Differentiable manifolds - hand-in sheet 3

Hand in by 14/Dec

Before solving the exercise below, see the last hand-in exercise sheet to recall the definitions of terms below.

Exercise

1) Let M be a manifold $\Omega^{\bullet}(M)$ be the (infinite dimensional) vector space of smooth forms on M and \mathcal{A} be the set of all \mathbb{R}-linear endomorphisms of $\Omega^{\bullet}(M)$, i.e., elements of \mathcal{A} are \mathbb{R}-linear maps which send forms to forms. Examples of elements of \mathcal{A} are

- Given a vector field $X \in \mathfrak{X}(M)$, interior product by $X, i_{X} \in \mathcal{A}, i_{X}: \Omega^{k}(M) \longrightarrow \Omega^{k-1}(M)$ for all k;
- Given a 1-form ξ, exterior product by ξ is in $\mathcal{A}, \xi \wedge: \Omega^{k}(M) \longrightarrow \Omega^{k+1}(M)$, for all k;
- The exterior derivative d is an element of $\mathcal{A}, d: \Omega^{k}(M) \longrightarrow \Omega^{k+1}(M)$, for all k.

We can introduce a grading in \mathcal{A}. Namely, we declare that an element $\alpha \in \mathcal{A}$ has degree l if $\alpha: \Omega^{k}(M) \longrightarrow$ $\Omega^{k+l}(M)$ for all k, so the elements introduced above have degree $-1,1$ and 1 , respectively.

We introduce a bracket in \mathcal{A} as follows. For $\alpha \in \mathcal{A}^{l}, \beta \in \mathcal{A}^{m}$, we define

$$
[\alpha, \beta]=\alpha \beta+(-1)^{l m+1} \beta \alpha
$$

This is called the graded commutator of α and β.

1. Show that $\left(\mathcal{A}^{\bullet},[\cdot, \cdot]\right)$ is a graded Lie algebra with a bracket of degree 0 .
2. Show that $[d, d]=0$ and hence (from hand-in sheet 2) the bracket

$$
\begin{equation*}
\llbracket \alpha, \beta \rrbracket:=[[\alpha, d], \beta] \tag{1}
\end{equation*}
$$

satisfies Jacobi.
3. Compute the bracket above for $\alpha=X+\xi$ and $Y+\eta$, where $X, Y \in \mathfrak{X}(M)$ and $\xi, \eta \in \Omega^{1}(M)$ and vector field act on forms by interior product and 1-forms act on forms by exterior product.
4. Compute

$$
\llbracket X+\xi, Y+\eta \rrbracket+\llbracket Y+\eta, X+\xi \rrbracket .
$$

5. Let L be an isotropic subbundle of $T M \oplus T^{*} M$. Conclude that if L is involutive with respect to the bracket (1), then the space of sections of L is a Lie algebra.
