Corrections in Families of automorphic forms

Version April 2014

1.3.2. In formula for $G_{k}:(n z+m)^{-k}$.
1.4.4. On p. 9 the remark on the singularities of the Eisenstein series is not correct. The singularities are determined by the singularities of $\Lambda(2 s)=\pi^{-s} \Gamma(s) \zeta(2 s)$ and the zeros of $\Lambda(2 s+1)$. At each singularity the principle part is again a modular form.
2.2.1. On p. 28 definition of \tilde{N} should read $\tilde{N}=\{n(x): x \in \mathbb{R}\} \cong \mathbb{R}$.
2.3.6. The multiplier system for a given character χ is given by $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto \chi\left(\left(\begin{array}{c}\left(\begin{array}{ll}a b \\ c & d\end{array}\right)\end{array}\right)\right.$.
4.2.6. Insert t in second display from botton on p . 53. The term with $h^{\prime}(t)$ should be $\left(2 s+1-\left(\frac{n-l}{2}+2 s+2\right) t\right) h^{\prime}(t)$.
4.2.9. \ldots solution $f(u) \sim u^{p}$ as $u \downarrow 0$.

Furthermore, after the first display, one should use (13) of 6.4, and not (14) in the case $\varepsilon=-1$. ${ }^{1}$
Table 4.1, p.63. For $\pm \operatorname{Re} n>0$

$$
\mathbf{E}^{ \pm} \hat{\omega}_{l}(P, n, s)=2\left(\frac{1}{4}(l \pm 1)^{2}-s^{2}\right) \hat{\omega}_{l \pm 2}(P, n, s) .
$$

Lemma 6.2.7. Last line of proof: . . . norm \|• $\|_{D, l \pm 2}$.
9.1.4. In third paragraph too many gothic letters.
9.1.8. In first line $P=\tilde{\Gamma}_{\text {mod }} \cdot \infty$.
13.1.2. In first line $U=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
13.1.5. First term in expression for $\log \eta$ should be $\frac{\pi i}{12} z$.
15.3.3. The value of ω is a factor 6 too large.

There is a problem with the relation between \mathbf{x} and \mathbf{y}. If we define these quantities as in 15.3.1, then the relation should be $\mathbf{y}^{2}=4 \mathbf{x}^{3}-\frac{4}{27}$. This leads in 15.3.3 to the relation

$$
\frac{\omega}{2}=\int_{\tau=i}^{\infty} \frac{d \mathbf{x}(\tau)}{\mathbf{y}(\tau)}=\int_{y=0}^{\infty} \frac{1}{y} d\left(y^{2} / 4+1 / 27\right)^{1 / 3} .
$$

This implies

$$
\omega=\frac{\sqrt{\pi}}{\sqrt{3}} \frac{\Gamma(1 / 6)}{\Gamma(3 / 2)} .
$$

Additions to this list of corrections are welcome.
Roelof Bruggeman
r.w.bruggeman@uu.nl

[^0]
[^0]: ${ }^{1}$ Thanks to Daniël van Dijk

