Differentiable manifolds – homework 7

Exercises from the book: Chapter 1: 9, 10, 16, 20 and 21.

Definition: Given a vector space V, we let V^* be its dual, i.e.,

 $V^* = \{ f : V \longrightarrow \mathbb{R} : f \text{ is linear} \}.$

Given a linear map $A: V \longrightarrow W$, we define a linear map $A^*: W^* \longrightarrow V^*$ by

$$f \stackrel{A^*}{\mapsto} A^* f \qquad A^* f(v) = f(A(v)) \qquad \forall v \in V.$$

1 a) Show that V^* is a vector space and that if V is finite dimensional, then $V^{**} = V$.

1 b) Show that if $A: V \longrightarrow W$ is linear, then $A^*: W^* \longrightarrow V^*$ is linear. Further if A is surjective, then A^* is injective and if A is injective, then A^* is surjective.

1 c) Using the natural identifications $V^{**} = V$ and $W^{**} = W$, show that $A^{**} : V^{**} \longrightarrow W^{**}$ is just $A : V \longrightarrow W$.

2) Let $M \xrightarrow{\varphi} N$ be an embedded submanifold. Show that if $X \in \mathfrak{X}(M)$, then there exists a vector field $\tilde{X} \in \mathfrak{X}(N)$ which is φ -related to X. Such \tilde{X} is normally called an *extension* of X to N. Given $X, Y \in \mathfrak{X}(M)$, let \tilde{X}, \tilde{Y} be extensions of X and Y to N. Show that for $p \in \varphi(M)$, $[\tilde{X}, \tilde{Y}](p)$ is tangent to $\varphi(M)$ and depends only on X and Y and not on the particular extensions \tilde{X} and \tilde{Y} chosen.