
NOTES ON QUANTUM MAASS FORMS

ROELOF BRUGGEMAN

In my contribution to the proceedings1 of the Fukuoka conference on L-series, I
skipped some computations that may take some time to reproduce. For the record,
I put these computations on my website, together with some additional comments.

References without primes are to the paper for the Fukuoka proceedings.

1.1’. Twisted L-series for a Maass cusp form. To check (8) in the contribution
to the proceedings, I recall the twisted L-series for u ∈ Mf0

s with expansion (3). For
ξ ∈ Q and Re ρ sufficiently large:

Le(ρ, ξ) =
∑

n,0
an|n|−ρe2πinξ , (1’)

Lo(ρ, ξ) =
∑

n,0
nan |n|−ρ−1e2πinξ .

Note that L(ρ) = Le(ρ, 0) for even u, and L(ρ) = Lo(ρ, 0) for odd u. These L-
functions are connected to the integrals

I(ρ, ξ) =
∫ ∞

0
u(ξ + iy)yρ− 3

2 dy = γs(ρ)Le(ρ, ξ) , (2’)

J(ρ, ξ) =
∫ ∞

0
∂xu(ξ + iy)yρ−

1
2 dy = 2πiγs(ρ + 1)Lo(ρ, ξ) ,

γs(ρ) =
Γ

(

ρ−s+ 1
2

2

)

Γ

(

ρ+s− 1
2

2

)

4πρ
.

The exponential decay at cusps of u and its derivatives implies that I(ρ, ξ) and
J(ρ, ξ) are holomorphic in ρ ∈ C. Hence Le and Lo are also holomorphic in ρ, and
have zeros to compensate for the singularities of γs. In particular:

Le

(

s − 1
2
, ξ

)

= Le

(

1
2
− s, ξ

)

= 0 for all ξ ∈ Q . (3’)

For the functional equation we write ξ = a
c = γ∞ for some

[ a
c

b
d
]

∈ Γ with c > 0.
Put ξ′ = − d

c = γ
−1∞. The invariance of u gives

I(ρ, ξ) =
∫ ∞

0
u
(

ξ′ +
i

c2y

)

yρ−
3
2 dy = c1−2ρI(1 − ρ, ξ′) . (4’)

1p. 1–15 in The conference on L-functions, Fukuoka, Japan 18 - 23 February 2006, ed. Lin Weng
& Masanobu Kaneko; World Scientific, 2007
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2 ROELOF BRUGGEMAN

For J we use that ∂u
∂x =

∂z
∂x +

∂u
∂z̄ , (−cz + a)−2 ∂u

∂z (γ−1z) = ∂u
∂z (z), and similarly for ∂u

∂z̄ .

J(ρ, ξ) = −
∫ ∞

0
(yc)−2

(

∂u
∂z

(

ξ′ +
i

c2y

)

+
∂u
∂z̄

(

ξ′ +
i

c2y

))

yρ+ 1
2

dy
y (5’)

= −c1−2ρJ(1 − ρ, ξ′) .
Thus, we have the functional equations

γs(ρ)Le(ρ, ξ) = c1−2ργs(1 − ρ)Le(1 − ρ, ξ′) , (6’)
γs(ρ + 1)Lo(ρ, ξ) = −c1−2ργs(2 − ρ)Lo(1 − ρ, ξ′) .

After recalling these well known facts, we turn to the method in §4, Chap. I of
[3]. Let f be the periodic function in (4), which takes for general u the following
form:

f (τ) = 1
2
πs
Γ(1 − s)sign (Im τ)

∑

nIm τ>0
|n|s− 1

2 ane2πinτ . (7’)

The Mellin transform of y 7→ f (ξ ± iy) is

f̃±(ρ, ξ) = 2−ρ−2πs−ρ
Γ(1 − s)Γ(ρ)

(

±Le

(

ρ +
1
2 − s, ξ

)

+ Lo

(

ρ +
1
2 − s, ξ

))

. (8’)

The L-functions have polynomial decay on vertical strips. So we can transform the
Mellin representation of f (ξ ± iy) into

f (ξ ± iy) = 1
2πi

∫

Re ρ=−ε
f̃±(ρ, ξ)y−ρ dρ + Res

ρ=0
f̃±(ρ, ξ) , (9’)

with some small ε > 0. The integral contributes o(1) as y ↓ 0. So the limit value is

f (ξ) = πs

4 Γ(1 − s)Lo

(

1
2 − s, ξ

)

= − c2s

4πs+ 1
2
Γ

(

s + 1
2

)

Lo

(

s + 1
2 , ξ

′
)

. (10’)

As in [3], one can show that (9’) is valid for general τ ∈ H ∪ H−. This gives the
same limit valid under geodesic approach.

1.2’. Eisenstein series. To obtain (16), we first consider

hs(τ) =
∞
∑

n=1
σ2s−1(n)e±2πinτ (11’)

with the convention ±1 = sign (Im τ). So fs in (15) is given by

fs(τ) = ±
√
πΓ(1 − s)Λ(2s)

2Γ
(

1
2 − s

) ± πs
Γ(1 − s)hs(τ) . (12’)

Let ξ = γ∞ = a
c as before. The Mellin transform of y 7→ hs(ξ ± iy) is

m̃±(ρ, ξ) =
∞
∑

n=1
σ2s−1(n)e±2πinξ(2πn)−ρΓ(ρ) (13’)

= (2π)−ρΓ(ρ)c2s−1−2ρ
∑

1≤x,y≤c
e±2πixya/cζ

(

ρ + 1 − 2s, x
c

)

ζ

(

ρ,
u
c

)

,
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NOTES ON QUANTUM MAASS FORMS 3

with the Hurwitz zeta function, see e.g., §1, Chap. XIV of S.L: Introduction to
modular forms; Springer-Verlag, 1976.

Like for a cusp form, we obtain a Mellin representation that implies

hs(ξ + w) =
∑

r
(∓iw)−r Res

ρ=r
m̃±(ρ, ξ) + o(1) w ga−→ 0 , (14’)

where r runs over the residues in the region Re ρ ≥ 0. The residue at ρ = 1 is

(2π)−1c2s−3
c

∑

x=1
ζ

(

2 − 2s, x
c

) c−1
∑

y=1
e±2πixya/c (15’)

= (2π)−1c2s−2ζ(2 − 2s) .

At ρ = 2s:

(2π)−2s
Γ(2s)c−2s−1

c
∑

y=1
ζ

(

2s, y
c

) c
∑

x=1
e±2πixya/c (16’)

= (2π)−2s
Γ(2s)c−2sζ(2s) .

The residue at ρ = 0 is more complicated. With ζ(0, a) = 1
2 − a:

c2s−1
∑

1≤x,y≤c
e±2πixya/cζ

(

1 − 2s, x
c

)

(

1
2 −

y
c

)

= −
1
2c2s−1

c
∑

x=1
ζ

(

1 − 2s, x
c

)

(17’)

− c2s−1
c−1
∑

y=1

((y
c

)) c
∑

x=1
e±2πixya/cζ

(

1 − 2s, x
c

)

,

where ((x)) = x − 1
2 if 0 < x < 1, ((0)) = 0, and ((x + n)) = ((x)) for n ∈ Z.

The former term in (17’) is − 1
2ζ (1 − 2s). The latter term equals

−c2s−1
c−1
∑

y=1

((

dy
c

)) c
∑

x=1
e±2πixy/cζ

(

1 − 2s, x
c

)

, (18’)

which is meromorphic in s. For large s we have
c

∑

x=1
e±2πixy/cζ

(

1 − 2s, x
c

)

=

c
∑

x=1
e±2πixy/c(−i)(2π)−2s

Γ(2s)
∑

n≥1
n−2s

(

e2πinx/c+πi( 1
2−s) − e−2πinx/c−πi( 1

2−s)
)

= (2π)−2s
Γ(2s)c



















e−πis
∑

n≥1, n≡∓y(c)
n−2s
+ eπis

∑

n≥1, n≡±y(c)
n−2s


















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4 ROELOF BRUGGEMAN

= (2π)−2s
Γ(2s)c1−2s

(

ζ

(

2s, c − y
c

)

e∓πis
+ ζ

(

2s, y
c

)

e±πis
)

.

This relation stays valid under meromorphic continuation. We insert it into (18’):

−(2π)−2sπ−
1
2 22s−1

Γ(s)Γ
(

s + 1
2

)

·
c−1
∑

y=1

((

dy
c

)) (

ζ

(

2s, 1 − c
y

)

e∓πis
+ ζ

(

2s, y
c

)

e±πis
)

= −
1
2π
−2s− 1

2Γ(s)Γ
(

s + 1
2

) c−1
∑

y=1

((

dy
c

))

ζ

(

2s, y
c

)

(

−e∓πis
+ e±πis)

= ∓iπ 1
2−2s
Γ

(

s + 1
2

)

Γ(1 − s)

c−1
∑

y=1

((

dy
c

))

ζ

(

2s, y
c

)

. (19’)

Thus we obtain expansions of hs and fs, as w ga→ 0:

hs(ξ + w) = (2π)−1c2s−2ζ(2 − 2s) (∓iw)−1
+ (2π)−2sc−2s

Γ(2s)ζ(2s) (∓iw)−2s

− 1
2ζ(1 − 2s) ∓ iπ

1
2−2s
Γ

(

s + 1
2

)

Γ (1 − s)

c−1
∑

y=1

((

dy
c

))

ζ

(

2s, y
c

)

o(1) , (20’)

fs(ξ + w) = i
2

c2s−2
Λ(2s − 1) 1

w ±
1

2
√
π

c−2s
Γ(1 − s)Γ

(

s + 1
2

)

Λ(2s) (∓iw)−2s

− iπ
1
2−s
Γ

(

s + 1
2

) c−1
∑

y=1

((

dy
c

))

ζ

(

2s, y
c

)

+ o(1) . (21’)

Invariance. In §1.2.2 it is noted that the middle term in (16) determines a Γ-
invariant element of R̃s. Up to a factor, the middle term is given by

m
(a

c ,
a
c + w

)

= ±|c|−2s (∓iw)−2s
+ o(1) (w ga−→ 0) , (22’)

for a
c ∈ Q, where we assume a, c ∈ Z, (a, c) = 1. To get the equality m = m|2sγ in

R̃s, we need to check it at almost all rational points for a system of generators of Γ.
Let us use the standard generators T =

[ 1
0

1
1

]

and S =
[ 0

1
−1

0

]

. For T the invariance
is obvious. For S we work with a

c , 0.

(m|2sS )
(a

c ,
a
c + w

)

=

(

(a
c + w

)2)−s
m

(

−
c
a ,
−1

a
c + w

)

(23’)

=

∣

∣

∣

∣

∣

a
c

∣

∣

∣

∣

∣

−2s (
1 + cw

a

)−2s
(±1)|a|−2s

(

∓i
(

−1
a
c + w +

c
a

))−2s
+ o(1)

= ±|c|2s|a|−4s
(

1 + cw
a

)−2s (

∓i
( c
a

)2 w
1 + cw

a

)−2s
+ o(1)
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NOTES ON QUANTUM MAASS FORMS 5

= ±|c|−2s(∓iw)−2s
+ o(1) = m

(a
c ,

a
c + w

)

. (24’)

2.2’. Proof of Theorem 2. It may be useful to add some more explanations. The
idea is that the given invariant hyperfunction α ∈ (

V −ωs
)Γ is written as

α = αc
+ α0

+ α∞,1 + α∞,2 , (25’)
corresponding to parts of the Fourier expansion 21:

Πsα
c(z) =

∑

n,0
an
√yKs−1/2(4π|n|y)e2πinx , (26’)

Πsα
0(z) = a0ys ,

Πsα
∞,1(z) = b0y1−s ,

Πsα
∞,2(z) =

∑

n,0
bb
√yI1/2−s(4π|n|y)e2πinx . (27’)

In the paper α∞,1 + α∞,2 is called α∞.

2.2.1’. Cuspidal part. Let

f c
u (τ) = ±π

s

2
Γ(1 − s)

∞
∑

n=1
ns− 1

2 a±ne±2πinτ (28’)

be the “cuspidal part” of the periodic holomorphic function fu in (22). The proof
of Lemma 4.2 in [1] gives a representative gc

α of αc by the integral

gc
α(τ0) = 1

2πi

∫

I+∪I−

1 + ττ0
τ − τ0

f c
u (τ)

(

1 + τ2
)s−1

dτ , (29’)

with contours as sketched. The con-
tours are adapted to τ0, such that τ0 is
in the region inside I+ or inside I−.
In the comparison with [1] one should
use νthere = shere − 1

2 .
One can check from the integral that gc

α

extends smoothly through a given ge-
odesic through ∞ with value 0 at ∞.
Hence gc

α(τ0) = o(1) as τ0
ga→ ∞.

q

q

I+
i

I−
−i

-

�

If we use the integral in (29’) with τ0 between I+ and I−, we define η holomor-
phic on a neighborhood of R. So η ∈ V

ω,fs
s . One can check that η has a smooth

extension through ∞ along R. So η ∈ V
ω,∞

s . Moving the contour across τ0, we
arrive at gc

α(τ) = η(τ) +
(

1 + τ2
)s

f c
u (τ) for τ near R.

Side remark. Let us for a moment suppose that u ∈ Mf0
s . We have seen that

gc
α(∞) = 0. Now α = αc and gc

α represents α. The Γ-invariance implies that
gc
α − gc

α|
pr
2sγ = rγ ∈ V ω

s . So gc
α(ξ) is well defined for all ξ ∈ Q, and thus we have

a representative of qωs u ∈ qMfωs . The image qω,∞s u of qωs u under the natural map
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6 ROELOF BRUGGEMAN

qMfωs → qMfω,∞s can be represented by ξ 7→ gc
α(ξ) − η(ξ) =

(

1 + ξ2
)s

f c
α(ξ). That is

the representative constructed in Theorem 1.

2.2.2’. Constant terms in the Fourier expansion. The hyperfunctions α0 and α∞,1
have been discussed in [1]. Representatives on a neighborhood of ∞ are all we
need, and are available in [1]. Note that the hyperfunction α∞,1 has support {∞} (if
b0 , 0).

2.2.3’. Hyperfunction for the exponentially increasing terms. The description of
the remaining terms in the Fourier expansion goes along the same lines as in [1],
but is not explicitly treated there. Here I give the computations underlying (23).

The convergence of (21) implies bn = O
(

e−A|n|
)

as |n| → ∞ for each A ∈ R.
Since 1F1(1; a : u) � eRe u|u|Re a

+ 1, the series in (23) converges absolutely and
defines g∞,2α as a holomorphic function on C\i[−1, 1]. It represents a hyperfunction
on P1

R
\ {0} with support contained in {∞}. We extend it to P1

R
by taking 0 on R.

Now our task is to check that (27’) holds.
In the projective model, the Poisson integral is given by

Πsα
∞,2(z) = 1

π

∫

C+∪C−
g(τ)

(

y(1 + τ2)
(τ − z)(τ − z̄)

)1−s dτ
1 + τ2 (30’)

with contours as sketched, and g any
global representative of α∞,2.
Since such a global representative is
holomorphic on a neighborhood of R,
we can replace C+ ∪C− by a wide con-
tour C, around z, z̄ and the interval
i[−1, 1].

q

q

q

q

C+
i

C−
−i

z

z̄

-

' $

�

& %
q

q

q

q

C
i

−i

z

z̄

'

&

$

%

�

In the integral over C, we use that g −
g∞,2α is holomorphic on a full neighbor-
hood of ∞, including ∞ ∈ P1

R
. So we

can replace g by g∞,2α .
With the absolute convergence of (23)
on compact sets, we arrive at the fol-
lowing integral representation:

Πsα
∞,2(z) = 1

π

∫

C
g∞,2α (τ)

(

y(1 + τ2)
(τ − z)(τ − z̄)

)1−s dτ
1 + τ2 . (31’)

File name qmfFucom.tex July 5, 2007 6



NOTES ON QUANTUM MAASS FORMS 7

If C is sufficiently wide, we can replace C by C + x:

=
−iπ− 1

2−s

2Γ
(

3
2 − s

)

∑

n,0
|n|

1
2−sbny1−s

∫

C

(

1 + y2

τ2

)s−1
(

1 + x
τ

)1−2s
(32’)

· 1F1(1; 2 − 2s; 2πin(τ + x)) dτ
τ
.

We use the absolute convergence of the series for 1F1 and (1+ z)a on compact sets,
to find for the integral in (32’):

=

∑

m≥0

(2πin)m

(2 − 2s)m

∫

C

(

1 + y2

τ2

)s−1
(

1 + x
τ

)1−2s+m
τm−1 dτ

=

∑

m≥0

(2πin)m

(2 − 2s)m

∑

a,b≥0

(

s − 1
a

)(

2 − 2s + m
b

)

y2a xb
∫

C
τ−2a−b+m−1 dτ

=

∑

a,b≥0

Γ(2 − 2s)Γ(s)Γ(2 − 2s + 2a + b)
Γ(2 − 2s + 2a − b)Γ(s − a)Γ(2 − 2s + 2a)

(2πin)2a+by2a xb

a! b!
2πi

= 2πi
∑

a,b≥0

π−1/221−2s
Γ(1 − s)Γ

(

3
2 − s

)

Γ(s)

Γ(s − a)π−1/221−2s+2aΓ(1 − s + a)Γ
(

3
2 − s + a

)

·
(−1)a(2π|n|y)2a(2πinx)b

a! b!

= 2πiΓ
(

3
2 − s

)

∑

a≥0

(2π|n|y)2a

a! Γ
(

3
2 − s + a

)

∑

b≥0

(2πinx)b

b!

= 2iπs+ 1
2 |n|s−

1
2 ys− 1

2Γ

(

3
2 − s

)

I1/2−s(2π|n|y)e2πinx .

With (31’) and (32’) we arrive at (27’).
This computation only provides a confirmation of (27’). One can arrive at

τ
(

1 + τ−2
)s

1F1(1; 2 − 2s; 2πinτ) in (23) by solving
d
dxβ

∣

∣

∣

∣

∣

pr

2s

[ t
0

x
1

]

∣

∣

∣

∣

∣

x=0
= 2πinβ (33’)

with a hyperfunction β with support equal to {∞}.

2.2.4’. T-invariance. In the proof of Theorem 2 we also need that B in (23) satis-
fies B|pr

2s(T − 1)(τ) = o(1) as τ ga→ ∞. Actually, we shall show this modulo a term
τ−1 (Anal), where (Anal) denotes a holomorphic function on a neighborhood of∞.
The estimate of bn implies absolute convergence, and we can restrict our attention
to one value of n , 0 at the time.

Bpr
2sT (τ) − B(τ) =

(

1 + τ2

1 + (τ + 1)2

)s
(τ + 1)

(

1 + (τ + 1)−2
)s

· 1F1 (1; 2 − 2s; 2πin(τ + 1)) −
(

1 + τ−2
)s

1F1 (1; 2 − 2s; 2πinτ)
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8 ROELOF BRUGGEMAN

=

(

1 + τ−2
)s
∞
∑

m=0

(2πin)m

(2 − 2s)m
τ1+m















(

1 + 1
τ

)1−2s+m
− 1















= (Anal)
∑

m ≥ 0, k ≥ 0
1 + m − k ≥ 0

Γ(2 − 2s)(2πin)m
Γ(2 − 2s + m)

Γ(2 − 2s + m) k!Γ(2 − 2s + m − k)
τ1+m−k

+ τ−1 (Anal)

= (Anal)
∑

l≥0

(2πin)l−1τl

Γ(1 − 2s + l)

∞
∑

k=1

(2πin)k

k! + τ−1 (Anal)

= (Anal)
∑

l≥0

(2πin)l−1τl

Γ(1 − 2s + l)
(

e2πin − 1
)

+ τ−1 (Anal) = τ−1 (Anal) .

2.3’. One-sided average.
2.3.1’. Hurwitz zeta function. I think it is illuminating to recall the asymptotic
behavior as τ ga→ ∞ of the Hurwitz zeta function ζ(u, τ).

For Re u > 1, the series representation ζ(u, τ) =
∑∞

n=0 converges absolutely, and
defines u 7→ ζ(u, τ) as a holomorphic function estimated by

|ζ(u, τ)| ≤
∞
∑

n=0

(

(Im τ)2
+ (n + Re τ)2

)−Re u/2
eπ|Im u| (34’)

�u

∫ ∞

−∞

(

|Im τ|2 + v2
)−Re u/2

dv �Re u |Im τ|1−Re u .

Furthermore,

ζ(u, τ) − τ1−u

u − 1
=

∞
∑

n=0

∫ n+1

n

((τ + n)−u − (τ + v)−u) du (35’)

=

∞
∑

n=0

∫ n+1

n

(

u(v − n)
τ + n + h2(τ, u, v − n)

)

dv ,

with h2(τ, u, x) holomorphic in u ∈ C and |h2(τ, u, x)| ≤ Cu
|v−n|2
|τ+n|2 . So

ζ(u, τ) − τ1−u

u − 1 =
u
2ζ(u + 1, τ) + H2(τ, u) , (36’)

with H2(τ, u) holomorphic on Re u > 0 and

|H2(τ, u)| �u

∞
∑

n=0
|τ + n|−Re u−2 �Re u |Im τ|−Re u−1 . (37’)

So ζ(u, τ) has a meromorphic continuation at least to Re u > 0, with a singularity
only at u = 1, and as τ ga→ ∞:

ζ(u, τ) = τ1−u

u − 1
+

u
2
ζ(u + 1, τ) + Ou

(

|τ|−Re u−1
)

(38’)
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F 1. The quantum Maass form for the Eisenstein series E s1 ,
with ζ(2s1 − 1) = 0, 2s1 − 1 ≈ 1

2 + 14.1347i. Drawn are real
part (top) and imaginary part (bottom) of C s1(a/c) for 0 ≤ a

c ≤ 1,
1 ≤ c ≤ 100.

=
τ1−u

u − 1 +
u
2

(

τ−u

u +
u + 1

2 ζ(u + 2, τ) + Ou
(

|τ|−Re u−2
)

)

+ o(1)

=
τ1−u

u − 1 +
τ−u

2 + Ou
(

|τ|−Re u−1
)

+ o(1) = τ1−u

u − 1 +
τ−u

2 + o(1) .

File name qmfFucom.tex July 5, 2007 9



10 ROELOF BRUGGEMAN
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F 2. The quantum Maass form for the Eisenstein series E s1 ,
with ζ(2s1 − 1) = 0, 2s1 − 1 ≈ 1

2 + 14.1347i. In the top graph, the
values of Cs1(a/c) are plotted in the complex plane, for 0 ≤ a

c ≤ 1,
1 ≤ c ≤ 100. The bottom graph gives |Cs1(a/c)| against the de-
nominator c.
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-3
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0
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F 3. The quantum Maass form for the Eisenstein series E s1 ,
with ζ(2s1 − 1) = 0, 2s1 − 1 ≈ 1

2 + 14.1347i. Drawn are absolute
value (top) and argument (bottom) of C s1(a/c) for 0 ≤ a

c ≤ 1,
1 ≤ c ≤ 100.

2.3.2’. One-sided average. We apply this to the one-sided average of f0(τ) =
(

1 + τ−2
)s

. For Re s > 1
2 :

f0|pr
2sAv+T (τ) =

∞
∑

n=0

(

1 + τ2

1 + (τ + n)2

)s
(

1 + (τ + n)−2
)s

(39’)

=

∞
∑

n=0

(

1 + τ−2
)s (

1 + (τ + n)−2
)−s+s

τ2s(n + τ)−2s
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F 4. The quantum Maass form for the Eisenstein series E s1 .
Drawn is

∣

∣

∣Cs1(a/c)
∣

∣

∣ ≤ for 0.3 ≤ a
c ≤ 0.5, 1 ≤ c ≤ N, with N = 40,

100, and 140 (from top to bottom).
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F 5. The period function ψs1 , with ζ(2s1 − 1) = 0, 2s1 − 1 ≈
1
2 + 14.1347i. Drawn are real (top) and imaginary (bottom) parts
of ψs1(a/c) for 0 ≤ a

c ≤ 1, 1 ≤ c ≤ 100.

=

(

1 + O
(

τ−2
))

τ2sζ(2s, τ) = τ

2s − 1 +
1
2 + o(1) (τ ga−→ ∞) .

This gives the meromorphic continuation to Re s > 0, with a first order pole at
s = 1

2 with residue 1
2τ as the sole singularity in his region.
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F 6. A closer look at the region near 0. Drawn are real (top)
and imaginary (bottom) parts of ψs1(a/c) for 0 ≤ a

c ≤ 0.2, 1 ≤ c ≤
200.

3’. P

Quantum Maass forms are functions on Q. It is natural to look for illustrations
of examples. For the Eisenstein series we have explicit formulas, that lead to illus-
trations easily. For the Maass cusp forms illustrations seem possible on the basis
of existing numerical results. I have not spend time on that.

In all cases, we compute a function on a subset
{a

c ∈ [x0, x1] a, c ∈ Z, 0 < c ≤ N
}

for some interval [x0, x1] ⊂ R and some rational number N.
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F 7. The extended quantum Maass form for the Eisenstein
series Es2 , with s2 =

1
2 + 3i. Drawn is are the real part (top) and

imaginary part (bottom) of Cs2(a/c) for 0 ≤ a
c ≤ 1, 1 ≤ c ≤ 70.

3.1’. Eisenstein series. Omitting the middle term in (16), we obtain a representa-
tive in the line model of the extended quantum Maass form associated to Eisenstein
series.

ps(ξ, τ) = Ds(ξ)
τ − ξ

+ Cs(ξ) + o(1) (τ ga−→ ξ) , (40’)

Ds

(a
c

)

=
i
2c2s−2

Λ(2s − 1) ,

File name qmfFucom.tex July 5, 2007 15



16 ROELOF BRUGGEMAN
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1
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1.4

F 8. |Cs2 (a/c)| as a function of c, for s2 =
1
2 +3i and 1 ≤ 1

c ≤
1, 1 ≤ c ≤ 70.

Cs

(a
c

)

= −iπ 1
2−s
Γ

(

s + 1
2

) c−1
∑

x=1

((

dx
c

))

ζ

(

2s, x
c

)

It represents a genuine quantum Maass form if Λ(2s− 1) = 0. The first occurrence
is for the first zero z1 ≈ 1

2 + 14.5179i of the Riemann zeta function on the critical
line. So s1 ≈ 3

4 + 7.06736i.
In Figure 1 the real and imaginary part of C s1 are drawn by Mathematica. I have

trusted the Mathematica routines for the gamma function and the Hurwitz zeta
function. The graph looks rather diffuse, without clearly visible structures, except
near 0 and 1. Note that we work in the line model. Hence the function is periodic.
A plot of the values on Cs1 in the complex plane, see Figure 2, shows that the small
values are more numerous. Also there is a suggestion of spiral arms. This figure
also shows that |Cs1(a/c)| grows when the denominator c gets larger. To see how
this is coupled to the argument a

c , we turn to Figure 3. The graph of a
c 7→

∣

∣

∣

∣

Cs1

(

a
c
)

∣

∣

∣

∣

shows an avoidance of (ξ, 0) if ξ ∈ Q has a small denominator. Figure 4 suggests
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F 9. The period function for s2 =
1
2+3i. Drawn is are the real

part (top) and imaginary part (bottom) of ψs2 (a/c) for 0 ≤ a
c ≤ 1,

1 ≤ c ≤ 70.

that this is not a truncation effect. This figure compares the graph of a
c 7→

∣

∣

∣

∣

Cs1

(

a
c
)

∣

∣

∣

∣

on the region [.3, .5] × [0, 1.2] for denominators up to 40, 100, and 140. The last
two graphs are equal, as far as I see. This is confirmed by Figure 2. The values of
Cs1 move out of the window in Figure 4.

The difference ξ 7→ Cs1(ξ)−|ξ|−2s1Cs1(−1/ξ) should be the restriction to Q of the
smooth period function ψs1 . Indeed, Figure 5 shows a function that looks at least
differentiable away from 0. Near 0 there seems to be a lot of oscillation. Figure 6
takes a closer look of a region near 0. I think there is more to see in these pictures.
I leave that to later investigation.
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F 10. Imaginary part of C.75 (top) and ψ.75 (bottom) for 0 ≤
a
c ≤ 1, 1 ≤ c ≤ 70. The real parts are zero.

Let us also consider s2 =
1
2 + 5I, on the critical line. Now we have an extended

quantum Maass form. Figure 7 gives a picture of C s2 , and Figure 8 the size of
|Cs2(a/c)| as a function of c. In Figure 9 we see the corresponding period function.
Note that the sizes are much larger than for s1. For all extended quantum Maass
forms, the coefficient Ds is a multiple of a

c 7→ c2s−2, so there is not need to plot it.
Figure 10 treats the case s = 3

4 , for which Cs and ψs are purely imaginary. The
sizes are still larger, and we see structure that asks for understanding.

3.2’. Quantum Maass forms not associated to invariant eigenfunctions. Up till
now, we started with an automorphic form, an Eisenstein series, and constructed a
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F 11. Values of a quantum Maass form C not associated to
an invariant eigenfunction, see §3.2’. In the top graph is C(a/c),
for s = 3

4 , is plotted against a
c , in the bottom graph against c, for

a
c ∈ [0, 3], 1 ≤ c ≤ 100.

quantum Maass form from it, and values of the corresponding period function. In
§2.3, we start with a cocycle and construct a quantum Maass form from it.

Let us take f pr ∈ V ω
s (projective model) given by f (x) = x

1+x2 . Since it satisfies
f pr|pr

2sS = − f pr, we can define a cocycle cpr ∈ Z1 (

Γ,V ω
s

)

by

cpr
T = cpr

S = f pr . (41’)
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F 12. Real (top) and imaginary (bottom) part of C(a/c) with
s = 1

2 + 3i and 0 ≤ a
c ≤ 3, 1 ≤ c ≤ 100.

In [4] we show that the cohomology class [cpr] is not in the image of rωs : E Γs →
H1 (

Γ,V ω
s

).
From cpr

T (∞) = 0 it follows that the construction in the proof of Theorem 4 yields
a genuine quantum Maass form, represented by ppr ∈ Rs that satisfies ppr(∞, τ) =
−cpr

T |
pr
2sAv+T (τ) = o(1) (τ ga→ ∞).

ppr(∞, τ) = −
∞
∑

n=0

(

1 + τ2

1 + (τ + n)2

)s
τ + n

1 + (τ + n)2 + o(1) (42’)

= −τ2s
(

1 + O
(

τ−2
))

∞
∑

n=0
(τ + n)

(

1 + (τ + n)2
)−s−1

+ o(1)
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F 13. For s = 1
2 + 3i and 0 ≤ a

c ≤ 3, 1 ≤ c ≤ 100, the top
graph gives the values of C(a/c) plotted in the complex plane, and
the bottom graph gives |C(a/c)| against c.
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= −τ2s
(

1 + O
(

τ−2
)) (

ζ(2s + 1, τ) + Os
(

|τ|−2Re s−2
))

+ o(1)

= −
1
2s + o(1) .

So ppr(ξ, τ) = ppr(ξ), and ppr(0) = ppr(∞) + cpr
S (∞) = − 1

2s + 0.
Going over to the line model: C(x) =

(

1 + ξ2
)−s

ppr(ξ), we have

C(0) = − 1
2s , (43’)

C(ξ) = C(ξ + 1) + ξ
(

1 + ξ2
)−s−1

for ξ ∈ Q ,

C(ξ) = |ξ|−2sC(−1/ξ) + ξ
(

1 + ξ2
)−s−1

for ξ ∈ Q \ {0} .
This can be used for recursive computation of C.

Figure 11 gives results for s = 3
4 . The graph looks periodic. It is not, but the

values of f = cT are small in comparison with those of C. We see also that C(a/c)
is almost completely determined by c.

For s = 1
2 + 3i, the graphs in Figure 12 look more chaotic. In Figure 13 we see

that the size of C(a/c) is strongly related to c.

Utrecht, April 2006 (and a few changes February 2007)
Roelof Bruggeman
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