Differentiable manifolds - Mock Exam 2

Notes:

1. Write your name and student number ${ }^{* *}$ clearly** on each page of written solutions you hand in.
2. You can give solutions in English or Dutch.
3. You are expected to explain your answers.
4. You are allowed to consult any text book and class notes but not allowed to consult colleagues, calculators, computers etc.
5. Advice: read all questions first, then start solving the ones you already know how to solve or have good idea on the steps to find a solution. After you have finished the ones you found easier, tackle the harder ones.

Some definitions you should know, but may have forgotten.

- An n dimensional complex manifold is a manifold whose charts take values in \mathbb{C}^{n} and for which the change of coordinates are holomorphic maps.

Questions

1) Show that $\mathbb{C P}^{1}$, the set of complex lines through the origin in \mathbb{C}^{2}, can be given the structure of a complex manifold. Show that $\mathbb{C P}^{1}$ is isomorphic to the 2-dimensional sphere S^{2}.
Solution: A line l through the origin on \mathbb{C}^{2} is determined by any point $p \in l$ different of $(0,0)$ and two points p and q represent the same line if there is a complex number $\lambda \in \mathbb{C}^{*}$ such that $\lambda p=q$. Given a point $p \in \mathbb{C}^{2} \backslash\{0\}$, we denote by $[p]$ the corresponding point in $\mathbb{C P}^{1}$.

This means that if a line can be represented by a point $\left(z_{1}, z_{2}\right)$ with $z_{1} \neq 0$, then the same point can be represented by a the point $\left(1, \frac{z_{2}}{z_{1}}\right)$ and there is a unique such point representing a line with nonzero first coordinate. That is, we have a map

$$
\varphi_{1}: \mathbb{C P}^{1} \backslash\{[1,0]\} \longrightarrow \mathbb{C} \quad \varphi_{1}\left(\left[z_{1}, z_{2}\right]\right)=\frac{z_{2}}{z_{1}} .
$$

Similarly, we have a map

$$
\varphi_{2}: \mathbb{C P}^{1} \backslash\{[0,1]\} \longrightarrow \mathbb{C} \quad \varphi_{1}\left(\left[z_{1}, z_{2}\right]\right)=\frac{z_{1}}{z_{2}}
$$

The claims made above mean that φ_{1} and φ_{2} are bijections, but we check that rigorously as well.

1. φ_{1} is well defined: Indeed, if $\left[z_{1}, z_{2}\right]=\left[u_{1}, u_{2}\right]$ then there is $\lambda \in \mathbb{C}^{*}$ such that $\left(z_{1}, z_{2}\right)=\lambda\left(u_{1}, u_{2}\right)$ and hence $\frac{z_{2}}{z_{1}}=\frac{u_{2}}{u_{1}}$.
2. φ_{1} is an injection: Indeed, if $\frac{z_{2}}{z_{1}}=\frac{u_{2}}{u_{1}}$, then we let $\lambda=\frac{u_{1}}{z_{1}}$ and we get

$$
\left[z_{1}, z_{2}\right]=\left[\lambda z_{1}, \lambda z_{2}\right]=\left[u_{1}, \frac{u_{1} z_{2}}{z_{1}}\right]=\left[u_{1}, u_{2}\right] .
$$

3. φ_{1} is onto: Given $z \in \mathbb{C}, \varphi_{1}([1, z])=z$.
4. φ_{1} is a homeomorphism: Indeed, since, as a topological space, $\mathbb{C P}^{1}$ is endowed with the quotient topology, to check that φ_{1} is a homeomorphism, we observe that $\mathbb{C}^{2} \backslash\left\{\left(0, z_{2}\right): z_{2} \in \mathbb{C}\right\}$ is isomorphic to $\mathbb{C}^{*} \times \mathbb{C}$ via the identification

$$
\left(z_{1}, z_{2}\right) \stackrel{\Psi}{\longmapsto}\left(z_{1}, \frac{z_{2}}{z_{1}}\right)
$$

and the orbits of the \mathbb{C}^{*} action are the level sets of the projection onto the second factor p : $\mathbb{C}^{*} \times \mathbb{C} \longrightarrow \mathbb{C}, p(u, v)=v$, hence the composition $p \circ \Psi$ induces an homemorphism between the quotient of $\mathbb{C}^{2} \backslash\left\{\left(0, z_{2}\right): z_{2} \in \mathbb{C}\right\}$ by the \mathbb{C}^{*} action and the image of $p \circ \Psi$.

Now we notice that the change of coordinates is given by

$$
\varphi_{1} \circ \varphi_{2}^{-1}: \mathbb{C}^{*} \longrightarrow \mathbb{C}^{*} \quad \varphi_{1} \circ \varphi_{2}^{-1}(z)=\frac{1}{z}
$$

which is a holomorphic map on its domain of definition, hence $\mathbb{C P}^{1}$ is a complex manifold.
As we have seen earlier, the sphere can be parametrized by two charts using (a small variation on) stereographic projections:

$$
\begin{aligned}
\psi_{1}: S^{2} \backslash\{(0,0,1)\} \longrightarrow \mathbb{C} & \psi_{1}(x, y, z)=\frac{x+i y}{1-z} \\
\psi_{2}: S^{2} \backslash\{(0,0,-1)\} \longrightarrow \mathbb{C} & \psi_{2}(x, y, z)=\frac{x-i y}{1+z}
\end{aligned}
$$

And for these maps we have that for $(x, y, z) \in S^{2} \backslash\{(0,0, \pm 1)\}$:

$$
\frac{x+i y}{1-z} \frac{x-i y}{1+z}=\frac{x^{2}+y^{2}}{1-z^{2}}=\frac{x^{2}+y^{2}}{x^{2}+y^{2}}=1 .
$$

that is $\psi_{1}(x, y, z)=\left(\psi_{2}(x, y, z)\right)^{-1}$.
Therefore, with these parametrizations, S^{2} and $\mathbb{C P}^{1}$ have the same charts and same transition functions, hence are the same manifold.
2) Compute the integral of the form

$$
\rho=\frac{x d y \wedge d z+y d z \wedge d x+z d x \wedge d y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
$$

over the 2-torus in \mathbb{R}^{3} parametrized by

$$
S^{1} \times S^{1} \longrightarrow \mathbb{R}^{3} \quad(\theta, \varphi) \mapsto((\cos \theta+4) \cos \varphi,(\cos \theta+4) \cos \varphi, \sin \theta)
$$

Hint: First compute $d \rho$.

Solution: We start computing $d \rho$:

$$
\begin{aligned}
d \rho & =\frac{3 d x \wedge d y \wedge d z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}-\frac{3}{2} \frac{(x d y \wedge d z+y d z \wedge d x+z d x \wedge d y)(2 x d x+2 y d y+2 z d z)}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}} \\
& =\frac{3\left(x^{2}+y^{2}+z^{2}\right) d x \wedge d y \wedge d z-3\left(\left(x^{2}+y^{2}+z^{2}\right) d x \wedge d y \wedge d z\right)}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}} \\
& =0
\end{aligned}
$$

And ρ is defined on $\mathbb{R}^{3} \backslash\{0\}$. Now notice that the 2 -torus, T^{2}, is the boundary of the solid torus M^{3} embedded in $\mathbb{R}^{3} \backslash\{0\}$, hence by Stoke's theorem,

$$
\int_{T^{2}} \rho=\int_{\partial M} \rho=\int_{M} d \rho=0
$$

3) Given a manifold M, the bundle $T M \oplus T^{*} M$ is endowed with the natural pairing

$$
\langle X+\xi, Y+\eta\rangle=\frac{1}{2}(\eta(X)+\xi(Y))
$$

and its space of sections is endowed with a bracket (the Courant bracket):

$$
\llbracket X+\xi, Y+\eta \rrbracket=[X, Y]+\mathcal{L}_{X} \eta-i_{Y} d \xi, \quad X, Y \in \Gamma(T M) ; \xi, \eta \in \Gamma\left(T^{*} M\right)
$$

- Show that for $f \in C^{\infty}(M)$ we have

$$
\llbracket X+\xi, f(Y+\eta) \rrbracket=f \llbracket X+\xi, Y+\eta \rrbracket+\left(\mathcal{L}_{X} f\right)(Y+\eta) .
$$

$$
\llbracket X+\xi, X+\xi \rrbracket=d(\xi(X)) .
$$

Solution: Both of these are simple computations using the formula for the Courant bracket and the Leibniz rule for the Lie derivative:

$$
\begin{aligned}
\llbracket X+\xi, f(Y+\eta) \rrbracket & =[X, f Y]+\mathcal{L}_{X}(f \eta)-i_{f Y} d \xi \\
& =\left(\mathcal{L}_{X} f\right) Y+f[X, Y]+\left(\mathcal{L}_{X} f\right) \eta+f\left(\mathcal{L}_{X} \eta\right)-f i_{Y} d \xi \\
& =\left(\mathcal{L}_{X} f\right)(Y+\eta)+f \llbracket X+\xi, Y+\eta \rrbracket .
\end{aligned}
$$

And computing directly we have

$$
\begin{aligned}
\llbracket X+\xi, X+\xi \rrbracket & =[X, X]+\mathcal{L}_{X}(\xi)-i_{X} d \xi \\
& =d(\xi(X))+i_{X} d \xi-i_{X} d \xi \\
& =d(\xi(X))
\end{aligned}
$$

4^{*}) Given a metric g on a manifold M, let V_{+}and V_{-}be the subbundles of $T M \oplus T^{*} M$ given by

$$
V_{+}=\{X+g(X): X \in T M\} \quad V_{-}=\{X-g(X): X \in T M\}
$$

1. Show that for every point $p \in M$ we have

$$
\left.\left.V_{+}\right|_{p} \cap V_{-}\right|_{p}=\{0\} \quad \text { and }\left.\quad V_{+}\right|_{p}+\left.V_{-}\right|_{p}=\left.\left(T M \oplus T^{*} M\right)\right|_{p}
$$

This allows us to define projections $\pi_{ \pm}: T M \oplus T^{*} M \longrightarrow V_{ \pm}$. For $X \in T M$ we let $X_{+}=X+$ $g(X) \in V_{+}$and $X_{-}=X-g(X) \in V_{-}$. Finally, there is a projection $\pi_{T}: T M \oplus T^{*} M \longrightarrow T M$, $\pi_{T}(X+\xi)=X$.
We define $\nabla: \Gamma(T M) \times \Gamma(T M) \longrightarrow \Gamma(T M)$ by

$$
\nabla_{X} Y=\pi_{T}\left(\pi_{-}\left(\llbracket X_{+}, Y_{-} \rrbracket\right)\right)
$$

Show that the following hold
2.

$$
\nabla_{f X} Y=f \nabla_{X} Y
$$

3.

$$
\nabla_{X} f Y=f \nabla_{X} Y+\mathcal{L}_{X} f Y
$$

4.

$$
\mathcal{L}_{X} g(Y, Z)=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right)
$$

5.

$$
\nabla_{X} Y-\nabla_{Y} X=[X, Y]
$$

Solution: We check that $V_{+} \cap V_{-}=\{0\}$. If $X+\xi \in V_{+} \cap V_{-}$, then $\xi=g(X)$, since this is an element in V_{+}and $\xi=-g(X)$, since this is an element in V_{-}, hence $g(X)=0$. Since the metric is nondegenerate, $g(X)=0$ implies $X=0$ and hence $X+\xi=0$.

Since the intersection $V_{+} \cap V_{-}$is trivial and V_{+}and V_{-}have complementary dimension, we conclude that $V_{+}+V_{-}=T M \oplus T^{*} M$.

Next we check that ∇ has the stated properties. We use the results of the previous exercise. Firstly we notice that

$$
d\langle v+w, v+w\rangle=\llbracket v+w, v+w \rrbracket=\llbracket v, v \rrbracket+\llbracket v, w \rrbracket+\llbracket w, v \rrbracket+\llbracket w, w \rrbracket=d\langle v, v\rangle+\llbracket v, w \rrbracket+\llbracket w, v \rrbracket+d\langle w, w\rangle
$$

hence

$$
\llbracket v, w \rrbracket+\llbracket w, v \rrbracket=2\langle v, w\rangle
$$

or equivalently

$$
\llbracket v, w \rrbracket=-\llbracket w, v \rrbracket+2\langle v, w\rangle .
$$

And also notice that if $X+g(X) \in V_{+}$and $Y-g(Y) \in V_{-}$then $\langle X+g(X), Y-g(Y)\rangle=\frac{1}{2}(g(X, Y)-$ $g(X, Y)=0$, hence $\llbracket X_{+}, Y_{-} \rrbracket=-\llbracket Y_{-}, X_{+} \rrbracket$.

Now we compute

$$
\begin{aligned}
\nabla_{f X} Y & =\pi_{T}\left(\pi_{-}\left(\llbracket f X_{+}, Y_{-} \rrbracket\right)\right) \\
& =\pi_{T}\left(\pi_{-}\left(-\llbracket Y_{-}, f X_{+} \rrbracket\right)\right. \\
& =\pi_{T}\left(\pi_{-}\left(-\left(\mathcal{L}_{Y} f\right) X_{+}-f \llbracket Y_{-}, X_{+} \rrbracket\right)\right) \\
& =\pi_{T}\left(\left(-\left(\mathcal{L}_{Y} f\right) \pi_{-}\left(X_{+}\right)-\pi_{-}\left(f \llbracket Y_{-}, X_{+} \rrbracket\right)\right)\right) \\
& =-f \pi_{T}\left(\pi_{-}\left(\llbracket Y_{-}, X_{+} \rrbracket\right)\right. \\
& =f \pi_{T}\left(\pi_{-}\left(\llbracket X_{+}, Y_{-} \rrbracket\right)\right) \\
& =f \nabla_{X} Y
\end{aligned}
$$

proving the first property.
Next we have

$$
\begin{aligned}
\nabla_{X} f Y & =\pi_{T}\left(\pi_{-}\left(\llbracket X_{+}, f Y_{-} \rrbracket\right)\right) \\
& =\pi_{T}\left(\pi_{-}\left(f \llbracket X_{+}, Y_{-} \rrbracket+\left(\mathcal{L}_{X} f\right) Y_{-}\right)\right) \\
& =f \pi_{T}\left(\pi_{-}\left(\llbracket X_{+}, Y_{-} \rrbracket\right)\right)+\left(\mathcal{L}_{X} f\right) \pi_{T}\left(\pi_{-} Y_{-}\right) \\
& =f \nabla_{X} Y+\left(\mathcal{L}_{X} f\right) Y .
\end{aligned}
$$

Next we compute both sides of

$$
\mathcal{L}_{X} g(Y, Z)=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right)
$$

We start with the right hand side and notice that $g(v, w)=-\left\langle v_{-}, w_{-}\right\rangle$and use again that $\left\langle v_{+}, w_{-}\right\rangle=0$, hence

$$
\begin{aligned}
g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right) & =\left\langle\pi_{-} \llbracket X_{+}, Y_{-} \rrbracket, Z_{-}\right\rangle+\left\langle Y_{-}, \pi_{-} \llbracket X_{+}, Z_{-} \rrbracket\right\rangle \\
& =\left\langle\llbracket X_{+}, Y_{-} \rrbracket, Z_{-}\right\rangle+\left\langle Y_{-}, \llbracket X_{+}, Z_{-} \rrbracket\right\rangle \\
& =\left\langle[X, Y]-\mathcal{L}_{X} g(Y)-i_{Y} d(g(X)), Z-g(Z)\right\rangle+\left\langle Y-g(Y),[X, Z]-\mathcal{L}_{X} g(Z)-i_{Z} d(g(X))\right\rangle \\
& =-\frac{1}{2}\left(g([X, Y], Z)+i_{Z}\left(\mathcal{L}_{X} g(Y)-i_{Y} d(g(X))\right)+g(Y,[X, Z])+i_{Y}\left(\mathcal{L}_{X} g(Z)-i_{Z} d(g(X))\right)\right) \\
& =-\frac{1}{2}\left(g([X, Y], Z)+g(Y,[X, Z])+i_{Z} \mathcal{L}_{X} g(Y)+i_{Y} \mathcal{L}_{X} g(Z)\right)
\end{aligned}
$$

And the left hand side gives us

$$
\begin{aligned}
\mathcal{L}_{X} g(Y, Z) & =\mathcal{L}_{X}\langle Y-g(Y), Z-g(Z)\rangle \\
& =\left\langle\mathcal{L}_{X} Y-\mathcal{L}_{X} g(Y), Z-g(Z)\right\rangle+\left\langle Y-g(Y), \mathcal{L}_{X} Z-\mathcal{L}_{X} g(Z)\right\rangle \\
& =\left\langle[X, Y]-\mathcal{L}_{X} g(Y), Z-g(Z)\right\rangle+\left\langle Y-g(Y),[X, Z]-\mathcal{L}_{X} g(Z)\right\rangle \\
& =-\frac{1}{2}\left(\left(g(Z,[X, Y])+g(Y,[X, Z])+i_{Z} \mathcal{L}_{X} g(Y)+i_{Y} \mathcal{L}_{X} g(Z)\right)\right.
\end{aligned}
$$

Finally, we have

$$
\begin{aligned}
\nabla_{X} Y-\nabla_{Y} X & =\pi_{T} \circ \pi_{-}\left(\llbracket X_{+}, Y_{-} \rrbracket-\llbracket Y_{+}, X_{-} \rrbracket\right) \\
& =\pi_{T} \circ \pi_{-}(\llbracket X+g(X), Y-g(Y) \rrbracket-\llbracket Y+g(Y), X-g(X) \rrbracket) \\
& =\pi_{T} \circ \pi_{-}(\llbracket X, Y \rrbracket-\llbracket X, g(Y) \rrbracket+\llbracket g(X), Y \rrbracket-(\llbracket Y, X \rrbracket-\llbracket Y, g(X) \rrbracket+\llbracket g(Y), X \rrbracket)) \\
& =\pi_{T} \circ \pi_{-}(2[X, Y]-2 d\langle X, g(Y)\rangle+2 d\langle g(X), Y\rangle) \\
& =\pi_{T} \circ \pi_{-}(2[X, Y]) \\
& =\pi_{T}([X, Y]-g([X, Y]) \\
& =[X, Y]
\end{aligned}
$$

Remark: There is only one operator ∇ with the properties $2-5$ listed above and it goes by name "LeviCivita connection". This operator is to Riemannian geometry what the exterior derivative is for differentiable manifolds. For sake on completeness, I asked the proof of all 4 properties of ∇, but in an exam you can expect a smaller question.
5) Compute the de Rham cohomology of $S^{1} \times S^{1}$.

Solution: We know that $H^{0}(M)=\mathbb{R}^{d}$, where d is the number of connected components of M. Hence $H^{0}\left(S^{1} \times S^{1}\right)=\mathbb{R}$. Similarly, we have been told in lectures that in a compact, orientable manifold, M^{n}, $H^{k}(M)=H^{n-k}(M)$ (Poincaré duality), hence $H^{2}\left(S^{1} \times S^{1}\right)=\mathbb{R}$ and the only cohomology group which we still must compute is $H^{1}\left(S^{1} \times S^{1}\right)$.

Let θ be a volume form on S^{1} such that $\int_{S^{1}} \theta=1$. We have seen explicit formulas for θ in the exercises, e.g.,

$$
\theta=\frac{1}{2 \pi} \frac{x d y-y d x}{x^{2}+y^{2}}
$$

But it is not necessary to have an explicit formula, since, we have seen in lectures that for a compact orientable manifold $M^{n}, H^{n}(M)=\mathbb{R}$, hence we can simply let θ be a representative of the class $1 \in$ $H^{1}\left(S^{1}\right)$.

For $S^{1} \times S^{1}$, we have two projections

$$
\pi_{1}: S^{1} \times S^{1} \longrightarrow S^{1} \quad \pi_{1}(\varphi, \psi)=\varphi
$$

$$
\pi_{2}: S^{1} \times S^{1} \longrightarrow S^{1} \quad \pi_{2}(\varphi, \psi)=\psi
$$

Let $\theta_{i}=\pi_{i}^{*} \theta$. Then $d \theta_{i}=d \pi_{i}^{*} \theta=\pi_{i}^{*} d \theta=0$, so the forms θ_{i} is closed.
Also, if we let $\iota_{1}: S^{1} \longrightarrow S^{1} \times S^{1}$ be given by $i_{1}(\varphi)=\left(\varphi, \psi_{0}\right)$, for some fixed ψ_{0} and similarly $i_{2}: S^{1} \longrightarrow S^{1} \times S^{1}$ be given by $\iota_{2}(\psi)=\left(\varphi_{0}, \psi\right)$, then, since $\pi_{i} \circ \iota_{i}=\mathrm{Id}$, we have

$$
\int_{S^{1}} \iota_{i}^{*} \theta_{i}=\int_{S^{1}} \iota_{i}^{*} \pi_{i}^{*} \theta=\int_{S^{1}}\left(\pi_{i} \circ \iota_{i}\right)^{*} \theta=\int_{S^{1}} \theta=1
$$

hence θ_{1} and θ_{2} represent linearly independent elements in $H^{1}\left(S^{1} \times S^{1}\right)$ and we define a map

$$
\begin{aligned}
& \Psi: H^{1}\left(S^{1} \times S^{1}\right) \longrightarrow \mathbb{R}^{2} \\
& \Psi(a)=\left(\int_{S^{1}} \iota_{1}^{*} a, \int_{S^{1}} \iota_{2}^{*} a\right) .
\end{aligned}
$$

We want to prove that Ψ is a bijection. By our previous comments, we know that Ψ is onto, so now we must prove it is an injection, i.e., if $\Psi(a)=0$ then a is the trivial class.

We can write $S^{1} \times S^{1}$ as a union of nine squares, such that the intersections of any two such squares is connected:

$$
\begin{gathered}
U_{1}=\{(\varphi, \psi): 0<\varphi<\pi, 0<\psi<\pi\} \\
U_{2}=\left\{(\varphi, \psi): \frac{2}{3} \pi<\varphi<\frac{5}{3} \pi, 0<\psi<\pi\right\} \\
U_{3}=\left\{(\varphi, \psi): \frac{4}{3} \pi<\varphi<\frac{7}{3} \pi, 0<\psi<\pi\right\} \\
U_{4}=\left\{(\varphi, \psi): 0<\varphi<\pi, \frac{2}{3} \pi<\psi<\frac{5}{3} \pi\right\} \\
U_{5}=\left\{(\varphi, \psi): \frac{2}{3} \pi<\varphi<\frac{5}{3} \pi, \frac{2}{3} \pi<\psi<\frac{5}{3} \pi\right\} \\
U_{6}=\left\{(\varphi, \psi): \frac{4}{3} \pi<\varphi<\frac{7}{3} \pi, \frac{2}{3} \pi<\psi<\frac{5}{3} \pi\right\} \\
U_{7}=\left\{(\varphi, \psi): \frac{4}{3} \pi<\varphi<\frac{7}{3} \pi, \frac{4}{3} \pi<\psi<\frac{7}{3} \pi\right\} \\
U_{8}=\left\{(\varphi, \psi): \frac{4}{3} \pi<\varphi<\frac{7}{3} \pi, \frac{4}{3} \pi<\psi<\frac{7}{3} \pi\right\} \\
U_{9}=\left\{(\varphi, \psi): \frac{4}{3} \pi<\varphi<\frac{7}{3} \pi, \frac{4}{3} \pi<\psi<\frac{7}{3} \pi\right\}
\end{gathered}
$$

Given a representative α for a class $a \in \operatorname{ker}(\Psi)$, by the Poincaré lemma there is a function $f_{i} \in \Omega^{0}\left(U_{i}\right)$ such that

$$
\alpha=d f_{i} \quad \text { on } U_{i}
$$

and hence, on the overlaps $U_{i j}=U_{i} \cap U_{j}$ with $i<j$ we have $d\left(f_{i}-f_{j}\right)=0$ and $f_{i}-f_{j}=c_{i j}$, with $c_{i j} \in \mathbb{R}$. To keep symmetry, we can declare $c_{i j}=-c_{j i}$ and then we have $f_{i}-f_{j}=c_{i j}$ for all pairs (i, j).

Integrating α over circles of the form $\left(\varphi, \psi_{0}\right)$ for $\psi_{0}=0, \frac{\pi}{2}$ and π, we get

$$
c_{12}+c_{23}+c_{31}=0 ; \quad c_{45}+c_{56}+c_{64}=0 ; \quad c_{78}+c_{89}+c_{97}=0
$$

And we can define new functions

$$
\hat{f}_{1}=f_{1}-c_{13} \quad \hat{f}_{2}=f_{2}-c_{23} \quad \hat{f}_{3}=f_{3}
$$

then $\hat{f}_{1}-\hat{f}_{2}=f_{1}-f_{2}-c_{13}+c_{23}=c_{12}--c_{13}+c_{23}=0$.

Also, $\hat{f}_{1}-\hat{f}_{3}=f_{1}-f_{3}-c_{13}=0$ and $\hat{f}_{2}-\hat{f}_{3}=0$, hence we have a function g_{1} defined on $U_{1} \cup U_{2} \cup U_{3}$ such that $\left.f\right|_{U_{i}}=f_{i}$ and $d g_{1}=\left.\alpha\right|_{U_{1} \cup U_{2} \cup U_{3}}$ Repeating the same argument we get a function g_{2} defined on $U_{4} \cup U_{5} \cup U_{6}$ such that $d g_{2}=\left.\alpha\right|_{U_{4} \cup U_{5} \cup U_{6}}$ and a function g_{3} defined on $U_{7} \cup U_{8} \cup U_{9}$ such that $d g_{2}=\alpha_{U_{7} \cup U_{8} \cup U_{9}}$.

Let $V_{1}=U_{1} \cup U_{2} \cup U_{3}, V_{2}=U_{4} \cup U_{5} \cup U_{6}$ and $V_{3}=U_{7} \cup U_{8} \cup U_{9}$. Then the intersections $V_{i j}$ are connected and there we have $d g_{i j}=0$, hence $g_{i j}=k_{i j}$ for some constant $k_{i j}$ and once again we can assume that $k_{i j}=-k_{j i}$.

Integrating α over $\left(\varphi_{0}, \psi\right)$ we get

$$
k_{12}+k_{23}+k_{31}=0
$$

and we define $\hat{g_{1}}=g_{1}-k_{13}, \hat{g_{2}}=g_{2}-k_{23}$ and $\hat{g_{3}}=g_{3}$. Then, once again we see that on $V_{i} \cap V_{j} \hat{g_{i}}=\hat{g_{j}}$ and hence there is a globally defined function h such that $h \mid V_{i}=\hat{g}_{i}$ and therefore $d h=\alpha$, showing that α represents the trivial class.

