Differentiable manifolds - homework 7

Exercises from the book: Chapter 1: 9, 10, 16, 20 and 21.

Definition: Given a vector space V, we let V^{*} be its dual, i.e.,

$$
V^{*}=\{f: V \longrightarrow \mathbb{R}: f \text { is linear }\} .
$$

Given a linear map $A: V \longrightarrow W$, we define a linear map $A^{*}: W^{*} \longrightarrow V^{*}$ by

$$
f \stackrel{A^{*}}{\mapsto} A^{*} f \quad A^{*} f(v)=f(A(v)) \quad \forall v \in V
$$

1 a) Show that V^{*} is a vector space and that if V is finite dimensional, then $V^{* *}=V$.
1 b) Show that if $A: V \longrightarrow W$ is linear, then $A^{*}: W^{*} \longrightarrow V^{*}$ is linear. Further if A is surjective, then A^{*} is injective and if A is injective, then A^{*} is surjective.
1 c) Using the natural identifications $V^{* *}=V$ and $W^{* *}=W$, show that $A^{* *}: V^{* *} \longrightarrow W^{* *}$ is just $A: V \longrightarrow W$.
2) Let $M \underset{\sim}{\varphi} N$ be an embedded submanifold. Show that if $X \in \mathfrak{X}(M)$, then there exists a vector field $\tilde{X} \in \mathfrak{X}(N)$ which is φ-related to X. Such \tilde{X} is normally called an extension of X to N. Given $X, Y \in \mathfrak{X}(M)$, let \tilde{X}, \tilde{Y} be extensions of X and Y to N. Show that for $p \in \varphi(M),[\tilde{X}, \tilde{Y}](p)$ is tangent to $\varphi(M)$ and depends only on X and Y and not on the particular extensions \tilde{X} and \tilde{Y} chosen.

