5d. Integration of theta functions

Orthogonality in (2.56)

$\mathbf{i 1}=\operatorname{int}[x, 0,1] \times \operatorname{int}[y, 0,1] \times i n t[r, 0,2 / s g] \times \operatorname{Th}[e l l, c, p h[x i], n s[x, y, r], k]$ Conjugate [Th[ella, ca, ps[xi], ns[x, y, r], ka]]diff[x]×diff[y]×diff[r]/I. gensub /. \{Conjugate [ella] \rightarrow ella, Conjugate $[c a] \rightarrow c a$, Conjugate $[x] \rightarrow x$, Conjugate $[y] \rightarrow y$, Conjugate $[r] \rightarrow r$, Conjugate [ka] $\rightarrow k a$, Conjugate [sum[ka]] \rightarrow sum[ka]\} // Simplify
Ouff $\left.0=\boldsymbol{e}^{2 i \pi((-c+c a) x+e l l a(-r+2 k a x+x y)+e l l}(r-x(2 k+y))\right)$ Conjugate $\left[p s\left[\frac{c a}{2 \text { ella }}+k a+y\right]\right] d i f f[r] \times \operatorname{diff}[x] \times$ $\operatorname{diff}[y] \times \operatorname{int}\left[r, 0, \frac{2}{s g}\right] \times \operatorname{int}[x, 0,1] \times \operatorname{int}[y, 0,1] \times \operatorname{ph}\left[\frac{c}{2 e l l}+k+y\right] \times \operatorname{sum}[k] \times \operatorname{sum}[k a]$

Integration over rconcerns only the following factor
$\mathrm{mf}\left[\rho=\mathrm{i} 1 \mathrm{fr}=\mathrm{E}^{\wedge}(2 \mathrm{Pi} \mathrm{I}(\mathrm{ell} \mathrm{r}-\mathrm{ella} \mathrm{r}))\right.$
out o $f=\boldsymbol{e}^{2 i \pi(e l l}$ r-ella $\left.r\right)$
Since $l-l \prime$ is 0 modulo $\sigma / 2$ integration over r in $[0,2 / \sigma]$ yields zero unless $l=l$ '.
$\ln \left[\rho f=\mathbf{i} 2=\mathbf{i 1} / . \mathrm{ella} \rightarrow \mathrm{ell} / . \operatorname{int}\left[r, 0, \frac{2}{\mathrm{sg}}\right] \rightarrow 2 / \mathrm{sg} / . \operatorname{diff}[r] \rightarrow 1 / /\right.$ Simplify
Out $\cdot=\frac{1}{s g} 2 e^{-2 i(c-c a+2 e l l(k-k a)) \pi \times}$ Conjugate $\left[\operatorname{ps}\left[\frac{c a}{2 e l l}+k a+y\right]\right] d i f f[x] \times$
$\operatorname{diff}[y] \times \operatorname{int}[x, 0,1] \times \operatorname{int}[y, 0,1] \times \operatorname{ph}\left[\frac{c}{2 e l l}+k+y\right] \times \operatorname{sum}[k] \times \operatorname{sum}[k a]$
Integration over x in $[0,1]$ involves the factor
$\ln \left[f=\mathbf{i} 2 \mathrm{fx}=\boldsymbol{e}^{-\mathbf{- 2 (c - c a + 2 e l l}(\mathrm{k}-\mathrm{ka})) \pi \mathrm{x}}\right.$
Outf 0) $=\boldsymbol{e}^{-2 i(\mathrm{c}-\mathrm{ca}+2 \mathrm{ell}(\mathrm{k}-\mathrm{ka})) \pi \mathrm{x}}$
Since c-ca+2ell(k-ka) is integral the integral over x yields zero unless this quantity vanishes. So c-ca should be zero modulo 2ell. We can assume that c and ca are taken in [0,2|ell|-1]. So we get zero unless $c=c a$ and $k=k a$

out $\cdot \frac{1}{}=\frac{1}{s g} 2$ Conjugate $\left[\operatorname{ps}\left[\frac{c}{2 e l l}+k+y\right]\right] \operatorname{diff}[y] \times \operatorname{int}[y, 0,1] \times \operatorname{ph}\left[\frac{c}{2 e l l}+k+y\right] \times \operatorname{sum}[k]$
Take $k+y$ as new variable, integrating over R. This gives the orthogonality formula.

