Differentiable manifolds - hand-in sheet 3

Hand in by $09 /$ Oct

The first Chern class

Definition 1. A complex vector bundle of rank k over a manifold M is a manifold E together with

1. a smooth map $\pi: E \longrightarrow M$;
2. a cover $\left\{U_{\alpha}: \alpha \in A\right\}$ of M and diffeomorphisms $\Phi_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \longrightarrow U_{\alpha} \times \mathbb{C}^{k}$ for which the following diagram commutes

where π_{1} is projection onto the first factor;
3. if $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then

$$
\Phi_{\beta} \circ \Phi_{\alpha}^{-1}(x, \cdot): \mathbb{C}^{k} \longrightarrow \mathbb{C}^{k}
$$

is complex linear for all x.
A complex vector bundle of rank 1 is also referred to as a complex line bundle.

Exercise 1.

1. Following the argument used for real line bundles, show that (strong isomorphism classes of) complex line bundles over M are classified by $\check{H}^{1}\left(M ; C^{\infty}\left(M ; \mathbb{C}^{*}\right) ; \mathfrak{U}\right)$ for any good cover \mathfrak{U} (you can use that every complex vector bundle over a ball has a trivialization).
2. Use the fact that the complex logarithm can be defined on balls to show that for any open U homeomorphic to a ball the following sequence is exact

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{2 \pi i} C^{\infty}(U ; \mathbb{C}) \xrightarrow{e x p} C^{\infty}\left(U ; \mathbb{C}^{*}\right) \longrightarrow 0 .
$$

Use this and the results from the first exercise sheet to conclude that (strong isomorphism classes of) complex line bundles over M are classified by $\check{H}^{2}(M ; \mathbb{Z} ; \mathfrak{U})$.

