Using the identity

(2k)!
4k k! Γ(k + s + 1

2 )
=

Γ(k + 1
2 )

Γ( 1
2 ) Γ(k + s + 1

2 )
=

1
Γ(s) Γ( 1

2 )

∫ 1

0
(1 − t)s−1 tk− 1

2 dt

(duplication formula and beta function), we find for x ∈ I and 0 < y < rx the formula

b(s) (P†s ϕ)(x + iy) = ys
∫ 1

0
(1 − t)s−1 t−1/2

( ∞∑
k=0

ϕ(2k)(x)
(2k)!

(−ty2)k
)

dt

=
1
2
ys

∫ 1

0
(1 − t)s−1 t−1/2

(
ϕ(x + iy

√
t) + ϕ(x − iy

√
t)
)

dt

= ys
∫ 1

−1
(1 − t2)s−1ϕ(x + iyt) dt

(
t = t2) (5.23)

= ys
∫ y

−y

(
y2

y2 − η2

)1−s
ϕ(x + iη) y−1 dη

(
t = η/y

)
= −i

∫ x+iy

x−iy

(
y

(ζ − z)(ζ − z̄)

)1−s
ϕ(ζ) dζ ,

where the path of integration is the vertical line from x − iy to x + iy. The integral
converges at the end points. The value of the factor

(
y/(ζ − z)(ζ − z̄)

)1−s is based on the
positive value y−1 of y/(ζ − z)(ζ − z̄) at ζ = x. Continuous deformation of the path does
not change the integral, as long as we anchor the branch of the factor

(
y/(ζ−z)(ζ−z̄)

)1−s

at the intersection point with I. (This holds even though that factor is multivalued on
Ur{z, z̄}. We could also allow multiple crossings of I, but then would have to prescribe
the crossing point at which the choice of the branch of the Poisson kernel is anchored.)
This proves (5.21) for points z ∈ U ∩ H sufficiently near to I, and the extension to all
of U ∩ H is then automatic since the integral makes sense in the whole of that domain
and is real-analytic in z.

To show that (5.22) gives ϕ on U if we start from a given A we also consider first
the case that ζ = X + iY ∈ U ∩H and that the vertical segment from X to ζ is contained
in U. Since we want to integrate up to z = ζ, we will use the Green’s form ωζ(z) =[
u(z),

(
−R(ζ; z)

)s] rather than
[(
−R(ζ; z)

)s, u(z)
]

or
{
u(z),

(
−R(ζ; z)

)s}, which would have
non-integrable singularities at this end-point. (The minus sign is included because
R(ζ; z) is negative on the segment.) Explicitly, this Green’s form is given for z =

x + iy ∈ U ∩ H by

ωζ(z) =
(
−R(ζ; z)

)s
(
∂u
∂z

dz +
is
2y

z − ζ
z̄ − ζ

u dz̄
)

=
(
−yR(ζ; z)s) (∂A

∂z
dz −

is
2y

A dz +
is
2y

z − ζ
z̄ − ζ

A dz̄
)

=
(
−yR(ζ; z)

)s
[(
∂A
∂z
−

s
z̄ − ζ

A
)

dx +

(
i
∂A
∂z

+
s
y

x − ζ
z̄ − ζ

A
)

dy
]
. (5.24)
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If we restrict this to the vertical line z = X + itY (0 < t < 1) joining X and ζ, it becomes

ωζ(X + itY) =

( iY
2

Ax(X + itY) +
Y
2

Ay(X + itY) +
s

t(1 + t)
A(X + itY)

) t2s dt
(1 − t2)s

=

∞∑
k=0

Γ(s + 1
2 )

k! Γ(k + s + 1
2 )

[
ϕ(2k+1)(X)

(
iY/2

)2k+1

+

(k
t

+
s

t(1 + t)

)
ϕ(2k)(X)

(
iY/2

)2k
]

t2k t2s

(1 − t2)s dt ,

where ϕ is the holomorphic function near I with ϕ = A on I.
Now we use the beta integrals

∫ 1

0
t2k t2s

(1 − t2)s dt =
1
2

∫ 1

0
tk+s− 1

2 (1 − t)−sdt =
Γ(k + s + 1

2 ) Γ(1 − s)

2 Γ(k + 3
2 )

=
Γ(s + 1

2 ) Γ(1 − s)

2 Γ( 1
2 )

·
k! Γ(k + s + 1

2 )

Γ(s + 1
2 )

·
22k+1

(2k + 1)!
,∫ 1

0

(k
t

+
s

t(1 + t)

)
t2k t2s

(1 − t2)s dt =

∫ 1

0

(
k

t2k+2s−1

(1 − t2)s + s
t2k+2s−1 − t2k+2s

(1 − t2)s+1

)
dt

=
k
2

∫ 1

0
tk+s−1(1 − t)−sdt +

s
2

∫ 1

0

(
tk+s−1 − tk+s− 1

2
)

(1 − t)−s−1 dt

=
k
2

Γ(k + s) Γ(1 − s)
Γ(k + 1)

+
s
2

(
Γ(k + s) Γ(−s)

Γ(k)
−

Γ(k + s + 1
2 ) Γ(−s)

Γ(k + 1
2 )

)
=

Γ(s + 1
2 ) Γ(1 − s)

2 Γ( 1
2 )

·
k! Γ(k + s + 1

2 )

Γ(s + 1
2 )

·
22k

(2k)!

(the second calculation is valid initially for Re (s) < 0, Re (k + s) > 0, but then by
analytic continuation for Re (s) < 1, Re (k+ s) > 0, where the left-hand side converges)
to get

∫ ζ

X
ωζ =

Γ(s + 1
2 ) Γ(1 − s)

2 Γ( 1
2 )

∞∑
n=0

ϕ(n)(X)
(iY)n

n!
=

π

2 b(s) sin πs
ϕ(ζ) . (5.25)

Furthermore, we see from (5.24) that the dx-component of the 1-form ωζ(x + iy) ex-
tends continuously to U ∩ H and vanishes on I, so

∫ X
x0
ωζ vanishes for any ξ0 ∈ I and

we can replace the right-hand side of (5.25) by
∫ ζ

ξ0
ωζ . On the other hand, the fact that

the 1-form is closed means that we can integrate along any path from ξ0 to ζ inside
U ∩ H, not just along the piecewise linear path just described, and hence also that we
can move ζ anywhere within U ∩ H, thus obtaining the analytic continuation of ϕ to
this domain as stated in (5.22).

If ζ = X− iY (Y > 0) belongs to H−∩U, then the calculation is similar. We suppose
that the segment from X to ζ̄ is in U, and parametrize it by z = X + itY . The differential
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form is[(
−R(ζ; z)

)s, u
]

=
(
−yR(ζ; z)

)s
((
∂A
∂z̄

(z) +
s

ζ − z
A(z)

)
dx +

(
−i
∂A
∂z̄

(z) +
s
y

ζ − x
ζ − z

A(z)
)

dy
)
,

which leads to the integral∫ ζ̄

X
ωζ =

∫ 1

0

t2s

(1 − t2)s

(
−

iY
2

Ax(X + itY) +
Y
2

Ay(X + itY) +
s
t

1
1 + t

A(X + itY)
)

dt

=
∑
k≥0

Γ(s + 1
2 )

k! Γ(s + 1
2 + k)

(
ϕ(2k+1)(X) (−iY/2)2k+1

+

(k
t

+
s

t(1 + t)

)
ϕ(2k)(X) (−iY/2)2k

) t2s+2k

(1 − t2)s dt ,

which is the expression that we obtained in the previous case with Y replaced by −Y .
We replace Y by −Y in (5.25), and obtain the statement in (5.22) on U∩H− as well. �

It is not easy to find examples that illustrate the integral transformation (5.22) ex-
plicitly, i.e., examples of functions inWω

s for which the Green’s form [u( · ),R(ζ; · )s]
can be written explicitly as dF for some potential function F( · ). One case which
works, though not without some effort, is u(z) = ys = P†s (1) (Example 1). Here
the needed potential function is given by Entry 6 in Table 3 in §A.4, and a somewhat
lengthy calculation, requiring careful consideration of the branches and of the behavior
at the end points of the integral, lets us deduce from (5.22) that the inverse transverse
Poisson transform of the function ys ∈ Wω

s (R) is indeed the constant function 1.
• Other models. The two integral formulas above were formulated in the line model.
To go to the projective model, we consider first U ⊂ C as in the theorems not inter-
secting the half-line i [1,∞). In that case we find by (2.5) and (3.27b)

P†s ϕ
P(z) =

1
i b(s)

∫ z

z̄
RP(ζ; z)1−s ϕP(ζ)

dζ
1 + ζ2 (z ∈ U ∩ H) , (5.26a)

ϕP(ζ) =



2 b(s) sin πs
π

∫ ζ

ξ0

[
u( · ),

(
−RP(ζ; · )

)s] if ζ ∈ U ∩ H ,

AP(ζ) if ζ ∈ U ∩ R = I ,
2 b(s) sin πs

π

∫ ζ̄

ξ0

[(
−RP(ζ; · )

)s, u( · )
]

if ζ ∈ U ∩ H−,

(5.26b)

with u(z) =
( y

|z+i|2
)s AP(z), where the paths of integration and the choices of branches

in the Poisson kernels are as in the theorems, suitably adapted. These formulas then
extend by G-equivariance to any connected and simply connected open set U = Ū ⊂
P1
C
r{i,−i} and any ξ0 ∈ U ∩ P1

R, giving a local description of the isomorphism Vω
s �

Wω
s on all of P1

R. Note that the integrals in (5.26) make sense if we take for U an
annulus 1 − ε <

∣∣∣ z−i
z+i

∣∣∣ < 1 + ε in P1
C

, which is not simply connected, but the theorem
then has to modified. We will explain this in a moment.

In the circle model, we have

P†s ϕ
S(w) =

1
2 b(s)

∫ 1/w̄

w
RS(η;w)1−s ϕS(η)

dη
η

(w ∈ U ∩ D) , (5.27a)
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ϕS(η) =



2 b(s) sin πs
π

∫ η

ξ0

[
u( · ),

(
−RS(η; · )

)s] if η ∈ U , |η| < 1 ,

AS(ζ) if η ∈ U ∩ S1 ,
2 b(s) sin πs

π

∫ 1/η̄

ξ0

[(
−RS(η; · )

)s, u( · )
]

if η ∈ U , |η| > 1 ,

(5.27b)

with u(w) = 2−2s(1 − |w|
)s AS(w), for w ∈ U ∩ D, with U open in C r {0}, connected,

simply connected and invariant under w 7→ 1/w̄, and with ξ0 ∈ U ∩ S1, with the paths
of integration and the choice of branches of the Poisson kernel again suitably adapted
from the versions in the line model.

If U is an annulus of the form ε < |w| < ε−1 with ε ∈ (0, 1), we still can apply the
relations in (5.27), provided we take in (5.27a) the path from w to 1/w̄ homotopic to
the shortest path. If we change to a path that goes around a number of times, the result
differs from P†s ϕ(w) by an integral multiple of πi

b(s) Psϕ
S(w). In (5.27b) we can freely

move the point ξ0 in ∂D, without changing the outcome of the integral.
Let us use (5.27a) to verify the formula for P†s

(
R( · ; z0)s) given in Example 3. By

G-equivariance, we can suppose that z0 = i. Now changing to circle model coordi-
nates, we find with the help of (3.27c) that the function ϕ(x) = R(x; i)s corresponds to
ϕS(ξ) = 1 and that the content of formula (5.19) is equivalent to the formula∫ 1/r

r

( (1 − r/η
)(

1 − rη
)

1 − r2

)s−1 dη
η

=
(
1 − r2)s

∫ 1

0

(1 − t)s−1 ts−1 dt(
1 − t(1 − r2)

)s

= (1 − r2)s Γ(s)2

Γ(2s)
F(s, s; 2s; 1 − r2) = 2 Qs−1

(1 + r2

1 − r2

)
,

where in the first line we have made the substitution η = (1 − t)r−1 + tr .

5.3. Duality. We return to the bilinear form β on Fs defined in (5.2). We have seen
that β is zero on Es×Es. The next result describes β on other combinations of elements
of Fs in terms of the duality map 〈 , 〉 : Vω

s ×V
−ω

1−s → C defined in (2.19).

Proposition 5.8. Let u, v ∈ Fs.
a) If u ∈ Es and v ∈ Wω

s , then

β(u, v) = b(s)−1 〈ϕ, α〉 (5.28)

with b(s) as in (5.20), where u = P1−sα with α ∈ V−ω1−s and v = P†s ϕ with
ϕ ∈ Vω

s .
b) If u, v ∈ Wω

s , then β(u, v) = 0.
c) If u ∈ Wω

1−s and v ∈ Wω
s , then

β(u, v) =
(
s −

1
2
)
〈ϕ, ψ〉 , (5.29)

with ϕ ∈ Vω
1−s, ψ ∈ V

ω
s such that u = P†1−sϕ and v = P†s ψ.

Proof. The bijectivity of the maps P1−s : V−ωs → E1−s = Es and P†s : Vω
s → W

ω
s

implies that we always have ϕ and α as indicated in a). All transformations involved
are continuous for the topologies of V−ω1−s and Vω

s , so it suffices to check the relation
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for ϕ = es,m and α = e1−s,m. Now we use (3.29), the result for P†s es,n in §A.3, and
equations (3.18) and (2.15) to get the factor in (5.28).

For part b) we write u = (1 − |w|2)sA(w) and v = (1 − |w|2)sB(w) with A and B
extending in a real-analytic way across ∂D. If we take for C a circle |w| = r with r
close to 1, then

[u, v] =
1
2i

r(1 − r2)2s (ABr − BAr) dθ .

It follows that the integral is O
(
(1 − r2)s) as r ↑ 1, and hence vanishes.

In view of b) we can restrict ourselves for c) to the case s , 1
2 . As in part a) it

suffices to consider the relation for basis vectors. We derive the relation from (A.14):

β(Q1−s,m,Qs,n) = β
(
π cot πs Ps,m + Qs,m, Qs,n

)
= π cot πs (−1)nδn,−m . �

5.4. Transverse Poisson map in the differentiable case. The G-moduleWω
s , which

is isomorphic to Vω
s , turns out to be very useful for the study of cohomology with

coefficients in Vω
s , discussed in detail in [2]. There we also study cohomology with

coefficients inVp
s , with p = 2, 3, . . . ,∞, and for this we need an analogueWp

s ofWω
s

related to p times differentiable functions. In this subsection we define such a space
and show that there is an equivariant isomorphism P†s : Vp

s →W
p

s . To generalize the
restriction ρs : Wω

s → V
ω

s we will defineWp
s not as a space of boundary germs, but

as a quotient of G-modules. In fact, we give a uniform discussion, covering also the
case p = ω treated in the previous subsections.

Definition 5.9. For p = 2, 3, . . . ,∞, ω we define Gp
s and N p

s as spaces of functions
f ∈ C2(D) for which there is a neighborhood U of ∂D = S in C such that the function
f̃ (w) = (1−|w|)−s f (w) extends as an element of Cp(U) and satisfies on U the conditions

p for Gp
s for N p

s

∈ Z≥2 ∆̃s f̃ (w) = o
(
(1 − |w|2)p) f̃ (w) = o

(
(1 − |w|2)p)

∞ the above condition for all p ∈ N the above condition for all p ∈ N
ω ∆̃s f̃ (w) = 0 f̃ (w) = 0

where ∆̃s is the differential operator corresponding to ∆ − λs under the transformation
f 7→ f̃ .

In the analytic case p = ω, the space Gωs consists of C2-representatives of germs
in Wω

s , and Nω
s consists of C2-representatives of the zero germ in Wω

s , i.e., Nω
s =

C2
c (D). Any representative of a germ can be made into a C2-germ by multiplying it by

a suitable cut-off function. ThusWω
s as as in Definition 5.2 is isomorphic to Gωs /N

ω
s .

We take C2-representatives to be able to apply ∆ without the need to use a distribution
interpretation.

In the upper half-plane model, there is an equivalent statement with f S replaced by
f P, and 2−2(1− |w|2) by y

|z+i|2 . The group G acts on Gp
s andN p

s for p = 2, . . . ,∞, ω, by
f | g(z) = f (gz), and the operator corresponding to ∆−λs is ∆̃s = −y2(∂2

y +∂2
x
(
−2sy ∂y

(cf. (5.14)).
The definition works locally: Gp

s (I) andN p
s (I), with I ⊂ ∂H open, are defined in the

same way, with Ω now a neighborhood of I in P1
C

. In the case that I ⊂ R in the upper
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half-plane model, we have f (z) = ys f̃ (z) on Ω ∩ H with f̃ ∈ Cp(Ω). On can check that
G

p
s and N p

s are sheaves on ∂H.
• Examples. The function z 7→ ys is in Gωs (R). The function Qs,n in (3.7) has the right
boundary behavior, but is not defined at w = 0 ∈ D. We can multiply it by reiθ 7→ χ(r)
with a smooth function χ that vanishes near zero and is equal to one on a neighborhood
on 1. In this way we obtain an element of Gωs .
• Restriction to the boundary. For f ∈ Gp

s the corresponding function f S on Ω has a
restriction to S1 that we denote by ρs f . It is an element ofVp

s . In this way, restriction
to the boundary gives a linear map

ρs : Gp
s −→ V

p
s (5.30)

that turns out to intertwine the actions of G, and that behaves compatibly with respect
to the inclusions Gp

s → G
q
s and Vp

s → V
q

s if q < p. This restriction map can be
localized to give ρs : Gp

s (I)→Vp
s (I) for open intervals I ⊂ ∂H.

Lemma 5.10. Let I ⊂ ∂H be open. For p = 2, . . . ,∞, ω the spaceN p
s (I) is a subspace

of Gp
s (I). It is equal to the kernel of ρs : Gp

s (I)→Vp
s (I).

Proof. The sheaf properties imply that we can work with I , ∂H. The action of G can
be used to arrange I ⊂ R in the upper half-plane model.

Let first p ∈ N, p ≥ 2. Suppose that f (z) = ys f̃ (z) on Ω ∩ H for some f̃ ∈ Cp(Ω),
with Ω a neighborhood of I in C. The Taylor expansion at x ∈ I gives for i, j ≥ 0,
i + j ≤ p

∂i
x∂

j
y f̃ (x + iy) =

p∑
n=i+ j

(n − i)!
(n − i − j)!

a(i)
n−i(x) yn−i− j + o

(
yp−i− j) (5.31)

on Ω, with

an(x) =
1
n!
∂n
y f̃ (x) .

The differential operator ∆− λs applied to f corresponds to the operator ∆̃s = −y2∂2
x −

y2∂2
y − 2sy∂y applied to f̃ on the region Ω ∩ H. Thus we find

∆̃s f̃ (x + iy) = −2sa1(x) −
p∑

n=2

(
a′′n−2(x) + n(n + 2s − 1)an(x)

)
yn + o(yp) . (5.32)

If f ∈ N p
s (I), then an = 0 for 0 ≤ n ≤ p, and ∆̃s f̃ (z) = o(yp). So f ∈ Gp

s (I), and
ρs f (x) = f̃ (x) = a0(x). Hence N p

s (I) ⊂ Ker ρs.
Suppose that f ∈ Gp

s (I) is in the kernel of ρs. Then a0 = 0. From (5.32) we have
a1 = 0 and a′′n−2 = n(1 − 2s − n)an for 2 ≤ n ≤ p. Hence an = 0 for all n ≤ p, and
f ∈ N p

s (I).

The case p = ∞ follows directly from the result for p ∈ N.

In the analytic case, p = ω, the inclusions Nω
s (I) ⊂ Gωs (I) and N p

s (I) ⊂ Ker ρs are
clear. If f ∈ Gωs (I) ∩ Ker ρs, then f̃ is real-analytic on Ω, and instead of the Taylor
expansion (5.31), we have a power series expansion with the same structure. Since
(Ker ρs) ∩ Gωs (I) ⊂ N∞s (I), we have an = 0 for all n, hence the analytic function f̃
vanishes on the connected component of Ω containing I. Thus, f ∈ Nω

s . �
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Relation (5.32) in this proof also shows that any f ∈ Gp
s (I) with I ⊂ R has the

expansion

f (x+ iy) =
∑

0≤k≤p/2

(−1/4)k Γ(s + 1
2 )

k! Γ(s + k + 1
2 )

ϕ(2k)(x) ys+2k +o(ys+p) (y ↓ 0 , x ∈ I) , (5.33)

with ϕ = ρs f ∈ Vp
s (I).

• Boundary jets. For p = 2, . . . ,∞ we define Wp
s as the quotient in the exact se-

quence of sheaves on ∂H

0 −→ N p
s −→ G

p
s −→W

p
s −→ 0 . (5.34)

In the analytic case, p = ω, we have already seen thatWω
s is the quotient of Gωs /N

ω
s .

In the differentiable case p = 2, . . . ,∞, an element ofWp
s (I) is given on a covering

I =
⋃

j I j by open intervals I j by a collection of f j ∈ G
p
s (I j) such that f j ≡ f ′j mod

N
p
s (I j ∩ I j′) in Gp

s (I j ∩ I j′) if I j ∩ I j′ , ∅. To each j is associated a neighborhood Ω j

of I j in P1
C

on which f Sj is p times differentiable. Add an open set Ω̂ ⊂ H such that
H ⊂ Ω̂∪

⋃
j Ω j. With a partition of unity subordinate to the collection {Ω̂}∪{Ω j : j}we

build one function f on H such that f S = (1 − |w|2)−s f (w) differs from f Sj on Ω j by an
element of N p

s (I j). In this way we obtainWp
s (I) = G

p
s (I)/N p

s (I) in the differentiable
case as well.

We have also

0 −→ N p
s (∂H) −→ Gp

s (∂H) −→Wp
s (∂H) −→ 0

as an exact sequence of G modules. We call elements of Wp
s boundary jets if p =

2, . . . ,∞. The G-morphism ρs induces a G-morphism ρs : Wp
s (I) → Vp

s (I) for p =

2, . . . ,∞, ω. The morphism is injective by Lemma 5.10. In fact it is also surjective:

Theorem 5.11. The restriction map ρs :Wp
s (I)→Vp

s (I) is an isomorphism for every
open set I ⊂ ∂H, for p = 2, . . . ,∞, ω.

The case p = ω was the subject of §5.2. Theorem 5.7 described the inverse P†s ex-
plicitly with a transverse Poisson integral, and Theorem 5.6 works with a power series
expansion. It is the latter approach that suggests how to proceed in the differentiable
and smooth cases. We denote the inverse by P†s , or by P†s,p if it is desirable to specify p.

Proof. In the differentiable case p ∈ N ∪ {∞}, it suffices to consider ϕ ∈ Cp
c (I) where

I is an interval in R. The obvious choice would be to define near I

f (z) =
∑

0≤k≤p/2

(−1)k

4k k!
(
s + 1

2
)
k

ϕ(2k)(x) ys+2k . (5.35)

However, this is in general not in Cp(H), because each term ϕ(2k)(x) ys+2k is only in
Cp−2k. Instead we set

f (z) = ys
∫ ∞

−∞

ω(t)ϕ(x + yt) dt = ys−1
∫ ∞

−∞

ω
( t − x
y

)
ϕ(t) dt , (5.36)
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where ϕ has been extended by zero outside its support, and where ω is an even real-
analytic function on R with quick decay that has prescribed moments

M2k :=
∫ ∞

−∞

t2k ω(t) dt =
(−1)k( 1

2 )k

(s + 1
2 )k

for even k ≥ 0 . (5.37)

(For instance we could take ω to be the Fourier transform of the product of the function

u 7→ Γ(s + 1
2 )

(
|u|
2

) 1
2−s

Is−1/2(|u|) and an even function in C∞c (R) that is equal to 1 on a
neighborhood of 0 in R. This choice is even real-analytic.) Replacing ϕ in (5.36) by its
Taylor expansion up to order p, we see that this formally matches the expansion (5.35),
but it now makes sense and is C∞ in all of H, as we see from the second integral. The
first integral shows that

f̃ (z) = y−s f (z) =

∫ ∞

−∞

ω(t)ϕ(x + yt) dt (5.38)

extends as a function in Cω(C).
Inserting the power series expansion of order p of ϕ at x ∈ I in (5.38) we arrive at

∆̃s f̃ (z) = O(yp). This finishes the proof in the differentiable and smooth cases. �

In the proof of Theorem 5.11 we have chosen a real-analytic Schwartz function ω
with prescribed moments. In the case p = 2, 3, . . . we may use the explicit choice in
the following lemma, which will be used in the next chapter:

Lemma 5.12. For any s < 1
2Z and any integer N ≥ 0 there is a unique decomposition

(t2 + 1)s−1 =
dNα(t)

dtN + β(t) (5.39)

where α(t) = αN,s(t) is (t2 +1)s−1 times a polynomial of degree N in t and β(t) = βN,s(t)
is O(t2s−N−3) as |t| → ∞.

We omit the easy proof. The first few examples are

(t2 + 1)s−1 =
d
dt

[ t(t2 + 1)s−1

2s − 1

]
+

2s − 2
2s − 1

(t2 + 1)s−2 ,

(t2 + 1)s−1 =
d2

dt2

[ (t2 + 1)s−1

(2s − 1)(2s − 3)
+

(t2 + 1)s

2s(2s − 1)

]
+

4(s − 1)(s − 2)
(2s − 1)(2s − 3)

(t2 + 1)s−3 ,

(t2 + 1)s−1 =
d3

dt3

[ 2t(t2 + 1)s−1

(2s + 1)(2s − 1)(2s − 3)
+

t(t2 + 1)s

2s(2s + 1)(2s − 1)

]
+

4(s − 1)(s − 2)
(2s + 1)(2s − 1)

(2s + 3
2s − 3

+ 3t2
)

(t2 + 1)s−4 .

In general we have

αN,s(t) =
1

2N

N/2∑
j=0

(
N − j − 1
N/2 − 1

)
(t2 + 1)s−1+ j

(s) j (s − N+1
2 + j)N− j

if N ≥ 2 is even, where (s) j = s(s + 1) · · · (s + j − 1) is the ascending Pochhammer
symbol, and a similar formula if N is odd, as can be verified using the formula

1
n!

dn

dtn (t2 + 1)s−1 =
∑

0≤ j≤n/2

(
n − j

j

) (
s − 1
n − j

)
(2t)n−2 j (t2 + 1)s−n+ j .
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Let us compute the moments of β = βN,s as in (5.39). For 0 ≤ n < N we have∫ ∞

−∞

tn β(t) dt =

∫ ∞

−∞

(
(t2 + 1)s−1 −

dNα(t)
dtN

)
tn dt .

This is a holomorphic function of s on Re s < 1. We compute it by considering
Re s < − n

2 :∫ ∞

−∞

tn(t2 + 1)s−1 dt =


∫ 1

0 x
n−1

2 (1 − x)−s− n+1
2 dx if n is even ,

0 if n is odd ;

=
√
π tan πs

Γ(s)
Γ(s + 1

2 )
·

 (−1)k ( 1
2 )k

(s+ 1
2 )k

if n = 2k is even ,

0 if n is odd .

(5.40)

So a multiple of βN,s has the moments that we need in the proof of Theorem 5.11.

6. Boundary behavior of mixed eigenfunctions

In this section we combine ideas from §4 and §5. Representatives u of elements of
Wω

1−s have the special property that
(
1 − |w|2

)s−1 u(w) (in the circle model) or ys−1u(z)
(in the line model) extends analytically across the boundary ∂H. If such an eigenfunc-
tion occurs in a section (h, u) of the sheaf Ds of mixed eigenfunctions we may ask
whether a suitable multiple of h also extends across the boundary. In §6.3 we will
show that this is true locally (Theorem 6.2), but not globally (Proposition 6.5).

In §6.1 we use the differential equations satisfied by y−su for representatives u of
elements of Wω

s to define an extension As of the sheaf Es from H to P1
C

. We also
extend the sheaf Ds on P1

C
× H to a sheaf D∗s on P1

C
× P1

C
that has the same relation

to A1−s as the relation of Ds to Es = E1−s. In §6.2 we show that the power series
expansion of sections of As leads in a natural way to sections of D∗1−s, a result which
is needed for the proofs in §6.3, and in §6.4 we give the generalization of Theorem 4.13
to the sheafD∗s. Finally, in §6.5 we consider the sections ofDs near P1

R × H.

6.1. Interpolation between sheaves on H and its boundary. In this subsection we
formulate results from §5.2 in terms of a sheaf on P1

C
that is an extension of the sheaf

Es. This will be used in the rest of this section to study the behavior of mixed eigen-
functions near the boundary P1

C
×P1
R of P1

C
×H and to extend them across this boundary.

We also define an extensionD∗s of the sheafDs of mixed eigenfunctions.
For an open set U ⊂ C, let As(U) be the space of real-analytic solutions A(z)

of (5.14) in U. For U ⊂ P1
C

containing ∞ the definition is the same except that the
solutions have the form A(z) = |z|−2sA∞(−1/z) for some real-analytic function A∞

near 0 (which then automatically satisfies the same equation). The action (5.10) makes
As into a G-equivariant sheaf: A 7→ A|g defines an isomorphism As(U) � As(g−1U)
for any open U ⊂ P1

C
and g ∈ G.

For any U ⊂ P1
C

, the space As(U) can be identified via A(z) 7→ u(z) = |y|sA(z)
with a subspace of the space Es

(
U r P1

R

)
of λs-eigenfunctions of the Laplace operator

∆ = −y2(∂2
x + ∂2

y) in P1
C
r P1
R (up to now we have considered the operator ∆ and the
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sheaf Es only on H), namely the subspace consisting of functions which are locally of
the form |y|s × (analytic) near R and of the form |y/z2|s × (analytic) near∞.

If U ⊂ P1
C
rP1
R, then the map A 7→ u is an isomorphism betweenAs(U) and Es(U).

(In this case the condition “real-analytic” in the definition of As(U) can be dropped,
since C2 or even distributional solutions of the differential equation are automatically
real-analytic.) At the opposite extreme, if U meets P1

R in a non-empty set I, then any
section ofAs over U restricts to a section ofVω

s over I, and for any I ⊂ P1
R we obtain

from Theorem 5.6 an identification between Vω
s (I) and the inductive limit of As(U)

over all neighborhoods U ⊃ I. The sheafAs thus “interpolates” between the sheaf Es
on P1

C
rP1
R and the sheafVω

s on P1
R. At points outside P1

R the stalks ofAs are the same
as those of Es, while at points in P1

R the stalks of the sheaves As, Vω
s and Wω

s are
all canonically isomorphic. At the level of open sets rather than stalks, Theorem 5.7
says that the space As(U) for suitable U intersecting P1

R is isomorphic to O(U) by a
unique isomorphism compatible with restriction to U ∩ R, the isomorphisms in both
directions being given by explicit integral transforms. Finally, from (5.15) we see that
if U is connected and invariant under conjugation, then any A ∈ As(U) is invariant
under z 7→ z̄. In the language of sheaves, this says that, if we denote by c : P1

C
→ P1

C

the complex conjugation, the induced isomorphism c : c−1As → As is the identity
when restricted to P1

R.
We now do the same construction for the sheafDs of mixed eigenfunctions, defining

a sheafD∗s on P1
C
×P1
C

which bears the same relation toDs asAs has to Es. (We could
therefore have used the notation E∗s instead of As, but since As interpolates between
two very different subsheaves Es andVω

s , we preferred a neutral notation which does
not favor one of these aspects over the other. Also, Es = E1−s, butAs , A1−s .)

Let (h, u) be a section of the sheaf Ds in U ∩
(
C × H

)
, where U is a neighborhood

in C × C of a point (x0, x0) with x0 ∈ R. The function u(z) is a λs-eigenfunction
of ∆, and we can ask whether it ever has the form ys A(z) or y1−s A(z) with A(z) (real-)
analytic near x0. It turns out that the former does not happen, but the latter does, and
moreover that in this case the function h(ζ, z) has the form y−s B(ζ, z) where B(ζ, z)
is also analytic in a neighborhood of (x0, x0) ∈ C × C. To see this, we make the
substitution

u(z) = y1−s A(z) , h(ζ, z) = y−s B(ζ, z) (6.1)
in the differential equations (4.34) to obtain that these translate into the differential
equations

(ζ − z) ∂zB = −s B −
is
2

(ζ − z̄) A , (6.2a)

(ζ − z̄) ∂z̄
(
B − yA

)
= −s B −

is
2

(ζ − z̄) A , (6.2b)

for A and B, in which there is no singularity at y = 0. (This would not work if we had
used u = ysA, h = y∗B instead.)

As long as z is in the upper half-plane, equations (6.1) define a bijection between
pairs (h, u) and pairs (B, A), and it makes no difference whether we study the original
differential equations (4.34) or the new ones (6.2). The advantage of the new system is
that it makes sense for all z ∈ C and defines a sheaf D∗s on C × C whose sections over
U ⊂ C × C are real-analytic solutions (B, A) of (6.2) in U with B holomorphic in the
first variable and A locally constant in the first variable. This sheaf is G-equivariant
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with respect to the action (B, A)|g = (B|g, A|g) given for g =
[a

c
b
d
]

by

B|g(ζ, z) = |cz + d|2sB(gζ, gz) , A|g(z) = |cz + d|2s−2A(gz) , (6.3)

so it extends to a sheaf on all of P1
C
× P1

C
by setting D∗s(U) = D∗s(g

−1U)|g if U is a
small neighborhood of a point (ζ0,∞) or (∞, z0) and g is chosen with g−1U ⊂ C × C.

In (4.38) and (4.39) we give a formula for h in terms of u near the diagonal and the
antidiagonal where (h, u) is a section of Ds. In terms of A = ys−1u and B = ysh this
formula becomes

B(ζ, z) =


−

i
2

(ζ − z̄)
∑
n≥0

∂nA
∂zn (z)

(ζ − z)n

(1 − s)n
for ζ near z ,

−
i
2

(ζ − z)
∑
n≥1

∂nA
∂z̄n (z)

(ζ − z̄)n

(1 − s)n
−

i
2

(ζ − z̄)A(z) for ζ near z̄ .
(6.4)

Now inspection shows that the right hand side of (6.4) satisfies the differential equa-
tions (6.2), whether z ∈ H or not, so (B, A) with B as in (6.4) gives a section of D∗s on
neighborhoods of points (z, z) and (z̄, z) for all z ∈ C. From (6.4) it is not clear that for
z ∈ R both expressions define the same function on a neighborhood of z. In the next
subsection we will see that they do.

6.2. Power series expansion. Sections ofAs are real-analytic functions of one com-
plex variable, and hence can be seen as power series in two variables. In this subsection
we show that the coefficients in these expansions have interesting properties. They will
be used in §6.3 to study the structure of sections of Ds and D∗s near the diagonal of
P1
R × P

1
R.

Let U ⊂ C be open, and let z0 ∈ U. We write the expansion of a section A ofAs at a
point z0 in the strange form (the reason for which will become apparent in a moment)

A(z) =
∑

m,n≥0

(
m + s − 1

m

) (
n + s − 1

n

)
cm,n(z0) (z − z0)m (z − z0)n . (6.5)

Then we have the following result.

Theorem 6.1. Let U ⊂ C, A ∈ As(U), and for z0 ∈ U define the coefficients cm,n(z0)
for m, n ≥ 0 by (6.5). Let r : U → R+ be continuous. Then the series (6.5) converges
in |z − z0| < r(z0) if and only if the series

ΦA(z0; v, w) :=
∑

m,n≥0

cm,n(z0) vmwn (6.6)

converges for |v|, |w| < r(z0). The function defined by (6.6) has the form

ΦA(z0; v, w) =
B(z0 + v, z0) − B(z̄0 + w, z0)

y0 + (v − w)/2i
(6.7)

for a unique analytic function B on

U′ =
{
(ζ, z) ∈ C × U : |ζ − z| < r(z)

}
∪

{
(ζ, z) ∈ C × U : |ζ − z̄| < r(z)

}
satisfying B(ζ, z) = y A(z) and B(z̄, z) = 0 for z ∈ U, and the pair (B, A) is a section of
D∗1−s over U′.
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Proof. The fact that
(

m+s−1
m

)
= mO(1) as m → ∞ implies the relation between the

convergence of (6.5) and (6.6). (We use here that a power series
∑

cmn,nv
nwm in two

variable converges for |v|, |w| < r if and only if its restriction to w = v̄ converges for
|v| < r.) The differential equation (5.14) is equivalent to the very simple recursion

2iy0 cm,n(z0) = cm,n−1(z0) − cm−1,n(z0) (m, n ≥ 1) (6.8)

for the coefficients cm,n(z0). (This was the reason for the choice of the normalization
in (6.5). ) This translates into the fact that (2iy0 + v − w) ΦA(z0; v, w) is the sum of a
function of v alone and a function of w alone, i.e., we have

ΦA(z0; v, w) =
LA(z0; v) − RA(z0;w)
y0 + (v − w)/2i

, (6.9)

where, if we use the freedom of an additive constant to normalize RA(z0; 0) = 0,
the functions LA and RA are given explicitly in terms of the boundary coefficients
{c j,0(z0)} j≥0 and {c0, j(z0)} j≥1 by

2i LA(z0; v) = (v + 2iy0)
∑
m≥0

cm,0(z0) vm ,

2i RA(z0;w) = c0,0(z0)w + (w − 2iy0)
∑
n≥1

c0,n(z0)wn .
(6.10)

(Multiplied out, this says that coefficients cm,n(z0) satisfying (6.8) are determined by
their boundary values by

cm,n(z0) =

m∑
j=1

(−1)n

(2iy0)m+n− j

(
m− j+n−1

m− j

)
c j,0(z0)

+

n∑
j=1

(−1)n− j

(2iy0)m+n− j

(
n− j+m−1

n− j

)
c0, j(z0) ,

(6.11)

which of course can be checked directly.)
We define B on U′ (now writing z instead of z0) by

B(ζ, z) =

 LA(z, ζ − z) if |ζ − z| < r(z) ,
RA(z, ζ − z̄) if |ζ − z̄| < r(z) .

(6.12)

These two definitions are compatible if the disks in question overlap (which happens
if r(z) > |y0|), because the convergence of (6.6) for |v|, |w| < r(z) implies that the
fraction in (6.9) is holomorphic in this region, and hence that its numerator vanishes if
z0 + v = z̄0 + w.

Surprisingly, the function B thus defined constitutes, together with the given sec-
tion A of As, a section (B, A) of D∗1−s for ζ near z or z̄. To see this, we apply the
formulas (6.4), with s replaced by 1 − s, and express the derivatives of A in the coef-
ficients cm,n(z) with help of (6.5). We find that the first expression in (6.4) is equal to
LA(z; ζ − z), and the second one to RA(z; ζ − z̄). �

Example 1. Let A(z) ∈ As
(
C r {0}

)
be the function |z|−2s. For any z0 , 0 the binomial

theorem gives cm,n(z) = (−1)m+n |z0|
−2s z−m

0 z̄−n
0 and

ΦA(z0; v, w) =
|z0|

2−2s

(z0 + v)(z̄0 + w)
=

1
2iy0 + v − w

( |z0|
2−2s

z̄0 + w
−
|z0|

2−2s

z0 + v

)
, (6.13)
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in accordance with (6.7) with the solution B(ζ, z) = i
2 |z|

2−2s
(
ζ−1 − z̄−1

)
, defined on

z , 0, ζ , 0. (The regions |ζ − z| < |z| and |ζ − z̄| < z do not overlap.)
Example 2. If z0 ∈ R, then (6.8) says that cm,n(z0) depends only on n + m, so the
generating function ΦA has an expansion of the form

ΦA(z0; v, w) =

∞∑
N=0

CN(z0)
vN+1 − wN+1

v − w
.

Hence in this case we have A(z) =
∑

N≥0 CN(z0)PN(z − z0) where PN is the section
ofAs defined by

PN(z) := (−1)N
∑

m,n≥0,m+n=N

(
−s
m

) (
−s
n

)
zm z̄n , (6.14)

a polynomial that already occurred in (5.17).
Example 3. Let A(z) = y−s ps,k(z, i), defined in (3.5), with z0 = i and k ≥ 0. We
describe A(z) =

Γ(s+k)
k! Γ(s−k) Ã(w) first in the coordinate w = z−i

z+i of the disk model. Taking
into account (A.8) and (A.9) we obtain

Ã(w) = wk
(1 − w w̄
|1 − w|2

)−s
(1 − w w̄)s F

(
s, s + k; 1 + k, w w̄

)
.

Set p = (z − i)/2i, so that w = p/(p + 1). Then

Ã(w) = (1 − w)s (1 − w̄)s
∑
l≥0

(s)` (s + k)`
(1 + k)` `!

wk+`w̄`

=
∑
`≥0

(
−s
`

) (
−s − k
`

) (
` + k
`

)−1

pk+` p̄` (1 + p)−s−k−` (1 + p̄)−s−`

=
∑
`,i, j≥0

(
−s
`

) (
−s − k
`

) (
` + k
`

)−1 (
−s − k − `

i

) (
−s − `

j

)
pk+`+i p̄`+ j

=
∑

m≥k, n≥0

pm p̄n
(
−s − k
m − k

) (
−s
n

) (
n + k

k

)−1 n∑
l=0

(
m − k
`

) (
n + k
n − `

)

=
∑

m≥k, n≥0

(z − i
2i

)m ( z̄ + i
−2i

)n
(
−s − k
m − k

) (
−s
n

) (
n + k

k

)−1 (m + n
n

)
.

Hence A has an expansion as in (6.5) with

c[k]
m,n(i) := cm,n(i) = (−1)m (2i)−m−n (1 − s)k

(m + n
n + k

)
(6.15a)

(= 0 if m < k), which satisfies the recursion (6.8).

The analogous computation for k < 0 gives

c[k]
m,n(i) = (−1)m(2i)−m−n (1 − s)k

(m + n
m − k

)
(6.15b)

(= 0 if n < −k).3

3The Pochhammer symbol (x)k is defined for k < 0 as (x−1)−1 · · · (x−|k|)−1, so that (x)k = Γ(x+k)/Γ(x)
in all cases.
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In this example we can describe the form of the function B up to a factor without
computation by equivariance: since z 7→ ps,n(z, i) transforms according to the character[ cos θ
− sin θ

sin θ
cos θ

]
7→ e2ikθ, the function h = ys−1B should do the same near points of the

diagonal or the antidiagonal. Thus, for k ≥ 0 we know that B(ζ, i) is a multiple of
( ζ−i
ζ+i

)k

near ζ = i, and vanishes near ζ = −i, while for k < 0, we have B(ζ, i) = 0 for ζ near i,
and B(ζ, i) is a multiple of

( ζ−i
ζ+i

)k for ζ near −i. The explicit computation using (6.12),

(6.10) and (6.15) confirms these predictions, giving B(ζ, i) = (−1)k (1 − s)k
( ζ−i
ζ+i

)k if

k ≥ 0 and ζ is near i, and B(ζ, i) = −(−1)k Γ(k+1−s)
Γ(1−s)

( ζ−i
ζ+i

)k if k < 0 and ζ is near −i.
Note that, since any holomorphic function of ζ near i (resp. −i) can be written as a

power series in ζ−i
ζ+i (resp. ζ+i

ζ−i ) we see that this example is generic for the expansions of
A and B for any section (B, A) ofDs near (ζ, z) = (±i, i), and hence by G-equivariance
for z near any z0 ∈ H and ζ near z0 or z̄0.

Remark. We wrote formula (6.5) as the expansion of a fixed section A ∈ As(U) around
a variable point z0 ∈ U. If we simply define a function A(z) by (6.5), where z0 (say
in H) is fixed, then we still find that the differential equation (∆ − λs)

(
ys A( · , z0)

)
= 0

is equivalent to the recursion (6.8) and to the splitting (6.9) of the generating function
ΦA defined by (6.6). In this way we have constructed a very large family of (locally
defined) λs-eigenfunctions of ∆: for any z0 ∈ H and any holomorphic functions L(v)
and R(w) defined on disks of radius r ≤ y0 around 0, we define coefficients cm,n either
by (6.9) and (6.6) or by (6.10) and (6.11); then the function u(z) = ys A(z) with A given
by (6.5) is a λs-eigenfunction of ∆ in the disk of radius r around z0.

6.3. Mixed eigenfunctions near the diagonal of P1
R×P

1
R. Parts i) and iv) of Proposi-

tion 4.10 show that if (h, u) is a section ofDs near a point (z, z) ∈ H×H of the diagonal
or a point (z̄, z) ∈ H− ×H of the antidiagonal, then the function h and u determine each
other. Diagonal points (ξ, ξ) ∈ P1

R×P
1
R are not contained in the set P1

C
×H on which the

sheafDs is defined. Nevertheless, there is a relation between the analytic extendability
of h and u near such points, which we now study.

Theorem 6.2. Let ξ ∈ P1
R. Suppose that (h, u) is a section of Ds over U ∩

(
H × H

)
for some neighborhood U of (ξ, ξ) in P1

C
× P1

C
. Then the following statements are

equivalent:
a) The function ys−1u extends real-analytically to a neighborhood of ξ in P1

C
.

b) The function ysh extends real-analytically to a neighborhood of (ξ, ξ) in P1
C
×

P1
C

.
c) The function ysh extends real-analytically to U′∩

(
P1
C
×H

)
for some neighbor-

hood U′ of (ξ, ξ) in P1
C
× P1
C

.

The theorem can be formulated partly in terms of stalks of sheaves. In particular,
the functions u in a) represent elements of the stalk (Wω

1−s)ξ , and the pairs (ysh, ys−1u)
with ys−1u as in a) and ysh as in b) represent germs in the stalk

(
D∗s

)
(ξ,ξ). The theorem

has the following consequence:

Corollary 6.3. For each ξ ∈ P1
R the morphism C : Ds → p−1

2 Es in Theorem 4.13
induces a bijection

lim
−→

U

Ds
(
U ∩ (P1

R × H)
)
�

(
Wω

1−s
)
ξ ,
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where U runs over the open neighborhoods of (ξ, ξ) in P1
C
× P1
C

, and(
Wω

1−s
)
ξ �

(
D∗s

)
(ξ,ξ) .

Proof of Theorem 6.2. We observe that since U ∩ (H × H) intersects the diagonal, the
functions h and u in the theorem determine each other near (ξ, ξ) by virtue of parts i)
and iv) of Proposition 4.10. Hence the theorem makes sense.

Clearly b) ⇒ c). We will prove a) ⇒ b) and c) ⇒ a). By G-equivariance we can
assume that ξ = 0.

For a)⇒ b) we write u = y1−sA with A real-analytic on a neighborhood of 0 in C.
We apply Theorem 6.1. The power series (6.5) converges for |z0| ≤ R, |z − z0| < r for
some r,R > 0. (Choose r to be the minimum of r(z0) in |z0| ≤ R for R small.) The
theorem gives us an analytic function B on the region W =

{
(ζ, z) ∈ C × C : |z| <

R, |ζ − z| < r
}

such that (B, A) ∈ D∗s(W). By the uniqueness clause of Proposition 4.11,
the restriction of B to W ∩

(
C × H

)
is ysh. Since (0, 0) ∈ W this gives b).

For c) ⇒ a) we start with a section (ysB, y1−sA) of Ds
(
UR × U+

R
)

for some R > 0,
where UR = {z ∈ C : |z| < R} and U+

R = UR ∩ H. Then A ∈ A1−s(U+
R ). We apply

Theorem 6.1 again, with z0 ∈ U+
R . By the uniqueness clause in Proposition (4.11)

the function B appearing in (6.7) is the same as the given B in a neighborhood of{
(z, z) : z ∈ U+

R
}
∪

{
(z̄, z) : z ∈ U+

R
}
. Since B( · , z0) is holomorphic in UR for each

z0 ∈ U+
R , the right hand side of (6.7) is holomorphic for all v, wwith |z0 +v|, |z̄0 +w| < R.

(The denominator does not produce any poles since the numerator vanishes whenever
the denominator does.) Hence the first statement of Theorem 6.1 shows that the series
(6.5) represents A(z) on the open disk |z − z0| < R − |z0|. For |z0| <

1
2 R this disk

contains 0, so A is real-analytic at 0. �

In Proposition 5.5 we showed that the Poisson transform of a hyperfunction repre-
sents an element ofWω

1−s outside the support of the hyperfunction. With Theorem 6.2
we arrive at the following more complete result.

Theorem 6.4. Let I ⊂ ∂H be open, and let α ∈ V−ωs . Then Psα represents an element
ofWω

1−s(I) if and only if I ∩ Supp (α) = ∅.

Proof. Proposition 5.5 gives the implication ⇐ . For the other implication suppose
that Psα represents an element of Wω

1−s(I). Let gcan be the canonical representative
of α, defined in §4.1. Then (gcan,Psα) ∈ Ds

(
(P1
C
r P1

R) × H
)

by Theorem 4.8 and
Definition 4.9. The implication a)⇒ b) in Theorem 6.2 gives the analyticity of ys gcan
on a neighborhood of (ξ, ξ) in P1

C
× P1

C
for each ξ ∈ I. It follows that for z0 ∈ H

sufficiently close to ξ the function gcan( · , z0) is holomorphic at ξ. It then follows from
the definition of the mixed hybrid model in §4.1 that gcan( · , z) is holomorphic at ξ for
all z ∈ H. Thus ξ cannot be in Supp (α). �

Theorem 6.2 is a local statement. We end this subsection with a generalization of
Proposition 4.14, which shows that the results of Theorem 6.2 have no global counter-
part. For convenience we use the disk model.

Proposition 6.5. Let A ⊂ D be an annulus of the form r1 < |w| < 1 with 0 ≤ r1 < 1,
and let V ⊂ P1

C
be a connected open set that intersects the region r1 < |w| < r−1

1 .
ThenDs(V × A) does not contain non-zero sections of the form (h, u) where u ∈ Es(A)
represents an element ofWω

1−s.
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Proof. The proof is similar to that of Proposition 4.14. Suppose that (h, u) ∈ Ds(V×A)
where u represents an element of Wω

1−s. By (4.36c) the holomorphic function ξ 7→∫
C

[
RS(ξ; · )s, u

]
is identically zero on some neighborhood ρ < |ξ| < ρ−1 of the unit

circle. We have the absolutely convergent representation u =
∑

n bnQ1−s,n on A for a
sequence (bn) of complex numbers. Combining this with the expansion RS(ξ; · )s =∑

m
(−ξ)−m

(1−s)m
P1−s,m and (3.18), we obtain∑

n

bn
(−ξ)n

(1 − s)m
= 0

for all ξ ∈ S1. Hence all bn vanish, so u and hence also h are zero. �

Corollary 6.6. If V is a neighborhood of ∂D in P1
C

, thenDs
(
V × (V ∩ H)

)
= {0}.

Proof. Let (h, u) ∈ Ds
(
V×(V∩H)

)
. Corollary 6.3 implies that u ∈ Es(B∩D) represents

an element ofW1−s
ω . The neighborhood V contains an annulus of the form r1 < |w| <

r−1
1 , and Proposition 6.5 shows that (h, u) = (0, 0). �

6.4. The extended sheaf of mixed eigenfunctions. In §6.1 we defined an extension
D∗s of the sheaf of mixed eigenfunctions from P1

C
× H to P1

C
× P1
C

. We now prove an
analogue of Theorem 4.13, the main result on the sheafDs, forD∗s.

We denote by O the sheaf of holomorphic functions on P1
C

, by p j : P1
C
× P1
C
→ P1

C
the projection of the j-th factor ( j = 1, 2), and put ∆± =

{
(z, z)

}
z∈P1
C
∪

{
(z, z̄)

}
z∈C. We

define K∗s to be the subsheaf ofD∗s whose sections have the form (B, 0).

Theorem 6.7. The sheaf K∗s is the kernel of the surjective sheaf morphism C : D∗s →
p−1

2 As that sends (B, A) ∈ D∗s(U) (U ⊂ P1
C
× P1
C

open) to A. The restriction of K∗s to
∆± vanishes, and its restriction to

(
P1
C
× P1
C

)
r ∆± is locally isomorphic to p−1

1 O.

This theorem gives us the exact sequence

0 −→ K∗s −→ D
∗
s

C
−→ p−1

2 A1−s −→ 0

generalizing the exact sequence in Theorem 4.13.

Proof. By G-equivariance we can work on open U ⊂ C × C. The differential equa-
tions (6.2) imply that sections (B, 0) ofD∗s on U have the form B(ζ, z) = ϕ(ζ) (ζ − z)s

(ζ − z̄)s for some function ϕ. The analyticity of B implies that ϕ = 0 near points of ∆±,
and the holomorphy of B in its first variable implies that ϕ is holomorphic. ThusK∗s is
locally isomorphic to ∂−1

1 O outside ∆∗ and its stalks at points of ∆∗ vanish.
Let (h, u) be a section of D∗s over some open U ⊂ C × C. Denote by D(a) and D(b)

the expressions in the left hand sides of (6.2). A computation shows that(
(ζ − z̄)∂z̄ + s

)
D(a) −

(
(ζ − z)∂z + s

)
D(b)

is 1
2i (ζ − z) (ζ − z̄) times (z − z̄)Azz̄ − (1 − s) Az + (1 − s) Az̄. The vanishing of the latter

is the differential equation defining A1−s. So A is a section of A1−s on p2U r ∆∗. By
analyticity it is in A1−s(p2U). Hence C : (B, A) 7→ A determines a sheaf morphism
between the restrictions of D∗s and p−1

2 A1−s on C × C, and by G-equivariance on
P1
C
× P1
C

.



62 R. BRUGGEMAN, J. LEWIS, AND D. ZAGIER

To prove the surjectivity of C we constructed for each (ζ0, z0) ∈ C × C and each
A ∈ As(U) for some neighborhood U of z0 a section (B, A) ofD∗s on a possibly smaller
neighborhood of (ζ0, z0). This suffices by G-equivariance.

For (ζ0, z0) ∈ ∆∗ this construction is carried out in (6.4). Let (ζ0, z0) < ∆∗. The
integral in (4.41) suggests that we should consider the differential form

ω = ys [(R(ζ; z1)/R(ζ; z)
)s, y1−s

1 A(z1)
]
z1

=
( (ζ − z)(ζ − z̄)
(ζ − z1)(ζ − z̄1)

)s ( s(ζ − z̄1)
2i(ζ − z1)

A(z1) dz1 +
( i
2

(1 − s)A(z1) + y1 Az̄(z1)
)

dz̄1

)
.

Choosing continuous branches of
( (ζ−z)(ζ−z̄)

(ζ−z1)(ζ−z̄1)
)s near (ζ0, z0) we obtain B(ζ, z) =

∫ z
z0
ω

such that (B, A) satisfies (6.2) near (ζ0, z0), which can be checked by a direct computa-
tion, and follows from the proof of Theorem 4.13 if z0 ∈ H. �

Remark. We definedD∗s in such a way that the restriction ofD∗s to P1
C
×H is isomorphic

to Ds. Let c : (ζ, z) 7→ (ζ, z̄). An isomorphism D∗s → c−1D∗s is obtained by B̃(ζ, z) =

B(ζ, z̄)+yA(z̄), Ã(z) = A(z̄). So the restriction ofD∗s to P1
C
×H− is isomorphic to c−1Ds.

New in the theorem is the description ofD∗s along P1
C
×P1
R. In points (ξ, ξ) with ξ ∈ P1

R
the surjectivity of C is the step a)⇒ b) in Theorem 6.2.

6.5. Boundary germs for the sheaf Ds. In Subsection 6.3 we considered sections
of Ds that extend across ∂H and established a local relation between these sections
and the sheafWω

1−s. In this subsection we look instead at the sections ofDs along the
inverse image p−1

1 P
1
R, where p1 : P1

C
×H→ P1

C
is the projection on the first component.

The proofs will be omitted or sketched briefly.
A first natural thought would be to consider the inductive limit lim

−→
Ds

(
U∩(P1

C
×H)

)
,

where U runs through the collection of all neighborhoods of P1
R × P

1
R in P1

C
× P1
C

, but
Corollary 6.6 shows that this space is zero. Instead, we define

ds = lim
−→
Ds

(
U r (P1

R × H
))
, hs = lim

−→
Ds

(
U

)
, (6.16)

where the open sets U run over either
(a) the collection of open neighborhoods of P1

R × H in P1
C
× H , or

(b) the larger collection of open neighborhoods of P1
R × H

′ in P1
C
× H′ with H′ the

complement of some compact subset of H .
It turns out that the direct limits in (6.16) are the same for both choices. Clearly ds
contains hs and the group G acts on both spaces. The canonical model Cs is a subspace
of the space ds.

In Theorem 4.13 we considered the sheaf morphism C : Ds → p−1
2 Es that sends a

pair (h, u) to its second coordinate u = u(ζ, z), which is locally constant in ζ and a λs-
eigenfunction in z. This morphism induces a surjective map C : hs → Es whose kernel
is the space Vω,rig

s introduced in §4.1. It also induces a map (still called C) from the
larger space ds to Es ⊕Es by sending (h, u) to the pair (u+, u−), where u±( · ) = u(ζ±, · )
for any ζ± ∈ H±. This map is again surjective and its kernel is the space Hrig

s studied
in §4.1. Moreover, the results of that subsection show that the kernels of these two
maps C are related by the exact sequence

0 −→ Vω,rig
s −→ Hrig

s
Ps
−→ Es −→ 0 ,
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where the Poisson map Ps is given explicitly by

Psh(z, z1) =
1
π

(∫
C+

−

∫
C−

) (R(ζ; z1)
R(ζ; z)

)s
h(ζ, z1) R(ζ; z) dζ (z, z1 ∈ H),

(eq. (4.15)). Here C+ (resp. C−) is a closed path in H (resp. H−) encircling z and z1
(resp. z̄ and z̄1) and the right-hand side is independent of z1. Now consider an element
of hs represented by the pair (h, u) ∈ Ds

(
U r (P1

R×H)
)

for some open neighborhood U
of P1

R × H in P1
C
× H, and define Psh(z, z1) by the same formula, where C± are now re-

quired to lie in the neighborhood
{
ζ ∈ P1

C
| (ζ, z1) ∈ U

}
of P1

R and to be homotopic to P1
R

in this neighborhood. The right-hand side is still independent of the choice of contours
C±, and is also independent of the choice of representative (h, u) of [(h, u)] ∈ ds, but it
is no longer independent of z1. Instead, we have that the function Psh( · , z1) belongs to
Es for each fixed z1 ∈ H and that its dependence on z1 is governed by

dz1

(
Ps(h, u)(z, z1)

)
=

[
ps( · , z), u+ − u−

]
(6.17)

with the Green’s form as in (3.13) and the point-pair invariant ps( · , · ) as in (3.6).
We therefore define a space E+

s consisting of pairs ( f , v) where v belongs to Es and
f : H × H→ C satisfies

f ( · , z1) ∈ Es for each z1 ∈ H , (6.18a)

d
(
f (z, · )

)
= [ps( · , z), v] on H for each z ∈ H . (6.18b)

The group G acts on this space by composition (diagonally in the case of f ). By the
discussion above we can define an equivariant and surjective map P+

s : hs → E+
s

with kernel hs by [(h, u)] 7→
(
Psh, u+ − u−

)
. Finally, the space E+

s is mapped to Es by
( f , v) 7→ v with kernel Es (because f ( · , z1) is constant if v = 0). (In fact, the space
E+

s is isomorphic to Es × Es as a vector space, though not as a G-module, by the map
sending ( f , v) to

(
f ( · , i), v

)
.) Putting all these maps together, we can summarize the

interaction of the morphisms C and Ps by the following commutative diagram with
exact rows and columns:

0

��

0

��

0

��
0 // V

ω,rig
s

//

��

hs
C //

��

Es //

diag
��

0

0 // Hrig
s

//

Ps��

ds
C //

P+
s��

Es ⊕ Es //

(1,−1)
��

0

0 // Es

��

// E+
s

��

pr2 // Es

��

// 0

0 0 0

7. Boundary splitting of eigenfunctions

In the introduction we mentioned that eigenfunctions often have the local form
ys × (analytic) + y1−s × (analytic) near points of R. Here we consider this pheno-
menon more systematically in both the analytic context (§7.1) and the differentiable
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context (§7.2). This will lead in particular to a description of both Eωs = Ps(Vω
s ) and

E∞s = Ps(V∞s ) in terms of boundary behavior.
As stated in the introduction, results concerning the boundary behavior of elements

of Es are known (also for more general groups; see, eg., [7] and [1]). However, our
approach is more elementary and also includes several formulas that do not seem to be
in the literature and that are useful for certain applications (such as those in [2].

7.1. Analytic case. In Proposition 5.3 we showed that the space Fs of boundary germs
is the direct sum of Es (the functions that extend to the interior) andWω

s (the functions
that extend across the boundary). We now look at the relation of these spaces with Eωs ,
the image in Es ofVω

s under the Poisson transformation.
If s , 1

2 we denote by F ω
s the direct sum ofWω

s andWω
1−s. (That this sum is direct

is obvious since for s , 1
2 an eigenfunction u cannot have the behavior ys × (analytic)

and at the same time y1−s × (analytic) near points of R.) For s = 1
2 we will define

F ω
1/2 as a suitable limit of these spaces in the following sense. If s , 1

2 , an element
of F ω

s is locally (near x0 ∈ R) represented by a linear combination of ys and y1−s

with coefficients that are analytic in a neighborhood of x0. Replacing ys and y1−s by
1
2

(
ys + y1−s

)
and 1

2s−1

(
ys − y1−s

)
, we see that an element of F ω

1/2 should (locally) have
the form A(z) y1/2 log y+B(z) y1/2 with A and B analytic at x0. We therefore define F ω

1/2
(now using disk model coordinates to avoid special explanations at∞) as the space of
germs in F1/2 represented by

f (w) = (1 − |w|2)1/2
(
A(w) log(1 − |w|2) + B(w)

)
, (7.1)

with A and B real-analytic on a neighborhood of S1 in C. We have a G-equivariant
exact sequence

0 −→Wω
1/2 −→ F

ω
1/2

τ
−→Wω

1/2 −→ 0 (7.2)

where τ sends f in (7.1) to A. The surjectivity of τ is a consequence of the following
proposition, which we will prove below. This proposition shows that for all s with
0 < Re s < 1 the space F ω

s is isomorphic as a G-module to the sum of two copies
ofVω

s .

Proposition 7.1. The exact sequence (7.2) splits G-equivariantly.

The splittings Fs = Es⊕W
ω

s = Es⊕W
ω

1−s show that non-zero elements of Es cannot
belong toWω

s orWω
1−s. The following theorem shows that they can be in F ω

s , and that
this happens if and only if they belong to Eωs .

Theorem 7.2. Let 0 < Re s < 1. Then

Eωs = Es ∩ F
ω

s ,

and F ω
s = Eωs ⊕W

ω
s = Eωs ⊕W

ω
1−s.

So for s , 1
2 , the space F ω

s is the direct sum of each two of the three isomorphic
subspaces Eωs ,Wω

s andWω
1−s. For s = 1

2 two of these subspaces coincide.

We discuss the cases s , 1
2 and s = 1

2 separately.
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Proposition 7.3. Let s , 1
2 . For each ϕ ∈ Vω

s we have

Psϕ = c(s) P†s ϕ + c(1 − s) P†1−sIsϕ , (7.3)

where, with b(s) as in (5.20), the factor c(s) is given by

c(s) =
tan πs
π

b(s) =
1
√
π

Γ( 1
2 − s)

Γ(1 − s)
. (7.4)

Proof. Since ϕ is given by a Fourier expansion which converges absolutely uniformly
on the paths of integration in the transformation occurring in (7.3), it is sufficient to
prove this relation in the spacial case es,n (n ∈ Z). We have Pses,n = (−1)n Γ(s)

Γ(s+n) Ps,n

and P†s es,n = (−1)n Γ(s+ 1
2 )

√
πΓ(s+n) Qs,n. See §A.2. The relations (A.14) and (2.30e) give the

lemma for ϕ = es,n for all n ∈ Z. �

Remark. One can also give a direct (but more complicated) proof of (7.3) for arbitrary
ϕ ∈ Vω

s , without using the basis
{
es,n

}
, by writing all integral transforms explicitly and

moving the contours suitably.

The proof of Theorem 7.2 (for s , 1
2 ) follows from Proposition 7.3. The inclusion

Eωs ⊂ F
ω

s is a consequence of the more precise formula (7.3). For the reverse inclusion
we write an arbitrary u ∈ F ω

s in the form c(s) P†s ϕ + v with v ∈ Wω
1−s and ϕ ∈ Vω

s . If
u ∈ Es, then u − Psϕ = v − c(1− s)P†s−1Isϕ ∈ Es ∩W

ω
1−s = {0}, so u = Psϕ ∈ E

ω
s . This

completes the proof.

We can summarize this discussion and its relation with the Poisson transforma-
tion in the following commutative diagram of G-modules and canonical G-equivariant
morphisms

Vω
s

Is
--

P†s

��

Ps

  

Vω
1−s

I1−s

ll

P1−s

~~

P†1−s

��
Wω

s

ρs

GG

�
Eωs = Eω1−s

�
Wω

1−s

ρ1−s

XX

together with the fundamental examples (and essential ingredient in the proof):

R( · ; z0)s oo //
CC

��

dd

$$

R( · ; z0)1−s
::

zz

``

  
b(s)qs( · , z0) oo // ps( · , z0) = p1−s( · , z0) =

π−1 tan πs
(
qs( · , z0) + q1−s( · , z0)

) b(1 − s)q1−s( · , z0)//oo

We now turn to the case s = 1
2 . We have to prove Proposition 7.1 and Theorem 7.2

in this case.
To construct a splitting σ : Wω

1/2 → F ω
1/2 of the exact sequence (7.2) we put

σQ1/2,n = −π
2

2 P1/2,n ∈ Es for n ∈ Z. Since P1/2,n ∈ P1/2V
ω

1/2, we have σQn,1/2 ∈ E
ω
s .
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Further, τσQ1/2,n = Q1/2,n by (A.13) and (A.15). The Q1/2,n ∈ W
ω

1/2 with n ∈ Z gen-
erate a dense linear subspace ofWω

1/2 for the topology of Vω
1/2 transported toWω

1/2 by

P†1/2 : Vω
1/2 → W

ω
1/2. Hence there is a continuous linear extension σ : Wω

1/2 → E
ω
1/2.

The generators E+ and E− of the Lie algebra of G act in the same way on the system(
Qs,n

)
n as on the system

(
Ps,n

)
n. (See §A.5, and use case G in Table 1 of §A.2 and

case a in Table 2 of §A.3.) So σ is an infinitesimal G-morphism, and, since G is con-
nected, a G-morphism. The splitting σ : Wω

1/2 → F
ω

1/2 also gives the surjectivity of τ,
and hence the exactness of the sequence (7.2).

Since σQ1/2,n belongs to Eω1/2, we have σ(Wω
1/2) ⊂ Eω1/2. Since Eω1/2 is an irreducible

G-module this inclusion is an equality. This gives F ω
1/2 = Eω1/2 ⊕ W

ω
1/2 and Eω1/2 ⊂

E1/2 ∩F
ω

1/2. The reverse inclusion then follows by the same argument as for s , 1
2 . �

Remark. The case s = 1
2 could also have been done with explicit elements. For each

s with 0 < Re s < 1 and each n ∈ Z, the subspace F ω
s,n of F ω

s in which the elements[ cos θ
− sin θ

sin θ
cos θ

]
act as multiplication by e2inθ has dimension 2. In the family s 7→ F ω

s,n there
are three families of non-zero eigenfunctions s 7→ Ps,n ∈ E

ω
s , s 7→ Qs,n ∈ W

ω
s and

s 7→ Q1−s,n ∈ W
ω

1−s. For s , 1
2 each of these functions can be expressed as a linear

combination of the other two, as given by (A.14), which is at the basis of our proof of
Proposition 7.3. At s = 1

2 , the elements Qs,n and Q1−s,n coincide. This is reflected in
the singularities at s = 1

2 in the relation (A.14). The families s 7→ Ps,n and s 7→ Qs,n
provide a basis of F ω

s for all s, corresponding to the decomposition F ω
s = Eωs ⊕W

ω
s .

Relation (A.14) implies

P1/2,n =
−2
π2

d
ds

Qs,n

∣∣∣∣
s=1/2

,

which explains the logarithmic behavior at the boundary.

7.2. Differentiable case. In the previous subsection we described the boundary be-
havior of elements of Eωs = PsV

ω
s in terms of convergent expansions. In the differ-

entiable case the spaces Wp
s consist of boundary jets, not of boundary germs. So a

statement like that in Theorem 7.2 seems impossible. Nevertheless, we have the fol-
lowing generalization of Proposition 7.3:

Proposition 7.4. i) Let p ∈ N, p ≥ 2, and s , 1
2 . For each ϕ ∈ Vp

s there are b ∈
G

p
s representing c(s) P†s ϕ ∈ W

p
s and a ∈ Gp−1

1−s representing c(1 − s) P†1−sIsϕ ∈

W
p−1

1−s such that

Psϕ(w) = b(w) + a(w) + O
(
(1 − |w|2)p−s) (|w| ↑ 1) . (7.5)

ii) Let s , 1
2 . For each ϕ ∈ V∞s there are b ∈ G∞s and a ∈ G∞1−s representing

c(s) P†s ϕ and c(1 − s) P†1−sϕ, respectively, such that for each N ∈ N

Psϕ(w) ∼ b(w) + a(w) + o
(
(1 − |w|2)N)

(|w| ↑ 1) . (7.6)

Proof. The proof of Proposition 7.3 used the fact that the es,n generate a dense sub-
space of Vω

s and that the values of Poisson transforms and transverse Poisson trans-
forms are continuous with respect to this topology. That reasoning seems hard to gen-
eralize when we work with boundary jets. Instead, we use the explicit Lemma 5.12.
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A given ϕ ∈ Vp
s can be written as a sum of elements in Vp

s each with support in a
small interval in ∂H. With the G-action this reduces the situation to be considered to
ϕ ∈ Cp

c (I) where I is a finite interval in R. Proposition 5.5 shows that Psϕ represents
an element ofWω

1−s
(
P1
R r I

)
. So we can restrict our attention to Psϕ(z) with z near I,

and work in the line model.
We take α and β as in Lemma 5.12 with N = p. Then

Psϕ(z) = π−1 y1−s
∫ ∞

−∞

(t2 + y2)s−1 ϕ(t + x) dt

=
1
π
ys

∫ ∞

−∞

(t2 + 1)s−1 ϕ(x + yt) dt = ysA(z) + y1−sB(z) ,

with

B(z) = π−1
∫ ∞

−∞

β(t)ϕ(x + yt) dt , A(z) = π−1y2s−1
∫ ∞

−∞

α(p)(t)ϕ(x + yt) dt .

We consider B(z) and A(z) for x ∈ I and 0 < y ≤ 1. The decay of β implies that

B(z) =
1
π

p∑
n=0

ϕ(n)(x)
n!

yn
∫ ∞

−∞

tn β(t) dt + o
(
yp) .

In (5.40) we have computed the integrals. We arrive at

B(z) = c(s)
[p/2]∑
k=0

(−1/4)kΓ(s + 1
2 )

k! Γ(k + s + 1
2 )

ϕ(2k)(x) y2k + o(yp) . (7.7)

A comparison with (5.33) shows that ys B(z) has the asymptotic behavior near I of
representatives of c(s) P†s ϕ.

In the second term we apply p-fold integration by parts.

A(z) = (−1)pπ−1y2s−1+p
∫ ∞

−∞

α(t)ϕ(p)(x + yt) dt .

For fixed ϕ, this expression is a holomorphic function of s on the region Re s > 0. In
the computation we shall work with Re s large.

The function h 7→ (1 + h)s−1 has a Taylor expansion at h = 0 of any order R,
with a remainder term O(hR+1) that is uniform for h ≥ 0. This implies that α(t) has
an expansion of the form α(t) =

∑R
n=0 bn|t|p+2s−2−2n + O(|t|p+2s−2R−4), uniformly for

t ∈ R r {0}. We take R = [p/2], and use the relation ∂p
t α(t) = (1 + t2)s−1 − β(t) and the

decay of β(t) to conclude that

α(t) =
∑

0≤n≤p/2

(
s − 1

n

)
(sign t)p|t|2s−2n+p−2

(2s − 2n − 1)p
+ O

(
|t|2s−3) . (7.8)

We compute this with Re s > 1. The error term contributes to A(z):

y2s−1+p
∫ ∞

t=−∞
O
(
|t|2s−3)ϕ(p)(x + yt) dt = O

(
yp+1) . (7.9)

(We have replaced t by t/y in the integral.) The term of order n contributes:

(−1)py2n

π

(
s − 1

n

)
y−2s−p+2n+1

(2s − 2n − 1)p

∫ ∞

−∞

(sign t)p|t|2s+p−2n−2 ϕ(p)(x + t) dt
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=
(−1)py2n Γ(s) Γ(2s − 2n − 1)

π n! Γ(s − n) Γ(2s − 2n − 1 + p)
(−1)p−2n(2s − 1)p−2n

·

∫ ∞

−∞

|t|2s−2ϕ(2n)(x + t) dt (partial integration p − 2n times) .

In (2.30b) we see that the holomorphic function
∫ ∞
−∞
|t|2s−2ϕ(2n)(x + t) dt continued

to the original value of s gives us b(s − 1
2 ) (Isϕ)(2n)(x), provided 2n < p. We have

IsV
p

s ⊂ V
p−1

1−s , but not necessarily Isϕ ∈ V
p

s . For even p we move the contribution
O(yp) to the error term. The terms of order n < p/2 give

y2n Γ(s) Γ(2s − 2n − 1)
π n!Γ(s − n) Γ(2s − 1)

√
πΓ(s − 1

2 )
Γ(s)

(Isϕ)(2n)(x)

=
tan π(1 − s)
√
π

Γ(1 − s)
Γ( 3

2 − s)

(−1/4)k Γ( 3
2 − s)

n! Γ( 3
2 − s + n)

(Isϕ)(2n)(x) y2k .

Thus we arrive at

A(z) = c(1 − s)
∑

0≤n<p/2

(−1/4)n Γ( 3
2 − s)

n! Γ( 3
2 − s + n)

(Isϕ)(2n)(x)y2k + O
(
y2

[ p+1
2

])
. (7.10)

Again we have arrived at the expansion a representative ofWp−1
1−s should have accord-

ing to (5.33). This completes the proof of part i).
In view of Definition 5.9 the estimate (7.5) holds for all representatives b ∈ Gp

s
and a ∈ Gp

1−s of c(s) P†s ϕ, respectively c(1 − s) P†1−sϕ. In particular, for ϕ ∈ V∞s , this
estimate holds for each p ∈ N, p ≥ 2, for representatives b∞ ∈ G∞s of c(s) P†s ϕ and
a∞ ∈ G∞1−s of c(1 − s) P†1−sϕ. This implies part ii) of the proposition. �

Appendix: Examples and explicit formulas

We end by giving a collection of definitions and formulas that were needed in the
main body of the paper or that illustrate its results. In particular, we describe a number
of examples of eigenfunctions of the Laplace operator (in A.1), of Poisson transforms
(in A.2), of transverse Poisson transforms (in A.3), and of explicit potentials of the
Green’s form {u, v} for various special choices of u and v (in A.4), as well as some
formulas for the action of the Lie algebra of G (in A.5).

A.1. Special functions and equivariant elements of Es. Let H ⊂ G be one of the
subgroups N =

{
n(x) : x ∈ R

}
, A =

{
a(y) : y > 0

}
or K =

{
k(θ) : θ ∈ R/Z

}
with

n(x) =

[1
0

x
1

]
, a(y) =

[ √y
0

0
1/
√
y

]
, k(θ) =

[ cos θ
− sin θ

sin θ
cos θ

]
. (A.1)

For each character χ of H we determine the at most two-dimensional subspace EH
s,χ of

Es transforming according to this character.
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A.1.1. Equivariant eigenfunctions for the unipotent group N. The characters of N are
χα : n(x) 7→ eiαx with α ∈ R. If u ∈ EN

s,α (we write EN
s,α instead of EN

s,χα), then
u(z) = eiαx f (y), where f satisfies the differential equation

y2 f ′′(y) = (s2 − s + α2y2) f (y) . (A.2)

This can also be applied to EN
s,α(U) for any connected N-invariant subset U of H. For

the trivial character, i.e., α = 0, this leads to the basis z 7→ ys, z 7→ y1−s of EN
s,0 if s , 1

2 ,
and z 7→ y1/2, z 7→ y1/2 log y if s = 1

2 . For non-zero α we have:

ks,α(z) =
√
yKs−1/2(|α|y) eiαx (A.3a)

=
2s− 3

2 Γ(s)
√
π |α|s−

1
2

eiαx
∫ ∞

−∞

eiαt ys dt
(y2 + t2)s ,

is,α(z) =
Γ(s + 1

2 )

|α/2|s−
1
2

√
y Is−1/2(|α|y) eiαx , (A.3b)

with the modified Bessel functions

Iu(t) =

∞∑
n=0

(t/2)u+2n

n! Γ(u + 1 + n)
, Ku(t) =

π

2
I−u(t) − Iu(t)

sin πu
. (A.4)

The element iα,s represents a boundary germ inWω
s (R). The normalization of is,α is

such that the restriction ρsiα,s(x) = eiαx in the line model.
The elements ks,α and is,α form a basis of EN

s,α for all s with 0 < Re s < 1. For s , 1
2

another basis is is,α and i1−s,α. The element ks,α is invariant under s 7→ 1 − s, and

ks,α =
Γ( 1

2 − s)

|α|1/2−s2s+1/2 is,α +
Γ(s − 1

2 )

|α|s−1/223/2−s i1−s,α (A.5)

gives (for s , 1
2 ) a local boundary splitting as an element ofWω

s (R) ⊕Wω
1−s(R).

For the trivial character, ks,α may be replaced by

`s(z) =
ys − y1−s

2s − 1
for s ,

1
2
, `1/2(z) = y1/2 log y . (A.6)

A.1.2. Equivariant eigenfunctions for the compact group K. The characters of K are
k(θ) 7→ einθ with n ∈ Z and k(θ) as in (A.1). If u(reiθ) = f (r)einθ is in EK

s,n(U), with a
K-invariant subset U ⊂ H, then f satisfies the differential equation

−
1
4

(1 − r2)2( f ′′(r) + r−1 f ′(r) − n2r−2 f (r)
)

= s(1 − s) f (r) . (A.7)

For general annuli in H, the solution space has dimension 2, with basis

Ps,n(reiθ) = P1−s,n(reiθ) = Pn
s−1

(1 + r2

1 − r2

)
einθ ,

Qs,n(reiθ) = Qn
s−1

(1 + r2

1 − r2

)
einθ ,

(A.8)



70 R. BRUGGEMAN, J. LEWIS, AND D. ZAGIER

with the Legendre functions

Pm
s−1

(1 + r2

1 − r2

)
=

Γ(s + m)
|m|! Γ(s − |m|)

r|m|F
(
1 − s, s; 1 + |m|;

r2

r2 − 1
)

=
Γ(s + m)

|m|! Γ(s − |m|)
r|m| (1 − r2)s F

(
s, s + |m|; 1 + |m|; r2)

=
Γ(s + m)

|m|! Γ(s − |m|)
r|m| (1 − r2)1−s F

(
1 − s, 1 − s + |m|; 1 + |m|; r2) ,

Qm
s−1

(1 + r2

1 − r2

)
=

(−1)m

2
Γ(s)Γ(s + m)

Γ(2s)
(1 − r2)s

rm F
(
s − m, s; 2s; 1 − r2)

=
(−1)m

2
Γ(s)Γ(s + m)

Γ(2s)
(1 − r2)s

r2s−m F
(
s − m, s; 2s; 1 − r−2) ,

(A.9)

and the hypergeometric function F = 2F1 given for |z| < 1 by

F
(
a, b; c; z

)
=

∑
n≥0

(a)n(b)n

(c)n

zn

n!
, with (a)n =

n−1∏
j=0

(a + j) . (A.10)

(See [3], 2.1, 3.2 (3), 3.3.1 (7), 3.3.1 (1), 3.2 (36) and 2.9 (2) and (3).) The space
EK

s,n(H) is spanned by Ps,n alone, since Qs,n(r) has a singularity as r ↓ 0:

Qs,n(r) =


− log r

(
1 + r · (analytic in r)

)
+ (analytic in r) if n = 0 ,

1
2 (|n| − 1)! Γ(s+n)

Γ(s+|n|) r
−|n|(1 + r · (analytic in r)

)
+ log r · (analytic in r) otherwise .

(A.11)

See [3], 3.9.2 (5)–(7) for the leading terms, and 2.3.1 for more information. Directly
from (A.9) we find for r ↓ 0

Ps,n(r) =
Γ(s + n)
|n|! Γ(s − |n|)

r|n|
(
1 + r · (analytic in r)

)
. (A.12)

The solution Qs,n is special near the boundary S1 of D. As r ↑ 1:

Qs,n(r) = (−1)n
√
πΓ(s + n)
Γ(s + 1

2 )
2−2s(1 − r2)s(1 + (1 − r) · (analytic in 1 − r)

)
. (A.13)

Thus, Qs,n ∈ W
ω

s , and ρsQs,n(ξ) = (−1)n
√
πΓ(s+n)
Γ(s+ 1

2 )
ξn on S1.

For s , 1
2 we have:

Ps,n =
1
π

tan πs
(
Qs,n − Q1−s,n

)
. (A.14)

(The formula in [3], 3.3.1, (3) gives this relation with a minus sign in front of 1
π .)

This relation confirms that P1−s,n = Ps,n, and forms the basis of the boundary splitting
in (7.3). It shows that in the asymptotic expansion of Ps,n(r) as r ↑ 0 there are non-zero
terms with (1 − r)s and with (1 − r)1−s. At s = 1

2 , we have as r ↑ 1

P1/2,n(reiθ) = −
(−1)n Γ( 1

2 + n)

π3/2 (1 − r2)1/2 log(1 − r2) + O(1) . (A.15)

So Ps,n is not inWω
s (I) for any interval I ⊂ S1.
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A.1.3. Equivariant eigenfunctions for the torus A. The characters of A are of the form
a(t) 7→ tiα with α ∈ R. We use the coordinates z = ρeiφ on H, for which a(t) acts as
(ρ, φ) 7→ (tρ, φ). If u(ρeiφ) = uiα f (cos φ) is in EA

s,α, then f satisfies on (−1, 1) the
differential equation

−(1 − t2)2 f ′′(t) + t(1 − t2) f ′(t) +
(
α2(1 − t2) − s(1 − s)

)
f (t) = 0 . (A.16)

This leads to the following basis of the space EA
s,α:

f +
s,α(ρeiφ) = ρiα(sin φ)sF

( s + iα
2

,
s − iα

2
;

1
2

; cos2 φ
)
,

f −s,α(ρeiφ) = ρiα cos φ (sin φ)sF
( s + iα + 1

2
,

s − iα + 1
2

;
3
2

; cos2 φ
)
.

(A.17)

The + or − indicates the parity under z 7→ −z̄. In particular:

f +
s,α(i) = 1 ,

∂ f +
s,α

∂φ
(i) = 0 , f −s,α(i) = 0 ,

∂ f −s,α
∂φ

(i) = −1 . (A.18)

Relation (2), §2.9 in [3] shows that f +
1−s,α = f +

s,α and f −1−s,α = f −s,α.
For the boundary behavior it is better to employ the Kummer relation (33) in §2.9

of [3], and express these functions in terms of

ρiα(sin φ)sF
( s + iα

2
,

s − iα
2

; s +
1
2

; sin2 φ
)
. (A.19)

In applying this Kummer relation one has to choose
√

sin2 φ. This produces a singu-
larity, and the expression in (A.19) describes an element of Es (H r iR+). Denote by
f R
s,α the restriction to 0 < φ < π

2 and by f L
s,α the restriction to π

2 < φ < π. The Kummer
relation implies the following equalities:

f R
s,α =

√
πΓ(s + 1

2 )

Γ( s+iα+1
2 )Γ( s−iα+1

2 )
f +
α,s −

2
√
πΓ(s + 1

2 )

Γ( s+iα
2 )Γ( s−iα

2 )
f −α,s ,

f L
s,α =

√
πΓ(s + 1

2 )

Γ( s+iα+1
2 )Γ( s−iα+1

2 )
f +
α,s +

2
√
πΓ(s + 1

2 )

Γ( s+iα
2 )Γ( s−iα

2 )
f −α,s .

(A.20)

Thus we see that f R
s,α and f L

s,α extend as elements of Es, that f R
s,α represents an element

ofWω
s (R+) with, in the line model, ρs f R

s,α(x) = xiα, and that f L
s,α represents an element

of Wω
s (R−) with ρs f L

s,α(x) = (−x)iα. Inverting the relation in (A.20) one finds, for
s , 1

2 , the following expressions for f +
s,α and f −s,α as a linear combination of f R

s,α and
f R
1−s,α,

f +
s,α =

√
πΓ( 1

2 − s)

Γ( 1−s+iα
2 )Γ( 1−s−iα

2 )
f R
s,α +

√
πΓ(s − 1

2 )

Γ( s+iα
2 )Γ( s−iα

2 )
f R
1−s,α ,

f −s,α =

√
πΓ( 1

2 − s)

2Γ(1 − s+iα
2 )Γ(1 − s−iα

2 )
f R
s,α +

√
πΓ(s − 1

2 )

2Γ( s+iα+1
2 )Γ( s−iα+1

s )
f R
1−s,α ,

(A.21)

and similarly of f L
s,α and f L

1−s,α, showing that each of these elements belongs to the
direct sumsWω

s (R+)⊕Wω
1−s(R+) andWω

s (R−)⊕Wω
1−s(R−), but not toWω

s (I)⊕Wω
1−s(I)

for any neighborhood I of 0 or∞ in P1
R; in other words, just as for the Bessel functions

is,α and ks,α, we have a local but not a global boundary splitting.
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A.2. Poisson transforms. Almost all of the special elements in §A.1 belong to Es,
and hence are the Poisson transform of some hyperfunction by Helgason’s Theo-
rem 3.4. Actually in all cases except one the function has polynomial growth, and
hence are the Poisson transform of a distribution (Theorem 3.5). In Table 1 and the
discussion below we give explicit representations of these eigenfunctions as Poisson
transforms of distributions and/or hyperfunctions.

u ∈ Es Ps
−1u ∈ V−ωs model

A y1−s δs,∞ : ϕP 7→ ϕP(∞) proj.

B Γ( 1
2−s)

√
πΓ(1−s) y

s 1s = integration against 1 for Re s < 1
2 ,

with meromorphic continuation
line

C
−2 Γ( 3

2−s)
√
πΓ(1−s)`s(z)

`s as in (A.6)

ϕ 7→ −1
2

∫ ∞
−∞

(ϕ(t) − ϕ∞√
1+t2

) dt

with ϕ∞ = limt→∞ |t|2s−2ϕ(t)
line

D R(t; z)1−s (t ∈ R) δs,t : ϕ 7→ ϕ(t) line

E
2s+ 1

2 |α|
1
2 −s

√
πΓ(1−s) ks,α(z)

(α ∈ R r {0})

integration against eiαt for Re s < 1
2 ,

or integration of −ϕ′ against eiαx

iα

for 0 < Re s < 1

line

F
i1−s,α(z)

(α ∈ R r {0})

support {∞}; representative near∞:

− i
2τ (1 + τ−2)sF

(
1; 2 − 2s; iατ

) proj.

G (−1)nΓ(s)
Γ(s+n) ps,n es,n circle

H ps(w′, · ) RS( · ;w′)s circle

I Γ(1+iα−s)Γ(1−iα−s)
πΓ(2−2s) f L

1−s,α integration against xiα−s on R+ line

J Γ(1+iα−s)Γ(1−iα−s)
πΓ(2−2s) f R

1−s,α integration against (−x)iα−s on R− line

Table 1. Poisson representation of elements of Es.

A. In (3.30) we have shown that y1−s is the Poisson transform of the distribution δs,∞.
See (3.30) for an explicit description of δs,∞ as a hyperfunction.

B. The description of ys as a Poisson transform takes more work. For Re s < 1
2 the

linear form 1s : ϕ 7→ 1
π

∫ ∞
−∞

ϕ(t) dt is continuous on V0
1−s, in the line model. Note that

the constant function 1 is not in Vω
s , since it does not satisfy the asymptotic behavior

(2.2) at ∞. Application of (3.26) gives the Poisson transform Ps1s indicated in the
table.

To describe 1s as a hyperfunction in the line model (and also to continue it in s) we
want to give representatives gR and g∞ of 1s on R and P1

R r {0}, related by g∞(ζ) =

ζ−2s gR(−1/ζ) up to a holomorphic function on a neighborhood of R r {0}.
Formula (2.26) gives a representative gP in the projective model:

gP(ζ) =
1

2πi

∫ ∞

−∞

ζ + i
t − ζ

(t − i)s(t + i)s−1 dt (ζ ∈ P1
C r P

1
R) .
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(The factor (t2 + 1)s−1 comes from passage between models.) This function extends
both from H and from H− across the real axis. An application of Cauchy’s formula
shows that the difference of both extension is given by (ζ2 + 1)s, corresponding to the
function 1 in the line model. See (2.5).

To get a representative near∞ we write

(
1 + e2πis) gP(ζ) =

1
2πi

∫
C

ζ + i
(z − ζ)(z + i)

(z2 + 1)s dz , (A.22)

where C is the contour shown below. The factor (z2 + 1)s is multivalued on the contour
and is fixed by choosing arg

(
z2 + 1

)
∈ [0, 2π).

On the part of the contour just above (0,∞) the
argument of z2 + 1 is approximately zero, and
just below (0,∞) the argument is approximately
2π. Near (−∞, 0) the argument is approximately
2π just above the real line and approximately 0
below the real line. We take the contour so large
that ζ ∈ H ∪ H− is inside one of the loops of C.
If we let the contour grow, the arcs in the upper
and lower half-planes give a contribution o(1).
In the limit, for Re s < 1

2 , we are left with twice

q
q
i

−i

@@��

' $

& %

�

�

the integral along (0,∞) and along (−∞, 0), both once with the standard value and
and once with e2πis times the standard value. This gives the equality (A.22), and the
continuation of gP as a meromorphic function of s.

Now consider ζ ∈ H± with |ζ | > 1. Moving the path of integration across ζ, we
obtain with Cauchy’s theorem that

(
1 + e2πis) gP(ζ) is equal to ±(ζ2 + 1)s plus a holo-

morphic function of ζ on a neighborhood of ∞. The term ±(ζ2 + 1)s obeys the choice
of the argument discussed above. To bring it back to the standard choice of arguments
in (−π, π], we write it as ζ2s(1 + ζ−2)s for ζ ∈ H and as −(−ζ)2s(1 + ζ−2)s for ζ ∈ H−.
The factor (1 + ζ−2)s is what we need to go back to the line model with (2.5). Thus we
arrive at the following representatives in the line model.

gR(ζ) =

 1 on H ,
0 on H− ;

g∞(ζ) = ±ζ−2s (1 + e∓2πis)−1 on H± . (A.23)

Finally one checks that gR(ζ) − (ζ2)−sg∞(−1/ζ) extends holomorphically across both
R+ and R−, thus showing that the pair (gR, g∞) determines the hyperfunction 1s. These
representatives also show that 1s extends meromorphically in s, giving 1s ∈ V

−ω
s for

all s , 1
2 with 0 < Re s < 1.

For the relation between the cases A and B, we use (3.25) to get

PsI1−sδ1−s,∞(z) = P1−sδ1−s,∞(z) = ys .

The fact that the Poisson transformation is an isomorphismV−ωs → Es implies

1s =
Γ( 1

2 − s)
√
πΓ(1 − s)

Isδs,∞ . (A.24)
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C. For Re s < 1
2 we have

〈
ϕ, 1s

〉
=

1
π

∫ ∞

−∞

(
ϕ(t) − ϕP(∞)(1 + t2)s−1

)
dx +

Γ( 1
2 − s)

√
πΓ(1 − s)

δs,∞(ϕP) .

So the distribution Ls given by

Ls : ϕ 7→
1
π

∫ ∞

−∞

(
ϕ(t) − ϕP(∞)(1 + t2)s−1) dt ,

which is well defined for Re s < 1, is equal to 1s −
Γ( 1

2−s)
√
πΓ(1−s) δs,∞ for Re s < 1

2 . The
results of the cases A and B give the expression of PsLs as a multiple of `s defined
in (A.6). Going over to the line model, we obtain the statement in the table.

D. This is simply the definition of the Poisson transformation in (3.22) and (3.23)
applied to the delta distribution at t. It also follows from Case A, using the G-equiv-
ariance.

The latter method involves a transition between the models. We explain some of the
steps to be taken. In the projective model, δPs,t : ϕP 7→ (1 + t2)s−1 ϕP(t). We have〈

δPs,t
∣∣∣
2s

[ t
1
−1

0

]
, ϕP

〉
=

〈
δPs,t, ϕ

P
∣∣∣
2−2s

[ 0
−1

1
t

]〉
= · · · = δPs,∞

(
ϕP

)
.

Hence

Ps
(
δs,t

)
(z) = Ps

(
δs,∞

∣∣∣[ 0
−1

1
t

])
(z) =

(
Psδs,∞

)(
1/(t − z)

)
=

( y

|t − z|2
)1−s

.

E. For α , 0 we need no complicated contour integration. When Re s < 1
2 the

distribution ϕ 7→ 1
π

∫ ∞
−∞

ϕ(t)eiαt dt in the line model, is equal to ϕ 7→ −1
πiα

∫ ∞
−∞

ϕ′(t)eiαt dt.
The latter integral converges absolutely for Re s < 1.

F. Since is,α has exponential growth we really need a hyperfunction. The representa-
tive in the table does not behave well near 0. However it is holomorphic on a deleted
neighborhood of∞, and represents a hyperfunction on P1

Rr{0} in the projective model.
We extend it by zero to obtain a hyperfunction on P1

R.
The path of integration

∫
C+
−

∫
C−

can be deformed into a large circle |τ| = R, such
that we can replace τ by τ − x in the integration. We obtain

1
π

∫
|τ|=R

iτ
−2

(1 + τ−2)sF
(
1; 2 − 2s; iατ

)( y(1 + τ2)
(τ − z)(τ − z̄)

)s−1 dτ
1 + τ2

=
1

2πi
y1−s

∫
|τ|=R

(
1 +

x
τ

)1−2s(1 +
y2

τ2

)s−1F
(
1; 2 − 2s; iα(τ + x)

) dτ
τ
.

Expand the factors
(
1 + x

τ

)1−2s and
(
1 +

y2

τ2

)s−1 and the hypergeometric function into
power series and carry out the integration term by term. In the resulting sum we
recognize the power series of eiαx, and after some standard manipulations with gamma
factors, also the expansion of the modified Bessel function I1/2−s(|α|y).

G. See the discussion after Theorem 3.4.

H. See (3.31).
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I and J . Integration against x 7→ xiα−s on (0,∞) and against x 7→ (−x)iα−s, in the line
model, defines distributions. For ρeiφ ∈ H, the Poisson integral leads to

ρiα(sin φ)1−s

π

∫ ∞

0
tiα−s(t2 + 1 + 2Ct

)s−1 dt ,

with C = ∓ cos φ. Let us consider this for small values of C, i.e., for points near iR+

in H. Expanding the integrand in powers of C gives a series in which one may separate
the even and odd terms, and arrive at

ρiα
√

1 −C21−s

2πΓ(1 − s)

(
Γ
(1 − iα − s

2
)
Γ
(1 + iα − s

2
)

F
(1 − iα − s

2
,

1 + iα − s
2

;
1
2

; C2)
− 2C Γ

(
1 −

iα + s
2

)
Γ
(
1 +

iα − s
2

)
F
(
1 −

iα + s
2

, 1 +
iα − s

2
;

3
2

; C2)) .
Now take C = − cos φ, respectively C = cos φ, and conclude that we have a multiple
of f L

1−s,α, respectively f R
1−s,α.

A.3. Transverse Poisson transforms. In Table 2 we give examples of pairs u = P†s ϕ,
ϕ = ρsu, where ϕ ∈ Vω

s (I) for some I ⊂ ∂H.

u = P†s ϕ ∈ Wω
s (I) ϕ = ρsu ∈ Vω

s (I) I model

a Qs,n (−1)n
√
πΓ(s+n)
Γ(s+ 1

2 )
es,n S1 circle

b qs( · , w′)
√
πΓ(s)

22s Γ(s+1/2)
(1−|w′ |2)s

|ξ−w′ |2s S1 circle

c ys 1 R line

d R(t; z)s (t ∈ R) |t − x|−2s R r {t} line

e R(ζ; z)s (ζ ∈ C r R) (ζ − x)2s (multivalued) R line

f is,α eiαx R line

g f R
s,α xiα−s (0,∞) line

h f L
s,α (−x)iα−s (−∞, 0) line

Table 2. Transverse Poisson representations of boundary germs

In Cases c, d, f, g and h in the table the eigenfunction u is in Es = Es(H), hence
it is also a Poisson transform. If we write u = P1−sα, then entries A, D, F, J and
I, respectively, in Table 1 (with the s replaced by 1 − s in most cases) show that the
support of α is the complement of the set I in ∂H for each of these cases, illustrating
Theorem 6.4.

A.4. Potentials for Green’s forms. If u, v ∈ Es(U) for some U ⊂ H, then the Green’s
forms {u, v} and [u, v] are closed. So if U is simply connected there are well defined
potentials of [u, v] and {u, v} in Cω(U), related according to (3.13). We list some ex-
amples of potentials F of {u, v} in Table 3. Then 1

2i F + 1
2 uv is a potential of the other

Green’s form [u, v]. We found most of these potentials by writing down {u, v}, guessing
F, and checking our guess.
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u v F such that dF = {u, v} domain

1 ys y1−s (2s − 1)x H

2 y1/2 y1/2 log y −x H

3
R(t; z)s

t ∈ R

R(p; z)1−s

p ∈ R r {t}
(t−x)(p−x)+y2

y(p−t) R(t; z)sR(p; z)1−s H

4
R(t; z)s

t ∈ R
R(t; z)1−s s

t−z + s−1
t−z̄ − iR(t; z) H

5 ys R(t; z)1−s

t ∈ R
−(iys + (t − z)ys−1) R(t; z)1−s H

6 ys R(t; z)s −Fs((x − t)/y), Fs as in (A.25) H

7
R(t; z)s

t ∈ R

R(p; z)s

p ∈ R r {t}

(
(p − t)2)−sFs

( (p−x)(t−x)+y2

y(p−t)
)

H

8 ks,α is,α
i Γ(s+1/2)

23/2−sα|α|s−1/2 e2iαx H

9 Ps,0(reiθ) Qs,0(reiθ) −θ
U ⊂ D r {0}

simply
connected

10
Ps,n(reiθ)

n ∈ Z r {0}
Qs,n(reiθ) −

(−1)n Γ(s+n)
2in Γ(s−n) e2inθ D r {0}

11
Ps,−n(reiθ)

n ∈ Z r {0}
Qs,n(reiθ) −2in

∫
Ps,−m(r) Qs,n(r) dr

r

− (−1)nθ

U ⊂ D r {0}
simply

connected

12
Ps,m(reiθ)

m ∈ Z

Qs,n(reiθ)

n ∈ Z r {−m}

ei(m+n)θ)r
(
Qs,n(r) ∂rPs,m(r)

− Ps,m(r) ∂rQs,n(r)
)
/i(m + n)

D r {0}

Table 3. Potentials for Green’s forms

Case 3 is essentially (3.16). In Case 6 we needed the following function:

Fs(r) = s
∫ ∞

r
(1 + q2)−s (q + i)−1 dq , (A.25)

For 7 we have used that (Im gz)s = R(t; z)s and R(0; gz)s = |p − t|2sR(p; z)s with

g =
[ −1

p−t
−1

p
p−t
t

]
with t, p ∈ R. So 6 leads to the potential in 7 if p , t are real. We write(

(p− t)2)−s and not |p− t|−2s to allow holomorphic continuation in p and t. For Case 8
we use that if u(z) = eiαx f (y) and v(z) = eiαxg(y), then

{u, v} = e2iαx( f ′g − fg′) dx ,

and that the Wronskian fg′ − f ′g is constant if u, v ∈ Es. Cases 9–12 are obtained in a
similar way. In 9 and 11 the potentials are multivalued if U is not simply connected.

Cases 3–5 are valid on H if t and p are real. Otherwise {u, v} and F are multivalued
with branch points at t, and at p in 3. We have to chose the same branch in {u, v} and F.
Also in 7 the branches have to be chosen consistently. In 4 there are singularities at
t = z and t = z̄, but {u, v} and F are univalued.
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A.5. Action of the Lie algebra. The real Lie algebra of G has H =
(1

0
0
−1

)
, V =

(0
1

1
0
)
,

W =
( 0
−1

1
0
)

as a basis. Any Y in the Lie algebra acts onV∞s by f |2s Y = ∂t f |2s etY
∣∣∣
t=0.

Note that for right actions we have f | [Y1,Y2] = ( f |Y2) |Y1 − ( f |Y1) |Y2.
In the projective model:

f |2s H(τ) =

(
2s

1 − τ2

1 + τ2 + 2τ∂τ
)

f (τ) ,

f |2s V(τ) =

(
−4s

τ

1 + τ2 + (1 − τ2)∂τ
)

f (τ) ,

f |2s W(τ) = (1 + τ2)∂τ f (τ) .

(A.26)

For the elements E+ = H + iV and E− = H − iV in the complexified Lie algebra we
find:

f |2s E+(τ) =

(
−2s

τ + i
τ − i

− i(τ + i)2∂τ

)
f (τ) ,

f |2s E−(τ) =

(
−2s

τ − i
τ + i

+ i(τ − i)2∂τ

)
f (τ) .

(A.27)

In particular

es,n|2s W = 2in es,n , es,n|2s E± = −2(s ∓ n) es,n∓1 . (A.28)

By transposition these formulas are also valid on hyperfunctions.
The Lie algebra generates the universal enveloping algebra, which also acts onV∞s .

The center of this algebra is generated by the Casimir operator ω = −1
4 E+E− + 1

4 W2 −
i
2 W. It acts onVs as multiplication by s(1 − s).

For the action of G by left translation on functions on H:

W = (1 + z2)∂z + (1 + z̄2)∂z̄ , E± = ∓i(z ± i)2∂z ∓ i(z̄ ± i)2∂z̄ ,

ω = (z − z̄)2∂z∂z̄ = ∆ ,
(A.29)

and on D:
W = 2iw∂w − 2iw̄∂w̄ , E+ = 2∂w − 2w̄2∂w̄ ,

E− = −2w2∂w + 2∂w̄ , ω = −(1 − |w|2)2 ∂w∂w̄ .
(A.30)

A counterpart of (A.28) is

Ps,n |W = 2in Ps,n , Ps,n |E+ = 2(s − n)(s + n − 1) Ps,n−1 ,

Ps,n |E− = 2 Ps,n+1 , Qs,n |E+ = 2(s − n)(s + n − 1) Qs,n−1 ,

Qs,n |E− = 2 Qs,n+1 , Qs,n |W = 2in Qs,n .

(A.31)

References

[1] E. P. van den Ban, H. Schlichtkrull, Asymptotic expansions and boundary values of eigenfunctions
on Riemannian spaces. J. reine angew. Math. 380 (1987), 108–165.

[2] R. Bruggeman, J. Lewis and D. Zagier, Period functions and Maass wave forms II: Cohomology.
Preprint.
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