Differentiable manifolds – homework 9

Definition 1. A complex structure on a manifold is a choice of atlas $\{(U_{\alpha}, \varphi_{\alpha}) : \alpha \in A\}$ such that $\varphi_{\alpha} : U_{\alpha} \longrightarrow \mathbb{C}^{n}$ and the change of coordinates $\varphi_{\beta} \circ \varphi_{\alpha}^{-1} : V \subset \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ are holomorphic maps. An almost complex structure on a manifold M is bundle map $I : TM \longrightarrow TM$ such that $I^{2} = -\text{Id}$.

1) (Complex structures on vector spaces). A complex vector space is a vector space V over the field of the complex numbers, i.e., the scalars are taken to be complex numbers. Now let V be a real vector space and let $I: V \longrightarrow V$ be a linear transformation such that $I^2 = -\text{Id}$. Show that the linear map I allows to make V into a complex vector space by declaring

$$(x+iy) \cdot v = xv + yIv$$
, for all $x, y \in \mathbb{R}$ and $v \in V$.

Conversely, prove that if V is a complex vector space, there is a real-linear transformation $I: V \longrightarrow V$ such that $I^2 = -\text{Id}$.

2) Show that a complex manifold has an almost complex structure.

3) The sphere S^2 can be parametrized with two charts using stereographic projection, namely, we let $U_1 = S^2 \setminus \{(0,0,1)\}, U_2 = S^2 \setminus \{(0,0,-1)\}$ and let

$$\varphi_1: U_1 \longrightarrow \mathbb{C} = \mathbb{R}^2 \qquad \varphi_1(x, y, z) = \frac{x + iy}{1 - z}$$
$$\varphi_2: U_2 \longrightarrow \mathbb{C} = \mathbb{R}^2 \qquad \varphi_2(x, y, z) = \frac{x - iy}{1 + z}$$

Show that this atlas makes S^2 into a complex manifold.

4) (Complex projective space). We define the complex projective space $\mathbb{C}P^1$ to be the set of (complex) lines through the origin in \mathbb{C}^2 . That is, $\mathbb{C}P^1$ is the set of equivalence class on $\mathbb{C}^2 \setminus \{(0,0)\}$ where (z_1, z_2) is equivalent (w_1, w_2) if and only if there is $\lambda \in \mathbb{C}^*$ such that $(z_1, z_2) = \lambda(w_1, w_2)$. Show that $\mathbb{C}P^1$ can be made into a complex manifold. Better, show that $\mathbb{C}P^1$ is diffeomorphic to the sphere S^2 .

5) In an almost complex manifold (M, I) we define the Nijenhuis operator as the following map

$$N: \mathfrak{X}(M) \times \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M)$$
$$N(X,Y) = [X,Y] + I([IX,Y] + [X,IY]) - [IX,IY] \qquad \forall X,Y \in \mathfrak{X}(M).$$

Show that the +i-eigenspace of I is involutive if and only if $N \equiv 0$.

6) Let D be the generalized distribution of \mathbb{R}^2 generated by $X = x\partial/\partial x$ and $Y = x\partial/\partial y$. Show that D is an integrable generalized distribution and describe its leaves.

7) (...oids) A Lie algebroid over a manifold M is a vector bundle L over M together with a bundle map $\pi: L \longrightarrow TM$ (that is, if we let L_p be the fiber of L over $p \in M$, $\pi(L_p) \subset T_pM$ and $\pi: L_p \longrightarrow T_pM$ is linear) and a Lie bracket on the space of sections of L such that $\pi: \Gamma(L) \longrightarrow \Gamma(TM)$ is a map of Lie algebras (i.e., it sends the bracket in $\Gamma(L)$ to the Lie brackets in $\Gamma(TM)$).

Given a Lie algebroid L over M, let $D = \pi(L) \subset TM$. Show that D is an integrable generalized distribution.