21 Intersection of kernels of downward shift operators, non-abelian case

Computations in connection with Propositions 4.16 and 4.27

An auxiliary substitution
$\ln [\circ]:=$ Clear [h, j, m0, eps, m, p, r, kap, m]
parmsub $=\left\{\operatorname{kap}\left[h, r_{-}\right]: \rightarrow-m[h, r]-e p s s[h, r]-1 / 2\right.$,
$\left.m\left[h h_{-}, r r_{-}+2\right]: \rightarrow m[h h, r r]+e p s, m\left[h h_{-}, r r_{-}-2\right]: \rightarrow m[h h, r r]-e p s, s\left[h_{-}, r_{-}\right]: \rightarrow(h-r) / 4\right\} ;$
21a Differential equations for components
21b Check kernel relations and determination of coefficients
21c. Identifications for Proposition 4.16 part ii)
21d. Computations related to Proposition 4.27

