Differentiable manifolds - homework 10

Definition 1. A complex structure on a manifold is a choice of atlas $\left\{\left(U_{\alpha}, \varphi_{\alpha}\right): \alpha \in A\right\}$ such that $\varphi_{\alpha}: U_{\alpha} \longrightarrow \mathbb{C}^{n}$ and the change of coordinates $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}: V \subset \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ are holomorphic maps.

In all the exercises below V is an n-dimensional vector space.

1) Show that $\mathbb{C} P^{n}$, the set of complex lines through the origin in \mathbb{C}^{n+1} is a complex manifold.
2) Solve exercise 2 from Chapter 2 in Warner.
3) Let $g \in \operatorname{Sym}^{2} V^{*}$. Show that

$$
g(X, Y)=\frac{1}{2}(g(X+Y, X+Y)-g(X, X)-g(Y, Y))
$$

i.e., g is determined by the values it takes in elements of the forms $X \otimes X \in \otimes^{2} V$.
4) Let $\mathcal{V}=V \oplus V^{*}$. Then \mathcal{V} is endowed with a symmetric pairing:

$$
\langle X+\xi, Y+\eta\rangle=\frac{1}{2}(\eta(X)+\xi(Y)) \quad \forall X, Y \in V \text { and } \xi, \eta \in V^{*}
$$

$i)$ Show that this pairing has signature (n, n), i.e., there are vector subspaces V_{+}and V_{-}, both of dimension n such that the pairing is positive definite on V_{+}and negative definite on V_{-}.
ii) Let \mathcal{V} act on $\wedge^{\bullet} V^{*}$ via

$$
(X+\xi) \cdot \varphi=i_{X} \varphi+\xi \wedge \varphi \quad \forall X \in V, \xi \in V^{*} \text { and } \varphi \in \wedge^{\bullet} V^{*}
$$

Show that

$$
(X+\xi) \cdot((X+\xi) \cdot \varphi)=\xi(X) \varphi=\langle X+\xi, X+\xi\rangle \varphi
$$

iii) Given $\varphi \in \wedge^{\bullet} V^{*}$, define

$$
L_{\varphi}=\{X+\xi \in \mathcal{V}:(X+\xi) \cdot \varphi=0\} .
$$

Show that if $\varphi \neq 0$, then L_{φ} is isotropic, i.e.,

$$
\langle X+\xi, Y+\eta\rangle=0 \quad \forall X+\xi, Y+\eta \in L_{\varphi}
$$

5) Let $A: V \longrightarrow V$ be a linear map. Then A induces two linear maps $A: \wedge^{k} V \longrightarrow \wedge^{k} V$, and $e^{A}: \wedge^{k} V \longrightarrow \wedge^{k} V$ which can be described for a fixed choice of basis $\left\{e_{1}, \cdots, e_{n}\right\}$ for V by

$$
\begin{gathered}
A\left(e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}\right)=\sum_{j} e_{i_{1}} \wedge \cdots \wedge A\left(e_{i_{j}}\right) \wedge \cdots \wedge e_{i_{k}} \\
A_{*}\left(e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}\right)=A\left(e_{i_{1}}\right) \wedge \cdots \wedge A\left(e_{i_{k}}\right)
\end{gathered}
$$

Since $\wedge^{n} V$ is a one dimensional vector space, any linear endomorphism of $\wedge^{n} V$ corresponds to multiplication by a scalar. Show that $A: \wedge^{n} V \longrightarrow \wedge^{n} V$ corresponds to multiplication by the trace of A and that $A_{*}: \wedge^{n} V \longrightarrow \wedge^{n} V$ corresponds to multiplication by the determinant of A.
6) Let $A: V \longrightarrow V$ be a linear map and let e^{A} denote its formal exponential

$$
e^{A}=I d+A+\frac{A^{2}}{2}+\frac{A^{3}}{3!}+\cdots
$$

Show that

$$
e^{\operatorname{tr} A}=\operatorname{det}\left(e^{A}\right)
$$

$\left.7^{*}\right)$ Let $\alpha \in \wedge^{2} V^{*}$. Show that if $\alpha \wedge \alpha=0$ then α is decomposable.

