
Differentiable manifolds – Mock Exam 2

Notes:

1. Write your name and student number **clearly** on each page of written solutions you
hand in.

2. You can give solutions in English or Dutch.

3. You are expected to explain your answers.

4. You are allowed to consult any text book and class notes but not allowed to consult colleagues,
calculators, computers etc.

5. Advice: read all questions first, then start solving the ones you already know how to solve or have
good idea on the steps to find a solution. After you have finished the ones you found easier, tackle
the harder ones.

Some definitions you should know, but may have forgotten.

• An n dimensional complex manifold is a manifold whose charts take values in Cn and for which the
change of coordinates are holomorphic maps.

Questions

1) Show that CP1, the set of complex lines through the origin in C2, can be given the structure of a
complex manifold. Show that CP1 is isomorphic to the 2-dimensional sphere S2.

Solution: A line l through the origin on C2 is determined by any point p ∈ l different of (0, 0) and two
points p and q represent the same line if there is a complex number λ ∈ C∗ such that λp = q. Given a
point p ∈ C2\{0}, we denote by [p] the corresponding point in CP1.

This means that if a line can be represented by a point (z1, z2) with z1 6= 0, then the same point can
be represented by a the point (1, z2z1 ) and there is a unique such point representing a line with nonzero
first coordinate. That is, we have a map

ϕ1 : CP1\{[1, 0]} −→ C ϕ1([z1, z2]) =
z2

z1
.

Similarly, we have a map
ϕ2 : CP1\{[0, 1]} −→ C ϕ1([z1, z2]) =

z1

z2
.

The claims made above mean that ϕ1 and ϕ2 are bijections, but we check that rigorously as well.

1. ϕ1 is well defined: Indeed, if [z1, z2] = [u1, u2] then there is λ ∈ C∗ such that (z1, z2) = λ(u1, u2)
and hence z2

z1
= u2

u1
.

2. ϕ1 is an injection: Indeed, if z2
z1

= u2
u1

, then we let λ = u1
z1

and we get

[z1, z2] = [λz1, λz2] = [u1,
u1z2

z1
] = [u1, u2].



3. ϕ1 is onto: Given z ∈ C, ϕ1([1, z]) = z.

4. ϕ1 is a homeomorphism: Indeed, since, as a topological space, CP1 is endowed with the quotient
topology, to check that ϕ1 is a homeomorphism, we observe that C2\{(0, z2) : z2 ∈ C} is isomorphic
to C∗ × C via the identification

(z1, z2) Ψ7→ (z1,
z2

z1
)

and the orbits of the C∗ action are the level sets of the projection onto the second factor p :
C∗ × C −→ C, p(u, v) = v, hence the composition p ◦ Ψ induces an homemorphism between the
quotient of C2\{(0, z2) : z2 ∈ C} by the C∗ action and the image of p ◦Ψ.

Now we notice that the change of coordinates is given by

ϕ1 ◦ ϕ−1
2 : C∗ −→ C∗ ϕ1 ◦ ϕ−1

2 (z) =
1
z
,

which is a holomorphic map on its domain of definition, hence CP1 is a complex manifold.
As we have seen earlier, the sphere can be parametrized by two charts using (a small variation on)

stereographic projections:

ψ1 : S2\{(0, 0, 1)} −→ C ψ1(x, y, z) =
x+ iy

1− z

ψ2 : S2\{(0, 0,−1)} −→ C ψ2(x, y, z) =
x− iy
1 + z

And for these maps we have that for (x, y, z) ∈ S2\{(0, 0,±1)}:

x+ iy

1− z
x− iy
1 + z

=
x2 + y2

1− z2
=
x2 + y2

x2 + y2
= 1.

that is ψ1(x, y, z) = (ψ2(x, y, z))−1.
Therefore, with these parametrizations, S2 and CP1 have the same charts and same transition functions,

hence are the same manifold.

2) Compute the integral of the form

ρ =
xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy

(x2 + y2 + z2)3/2

over the 2-torus in R3 parametrized by

S1 × S1 −→ R3 (θ, ϕ) 7→ ((cos θ + 4) cosϕ, (cos θ + 4) cosϕ, sin θ)

Hint: First compute dρ.

Solution: We start computing dρ:

dρ =
3dx ∧ dy ∧ dz

(x2 + y2 + z2)3/2
− 3

2
(xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy)(2xdx+ 2ydy + 2zdz)

(x2 + y2 + z2)5/2

=
3(x2 + y2 + z2)dx ∧ dy ∧ dz − 3((x2 + y2 + z2)dx ∧ dy ∧ dz)

(x2 + y2 + z2)5/2

= 0.



And ρ is defined on R3\{0}. Now notice that the 2-torus, T 2, is the boundary of the solid torus M3

embedded in R3\{0}, hence by Stoke’s theorem,∫
T 2
ρ =

∫
∂M

ρ =
∫
M

dρ = 0.

3) Given a manifold M , the bundle TM ⊕ T ∗M is endowed with the natural pairing

〈X + ξ, Y + η〉 = 1
2 (η(X) + ξ(Y ))

and its space of sections is endowed with a bracket (the Courant bracket):

[[X + ξ, Y + η]] = [X,Y ] + LXη − iY dξ, X, Y ∈ Γ(TM); ξ, η ∈ Γ(T ∗M).

• Show that for f ∈ C∞(M) we have

[[X + ξ, f(Y + η)]] = f [[X + ξ, Y + η]] + (LXf)(Y + η).

•
[[X + ξ,X + ξ]] = d(ξ(X)).

Solution: Both of these are simple computations using the formula for the Courant bracket and the Leibniz
rule for the Lie derivative:

[[X + ξ, f(Y + η)]] = [X, fY ] + LX(fη)− ifY dξ
= (LXf)Y + f [X,Y ] + (LXf)η + f(LXη)− fiY dξ
= (LXf)(Y + η) + f [[X + ξ, Y + η]].

And computing directly we have

[[X + ξ,X + ξ]] = [X,X] + LX(ξ)− iXdξ
= d(ξ(X)) + iXdξ − iXdξ
= d(ξ(X))

4*) Given a metric g on a manifold M , let V+ and V− be the subbundles of TM ⊕ T ∗M given by

V+ = {X + g(X) : X ∈ TM} V− = {X − g(X) : X ∈ TM}.

1. Show that for every point p ∈M we have

V+|p ∩ V−|p = {0} and V+|p + V−|p = (TM ⊕ T ∗M)|p.

This allows us to define projections π± : TM ⊕ T ∗M −→ V±. For X ∈ TM we let X+ = X +
g(X) ∈ V+ and X− = X − g(X) ∈ V−. Finally, there is a projection πT : TM ⊕ T ∗M −→ TM ,
πT (X + ξ) = X.

We define ∇ : Γ(TM)× Γ(TM) −→ Γ(TM) by

∇XY = πT (π−([[X+, Y−]])).

Show that the following hold

2.
∇fXY = f∇XY,



3.
∇XfY = f∇XY + LXfY,

4.
LXg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ),

5.
∇XY −∇YX = [X,Y ].

Solution: We check that V+ ∩ V− = {0}. If X + ξ ∈ V+ ∩ V−, then ξ = g(X), since this is an element in
V+ and ξ = −g(X), since this is an element in V−, hence g(X) = 0. Since the metric is nondegenerate,
g(X) = 0 implies X = 0 and hence X + ξ = 0.

Since the intersection V+ ∩ V− is trivial and V+ and V− have complementary dimension, we conclude
that V+ + V− = TM ⊕ T ∗M .

Next we check that ∇ has the stated properties. We use the results of the previous exercise. Firstly
we notice that

d〈v + w, v + w〉 = [[v + w, v + w]] = [[v, v]] + [[v, w]] + [[w, v]] + [[w,w]] = d〈v, v〉+ [[v, w]] + [[w, v]] + d〈w,w〉

hence
[[v, w]] + [[w, v]] = 2〈v, w〉

or equivalently
[[v, w]] = −[[w, v]] + 2〈v, w〉.

And also notice that if X + g(X) ∈ V+ and Y − g(Y ) ∈ V− then 〈X + g(X), Y − g(Y )〉 = 1
2 (g(X,Y ) −

g(X,Y ) = 0, hence [[X+, Y−]] = −[[Y−, X+]].
Now we compute

∇fXY = πT (π−([[fX+, Y−]]))
= πT (π−(−[[Y−, fX+]])
= πT (π−(−(LY f)X+ − f [[Y−, X+]]))
= πT ((−(LY f)π−(X+)− π−(f [[Y−, X+]])))
= −fπT (π−([[Y−, X+]])
= fπT (π−([[X+, Y−]]))
= f∇XY,

proving the first property.
Next we have

∇XfY = πT (π−([[X+, fY−]]))
= πT (π−(f [[X+, Y−]] + (LXf)Y−))
= fπT (π−([[X+, Y−]])) + (LXf)πT (π−Y−)
= f∇XY + (LXf)Y.

Next we compute both sides of

LXg(Y,Z) = g(∇XY,Z) + g(Y,∇XZ).



We start with the right hand side and notice that g(v, w) = −〈v−, w−〉 and use again that 〈v+, w−〉 = 0,
hence

g(∇XY,Z) + g(Y,∇XZ) = 〈π−[[X+, Y−]], Z−〉+ 〈Y−, π−[[X+, Z−]]〉
= 〈[[X+, Y−]], Z−〉+ 〈Y−, [[X+, Z−]]〉
= 〈[X,Y ]− LXg(Y )− iY d(g(X)), Z − g(Z)〉+ 〈Y − g(Y ), [X,Z]− LXg(Z)− iZd(g(X))〉
= − 1

2 (g([X,Y ], Z) + iZ(LXg(Y )− iY d(g(X))) + g(Y, [X,Z]) + iY (LXg(Z)− iZd(g(X))))

= − 1
2 (g([X,Y ], Z) + g(Y, [X,Z]) + iZLXg(Y ) + iY LXg(Z))

And the left hand side gives us

LXg(Y, Z) = LX〈Y − g(Y ), Z − g(Z)〉
= 〈LXY − LXg(Y ), Z − g(Z)〉+ 〈Y − g(Y ),LXZ − LXg(Z)〉
= 〈[X,Y ]− LXg(Y ), Z − g(Z)〉+ 〈Y − g(Y ), [X,Z]− LXg(Z)〉
= − 1

2 ((g(Z, [X,Y ]) + g(Y, [X,Z]) + iZLXg(Y ) + iY LXg(Z)).

Finally, we have

∇XY −∇YX = πT ◦ π−([[X+, Y−]]− [[Y+, X−]])
= πT ◦ π−([[X + g(X), Y − g(Y )]]− [[Y + g(Y ), X − g(X)]])
= πT ◦ π−([[X,Y ]]− [[X, g(Y )]] + [[g(X), Y ]]− ([[Y,X]]− [[Y, g(X)]] + [[g(Y ), X]]))
= πT ◦ π−(2[X,Y ]− 2d〈X, g(Y )〉+ 2d〈g(X), Y 〉)
= πT ◦ π−(2[X,Y ])
= πT ([X,Y ]− g([X,Y ])
= [X,Y ].

Remark: There is only one operator ∇ with the properties 2–5 listed above and it goes by name ”Levi–
Civita connection”. This operator is to Riemannian geometry what the exterior derivative is for differen-
tiable manifolds. For sake on completeness, I asked the proof of all 4 properties of ∇, but in an exam you
can expect a smaller question.

5) Compute the de Rham cohomology of S1 × S1.

Solution: We know that H0(M) = Rd, where d is the number of connected components of M . Hence
H0(S1 × S1) = R. Similarly, we have been told in lectures that in a compact, orientable manifold, Mn,
Hk(M) = Hn−k(M) (Poincaré duality), hence H2(S1 × S1) = R and the only cohomology group which
we still must compute is H1(S1 × S1).

Let θ be a volume form on S1 such that
∫
S1 θ = 1. We have seen explicit formulas for θ in the exercises,

e.g.,

θ =
1

2π
xdy − ydx
x2 + y2

.

But it is not necessary to have an explicit formula, since, we have seen in lectures that for a compact
orientable manifold Mn, Hn(M) = R, hence we can simply let θ be a representative of the class 1 ∈
H1(S1).

For S1 × S1,we have two projections

π1 : S1 × S1 −→ S1 π1(ϕ,ψ) = ϕ,



π2 : S1 × S1 −→ S1 π2(ϕ,ψ) = ψ,

Let θi = π∗i θ. Then dθi = dπ∗i θ = π∗i dθ = 0, so the forms θi is closed.
Also, if we let ι1 : S1 −→ S1 × S1 be given by i1(ϕ) = (ϕ,ψ0), for some fixed ψ0 and similarly

i2 : S1 −→ S1 × S1 be given by ι2(ψ) = (ϕ0, ψ), then, since πi ◦ ιi = Id, we have∫
S1
ι∗i θi =

∫
S1
ι∗i π
∗
i θ =

∫
S1

(πi ◦ ιi)∗θ =
∫
S1
θ = 1,

hence θ1 and θ2 represent linearly independent elements in H1(S1 × S1) and we define a map

Ψ : H1(S1 × S1) −→ R2;

Ψ(a) = (
∫
S1
ι∗1a,

∫
S1
ι∗2a).

We want to prove that Ψ is a bijection. By our previous comments, we know that Ψ is onto, so now we
must prove it is an injection, i.e., if Ψ(a) = 0 then a is the trivial class.

We can write S1 × S1 as a union of nine squares, such that the intersections of any two such squares
is connected:

U1 = {(ϕ,ψ) : 0 < ϕ < π, 0 < ψ < π}

U2 = {(ϕ,ψ) :
2
3
π < ϕ <

5
3
π, 0 < ψ < π}

U3 = {(ϕ,ψ) :
4
3
π < ϕ <

7
3
π, 0 < ψ < π}

U4 = {(ϕ,ψ) : 0 < ϕ < π,
2
3
π < ψ <

5
3
π}

U5 = {(ϕ,ψ) :
2
3
π < ϕ <

5
3
π,

2
3
π < ψ <

5
3
π}

U6 = {(ϕ,ψ) :
4
3
π < ϕ <

7
3
π,

2
3
π < ψ <

5
3
π}

U7 = {(ϕ,ψ) :
4
3
π < ϕ <

7
3
π,

4
3
π < ψ <

7
3
π}

U8 = {(ϕ,ψ) :
4
3
π < ϕ <

7
3
π,

4
3
π < ψ <

7
3
π}

U9 = {(ϕ,ψ) :
4
3
π < ϕ <

7
3
π,

4
3
π < ψ <

7
3
π}

Given a representative α for a class a ∈ ker(Ψ), by the Poincaré lemma there is a function fi ∈ Ω0(Ui)
such that

α = dfi on Ui

and hence, on the overlaps Uij = Ui ∩Uj with i < jwe have d(fi− fj) = 0 and fi− fj = cij , with cij ∈ R.
To keep symmetry, we can declare cij = −cji and then we have fi − fj = cij for all pairs (i, j).

Integrating α over circles of the form (ϕ,ψ0) for ψ0 = 0, π2 and π, we get

c12 + c23 + c31 = 0; c45 + c56 + c64 = 0; c78 + c89 + c97 = 0.

And we can define new functions

f̂1 = f1 − c13 f̂2 = f2 − c23 f̂3 = f3

then f̂1 − f̂2 = f1 − f2 − c13 + c23 = c12 −−c13 + c23 = 0.



Also, f̂1− f̂3 = f1− f3− c13 = 0 and f̂2− f̂3 = 0, hence we have a function g1 defined on U1 ∪U2 ∪U3

such that f |Ui
= f̂i and dg1 = α|U1∪U2∪U3 Repeating the same argument we get a function g2 defined

on U4 ∪ U5 ∪ U6 such that dg2 = α|U4∪U5∪U6 and a function g3 defined on U7 ∪ U8 ∪ U9 such that
dg2 = αU7∪U8∪U9 .

Let V1 = U1 ∪ U2 ∪ U3, V2 = U4 ∪ U5 ∪ U6 and V3 = U7 ∪ U8 ∪ U9. Then the intersections Vij are
connected and there we have dgij = 0, hence gij = kij for some constant kij and once again we can assume
that kij = −kji.

Integrating α over (ϕ0, ψ) we get
k12 + k23 + k31 = 0,

and we define ĝ1 = g1 − k13, ĝ2 = g2 − k23 and ĝ3 = g3. Then, once again we see that on Vi ∩ Vj ĝi = ĝj
and hence there is a globally defined function h such that h|Vi = ĝi and therefore dh = α, showing that
α represents the trivial class.


