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1 Čech cohomology

1.1 Digression: creating manifolds out of changes of coordinates

Let me start this section with a digression. In lectures our approach to manifolds was that we were
God-given one and that it should have certain properties (Hausdorff, second coutable locally Euclidean
topological space with a smooth structure). If such a space was given, we could produce coordinate charts
that helped us to define smooth functions, tangent vectors and other things. Figure 1 below is a picture
that encompasses this information, in this order.

In several cases, one actually reverses this picture (which is often the ‘physicists’ approach) and is
given

• Several domains Vα ⊂ Rn (these are to be thought of as the image of a coordinate chart)

• Diffeomorphisms ψαβ , called change of coordinates identifying some points on Vα with some points
on Vβ for all α and β in the index set.
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Figure 1: Manifold + charts ⇒ open sets in Rn + change of coordinates.

Of course, for these ψαβ to be what we usually call the change of coordinates, i.e., for them to correspond
to

ψαβ = ϕβ ◦ ϕ−1
α (1)

where ϕα is the coordinate chart whose image is Vα, they must satisfy some compatibility conditions that
follow from (1), namely:

ψαα = Id;

ψγα ◦ ψβγ ◦ ψαβ = Id.
(2)

Together, these conditions give some sort of “skew symmetry” of the functions ψαβ , indeed, taking
γ = α and using both conditions together one arrives at

(ψαβ )−1 = ψβα.

Further, if (2) holds and one is given, say, four changes of coordinates cycling back to the original, say
ψαβ , ψβγ , ψγδ and ψδα, we have

ψδα ◦ ψ
γ
δ ◦ ψ

β
γ ◦ ψαβ = (ψδα ◦ ψ

γ
δ ◦ ψ

α
γ ) ◦ (ψγα ◦ ψβγ ◦ ψαβ ) = Id ◦ Id = Id

and the same argument holds for an arbitrary number of change of coordinates cycling back to the original
one.

Now to create a manifold for which the ψαβ actually correspond to change of coordinates one first takes

the disjoint union of all Vα: V = ∪̇Vα. This means that x ∈ V if and only if x ∈ Vα for some α and we
declare that Vα ∩ Vβ = ∅ if α 6= β. Then the manifold itself is a quotient space of V by an equivalence
relation M = V/ ∼, where x ∈ Vα is equivalent to y ∈ Vβ if and only if ψαβ (x) = y.

Since whenever we cycle back to Vα we always get the identity map, we see that no two points in Vα
are identified by this relation therefore we still have Vα ⊂M . The map

ϕα : Vα ⊂M −→ Vα ⊂ Rn; ϕα(x) = x

gives a local Euclidean structure to M and the transition functions for these choices of coordinates are
precisely ψαβ which are diffeomorphisms. Hence the open sets {Vα} together with change of coordinates
{ψαβ } satisfying (2) give us a smooth structure on M = V/ ∼.

What can potentially go wrong with the procedure above, even if (2) holds, is that the topology of M
gets spoiled and M may fail be second countable and/or Hausdorff. If there are only enumerably many Vα,
one gets second countability. Unfortunately the Hausdorff property may be lost in the quotient process
and one needs more precise knowledge about the ψαβ to prove that it holds.
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Figure 2: Open sets in Rn + change of coordinates ⇒ Manifold + charts.

This pathology can be illustrated with the following simple example whose details we leave as exercise
for the reader to spell out.

Exercise 1.1. Let U0 = U1 = (−1, 1) and let ψ0
1 : (−1, 0) ∪ (0, 1) ⊂ U0 −→ (−1, 0) ∪ (0, 1) ⊂ U1 be

given by ϕ0
1(x) = x. Then ψ0

1 is a smooth map and we take ψ1
0 to be its inverse. With these choices,

the collection {ψ0
1 , ψ

1
0} forms a family of change of coordinates satisfying conditions (2). Following the

proposed procedure, we get that M = U0∪̇U1/ ∼ intuitively corresponds to the the interval (−1, 1) with
the point 0 ”doubled”. This is a standard example of non Hausdorff space in topology textbooks (compare
with exercise 1 in the first exercise sheet).

1.2 Čech cochains and differential with real coefficients

Čech cohomology is obtained using an open cover of a topological space and it arises using purely com-
binatorial data. The idea being that if one has information about the open sets that make up a space as
well as how these sets are glued together one can deduce global properties of the space from local data.

Let U = {Uα : α ∈ A} be an open cover of a connected manifold M . For α1, · · · , αn ∈ A, we denote

Uα0···αk = Uα0
∩ · · · ∩ Uαk ,

or, equivalently, in multi-index notation, if a = {α0, · · · , αk}

Ua =
⋂
αi∈a

Uαi .

Definition 1.2. A degree k Čech cochain with real coeficients for the cover U is a collection of functions

f̌ := {fa|a ordered subset of A with k + 1 elements} (3)

where each fa ∈ f̌ is a constant real function (coefficients in R)

fa : Ua −→ R.

satisfying
fα0···αiαi+1···αk = −fα0···αi+1αi···αk (skew symmetry)

We denote the set of all degree k Čech cochains with real coefficients obtained from a cover U of M by
Čk(M ;R;U). Note that pointwise addition of real numbers makes Čk(M ;R;U) into an Abelian group and
scalar multiplication gives it the structure of a real vector space.



Notice that according to this definition, and element of Č0(M ;R;U) corresponds to the assigment
of a constant function to each open set of U. In particular if the cover U is finite, say #U = n, then
Č0(M ;R;U) = Rn. Similarly, the elements in Č1(M ;R;U) correspond to constant functions defined on
overlaps of two sets of U. Let’s see this in a concrete example.

Example 1.3. Consider S1 as the interval [0, 1] with the ends identified. We can cover S1 by the open
sets U0 = (0, 2/3), U1 = (1/3, 1) and U2 = (2/3, 1) ∪ (0, 1/3). Then U0,1 = (1/3, 2/3), U1,2 = (2/3, 1) and
U2,0 = (0, 1/3) and U0,1,2 = ∅. That is, for this open decomposition of S1 there are only Čech cycles of
degree zero and one. An element in Č0(M ;R;U) is given by three constants, hence Č0(M ;R;U) = R3.
Similarly, since there are only three double overlaps, Č1(M ;R;U) = R3.

Definition 1.4. The Čech differential is a linear map δk : Čk(M ;R;U) −→ Čk+1(M ;R;U),

δk(f̌)α0···αk+1
=

∑
i

(−1)ifα0···αi−1αi+1···αk+1
.

In what follows we will denote all maps δk defined above simply by δ. The main property of δ is given
in the following proposition:

Proposition 1.5. The Čech differential satisfies

δ2 = 0.

Proof. Let f̌ be a k-cochain. Then

(δf̌)α0···αk+1
=

k+1∑
i=0

(−1)i(f̌)α0···αi−1αi+1αk+1

Hence

(δ2f)α0,···αk+2
=

k+2∑
i=0

(−1)i(δf̌)α0···αi−1αi+1αk+2

=
∑
j<i

(−1)i+j(f̌)α0···αj−1αj+1···αi−1αi+1αk+2

+
∑
i<j

(−1)i+j−1(f̌)α0···αi−1αi+1···αj−1αj+1···αk+2

= 0

It is standard practice in mathematics that whenever one finds a sequence of linear maps between
vector spaces

δk : V k −→ V k+1

with δk ◦ δk−1 = 0 one defines cohomology spaces:

Hk :=
ker(δk)

Im(δk−1)
.

In our case, these spaces depend on M and the open cover U, so we write:

Ȟk(M ;R;U) =
ker(δ : Čk −→ Čk+1)

Im(δ : Čk−1 −→ Čk)
.



Definition 1.6. We say that an element f̌ ∈ Čk is closed or a cocycle if δf̌ = 0. An element f̌ ∈ Čk is
exact or a coboundary if f̌ is in the image of δ, i.e., there is ǧ ∈ Čk−1 for which δǧ = f̌ .

Example 1.7 (Degree zero Čech cocycles). Let M be a connected manifold and U be a locally finite open
cover. Next we see that degree zero Čech cohomology is particularly easy to describe. Since Č−1 = {0},
we have

Ȟ0 = ker(δ : Č0 −→ Č1)

Further, if f̌ ∈ ker(δ : Č0 −→ Č1), then if Uα intersects Uβ we have

0 = (δf̌)αβ = f̌β − f̌α,

that is f̌α = f̌β whenever Uα intersects Uβ . Now, for such an f̌ , let c = f̌α(x) for a fixed x in a fixed Uα.
Now, if we let V ⊂M be the set of points defined by

V = {p ∈M : if p ∈ Uβ then f̌β(p) = c}.

By the cocycle condition and the choice of c we see that x ∈ V , hence V 6= ∅. Further V is defined by
a closed condition, so it is a closed subset of M . Finally, if p ∈ V , let Uβ ∈ U be an open set containing
p (Uβ exists because U is a cover). Then f̌β(p) = c and hence, again by the cocycle condition f̌γ(p) = c
whenever p ∈ Uγ . Hence V is open (by locally finiteness) and since M is connected, V = M . That is for
all α, f̌α = c and each f̌α is just the restriction of the globally defined function

f : M −→ R; f ≡ c

to Uα. Or said another way, f̌ corresponds to the restriction of a globally defined function to the open
sets of the cover U:

Ȟ0 = {Globally defined constant functions}
Exercise 1.8. For the cover of S1 obtained in Example 1.3, compute Ȟ0 and Ȟ1.

Exercise 1.9 (Euler characteristic). Let {V k : 0 ≤ k ≤ n} be a family of finite dimensional vector spaces
where n ∈ N is some fixed number. Whenever necessary, let V−1 = Vn+1 = {0}. Let dk : V k −→ V k+1 be
linear maps such that dk+1 ◦ dk = 0 for all i and define

Hk =
ker(dk)

Im(dk−1)
.

Show that ∑
(−1)k dim(V k) =

∑
(−1)k dim(Hk).

Conclude that if U is a finite open cover of a manifold then∑
(−1)k dim(Čk(M ;R;U)) =

∑
(−1)k dim(Ȟk(M ;R;U)).

Hint: Use the rank nullity theorem from linear algebra, namely, if A : V −→W is a linear map,

dim(V ) = dim(Im(A)) + dim(ker(A)).

Definition 1.10. For a cover U of M , the Euler characteristic of M with respect to the cover U is the
number

χ(M ;U) =
∑

(−1)k dim(Ȟk(M ;R;U))

The Euler characteristic of M , denoted by χ(M), is χ(M ;U) where U is any finite good cover of M .

Exercise 1.11. Cover the sphere S2 with four open sets obtained by slightly enlarging the tetrahedral
triagulation of the sphere (see Figure 1). Compute the Euler characteristic of S2 with respect to this open
cover.

Exercise 1.12. Consider S1 as the interval [0, 1] with the ends identified. Cover S1 by the open sets
U0 = (0, 2/3), U1 = (1/3, 1) and U2 = (2/3, 1) ∪ (0, 1/3). Compute the Euler characteristic of S1 from
this cover.



Figure 3: Tetrahedral decomposition of the sphere.

1.3 Čech cochains and differential with other coefficients

1.3.1 Coefficients in other Abelian groups

Now notice that we used very little of the structure of the real numbers and in fact all the argument used
above can be carried out for constant functions with values in any Abelian group, such as Z, Zn, S1, R∗,
C∗, etc. This way we obtain cohomology groups Ȟ•(M ;G;U) (which are not necessarily vector spaces)
for any Abelian group G.

Example 1.13 (Čech cohomology with coefficients in R∗). Here we work out explicitly the changes
that happen when considering Čech cohomology with coefficients in R∗ (constant coefficients). The only
difference of this case compared to the previous one is not conceptual, but notational. Let me be precise.
For real coefficients, the symbol + indicated the group operation in the Abelian group R, the symbol −
indicated inversion and 0 was the identity element. Therefore, in the case of R∗, which is an Abelian group
with multiplication of real numbers, these operations get replaced by multiplication of real numbers, ·,
and inversion of real numbers, ·−1, respectively and 0 is replaced by 1.

With these changes in mind, Čech cochains are defined in a completely analogous way, namely, a degree
k Čech cochain with R∗ coeficients for the cover U is a collection of functions

f̌ := {fa|a ordered subset of A with k + 1 elements}

where each fa ∈ f̌ is a constant function (coefficients in R∗)

fa : Ua −→ R∗.

satisfying
fα0···αiαi+1···αk = (fα0···αi+1αi···αk)−1 (skew symmetry)

The set of all degree k Čech cochains with R∗ coefficients obtained from a cover U of M is denoted by
Čk(M ;R∗;U). Again, pointwise multiplication of real numbers makes Čk(M ;R∗;U) into and Abelian
group.

Also the Čech differential is defined in a similar fashion:

δk : Čk(M ;R∗;U) −→ Čk+1(M ;R∗;U),

δk(f̌)α0···αk+1
= Πi(fα0···αi−1αi+1···αk+1

)(−1)i .

And again we will omit the superscript k and just think of δ as an operator acting on all Čech cochains.
So, for example if f̌ ∈ Č0(M ;R∗;U), then

(δf̌)αβ = fβ · (fα)−1.

Also, if ǧ ∈ Č1(M ;R∗;U), then
(δǧ)αβγ = gβγ · (gαγ)−1 · gαβ .



Using skew symmetry, we can re-write this condition in a more mnemonic way:

(δǧ)αβγ = gαβ · gβγ · gγα.

Notice that now the cocycle condition for an element f̌ ∈ Čk(M ;R∗;U) becomes

δf̌ = 1.

1.3.2 Coefficients on smooth functions

We can also relax the condition that the functions fa are constant. For example we have

Definition 1.14. A degree k Čech cochain with coeficients in the smooth functions for the cover U is a
collection of functions

f̌ := {fa|a ordered subset of A with k + 1 elements}

where each fa ∈ f̌ is a smooth real function

fa : Ua −→ R.

satisfying
fα0···αiαi+1···αk = −fα0···αi+1αi···αk (skew symmetry)

We denote the set of all degree k Čech cochains with smooth functions as coefficients obtained from a
cover U of M by Čk(M ;C∞(M);U). Note that pointwise addition of functions makes Čk(M ;C∞(M);U)
into and Abelian group and scalar multiplication gives it the structure of a real vector space.

The Čech differential is defined in the same way as before and the same proof still yields δ2 = 0 hence
we also have Čech cohomology with coefficients in the smooth functions.

Exercise 1.15 (Čech cohomology with coefficients in C∞(M)). Repeat the argument from Example 1.7
and conclude that Ȟ0(M ;C∞(M);U) can be identified with the space

C∞(M) = {f : M −→ R : f is smooth}.

Differently from the case of real coefficients, when we consider smooth functions, there is no cohomology
in degree higher than zero:

Theorem 1.16. For k > 0,
Ȟk(M ;C∞(M);U) = {0}.

Equivalently, every closed Čech cochain is a coboundary.

Proof. This theorem is a consequence of the existence of partitions of unity. Indeed, let f̌ ∈ Čk(M ;C∞(M);U)
be a cocycle and (ϕα : α ∈ A) be a partition of unity subbordinated to U. Spelling out the cocycle condition
we have

0 = (δf̌)α0,···αk+1
=

k+1∑
i=0

(−1)if̌α0···αi−1αi+1···αk+1
∀αi ∈ A.

Equivalently,

f̌α1···αk+1
=

k+1∑
i=1

(−1)i+1f̌α0···αi−1αi+1···αk+1
∀αi ∈ A. (4)

Define ǧ ∈ Čk−1(M ;C∞(M);U) by

ǧα1,···αk =
∑
α∈A

ϕαfαα1···αk .



Notice that even though fαα1···αk is only defined on Uαα1···αk , since ϕα has compact support in Uα,
ϕαfαα1···αk can be extended to Uα1···αk by declaring that it vanishes on Uα1···αk\Uαα1···αk so ǧα1···αk
defined above is indeed a smooth function on Uα1···αk .

Now we compute

(δǧ)α1,··· ,αk+1
=

k+1∑
i=1

(−1)i+1ǧα1···αi−1αi+1···αk+1

=

k+1∑
i=1

(−1)i+1
∑
α∈A

ϕαf̌αα1···αi−1αi+1···αk+1

=
∑
α∈A

ϕα

k+1∑
i=1

(−1)i+1f̌αα1···αi−1αi+1···αk+1

=
∑
α∈A

ϕαf̌α1···αk+1

= (
∑
α∈A

ϕα)f̌α1···αk+1

= f̌α1···αk+1
,

where in the first equality we wrote the definition of Čech differential, in the second we used the definition
of ǧ, in the third we commuted the sums, in the fourth we used equation (4), in the fifth we notice that
the term f̌α1···αk+1

does not depend on the index of summation, hence can be put in evidence and in the
last equation we used again that αα is a partition of unity.

Exercise 1.17. If the multi-indices are mind boggling, repeat the argument above in the case f ∈
Č2(M ;C∞(M);U) to convince yourself that everything is fine.

As a consequence of this theorem, we see that the Čech cohomology Ȟ•(M ;C∞(M);U) are rather
simple to describe. Indeed, according to Example 1.7 and Exercise 1.15, Ȟ0(M ;C∞(M);U) corresponds
to the vector space of globally defined functions and the remaning groups Ȟk(M ;C∞(M);U) are all trivial
for k > 0. Note that these equalities hold for any locally finite cover, that is these groups are independent
of U, hence, in this case, it makes sense to write simply Ȟ•(M ;C∞(M)).

1.3.3 Further coefficients

One can mix the last two generalizations and take coefficients is smooth functions with values in some
Abelian group. For discrete Abelian groups, such as Z and Zn, smooth automatically means constant and
hence this does not change the discussion from Section 1.3.1. For Lie groups (such as S1, R∗ and C∗), the
change from constant coefficients to smooth coefficients can potentially lead to different Čech cohomology
space when compared with the case of constant coefficients, much like the passage from constant real
coefficients to smooth real functions.

Notice that the argument used in Theorem 1.16 can not be applied to Čech cohomology with coefficients
in say smooth functions with values in R∗ because even if f̌ take values in R∗, and {ϕα} is a partition
of unity then ϕαfα takes values in R and hence it is no longer a Čech cocycle with coefficients in smooth
functions with values in R∗.

While there are many coefficients one can take for Čech cohomology, the main examples that will
concern us are coefficients in R, C, Z, Z2, C∞(M ;R∗), C∞(M ;S1) and C∞(M ;C∗). What you will find
written elsewhere is that Čech cohomology is defined for any sheaf of Abelian groups over a manifold.
We will not explain the meaning of these words in these notes. But we do notice that there are hidden
isomorphisms between Čech cohomology with different coefficients. Later we will prove the following:



Theorem 1.18. Let U = {Uα : α ∈ A} be an open cover of a manifold M for which each Ua is connected
for all multi indices a ⊂ A. Then, for k > 0,

Ȟk(M ;Z2;U) ∼= Ȟk(M ;C∞(M ;R∗),U).

Theorem 1.19. Let U = {Uα : α ∈ A} be an open cover of a manifold M for which each Ua is connected
for all multi indices a ⊂ A. Then, for k > 0,

Ȟk(M ;C∞(M ;S1);U) ∼= Ȟk(M ;C∞(M ;C∗),U).

Theorem 1.20. Let U = {Uα : α ∈ A} be an open cover of a manifold M for which each Ua is connected
for all multi indices a ⊂ A. Then, for k > 0,

Ȟk+1(M ;Z;U) ∼= Ȟk(M ;C∞(M ;C∗),U).

1.4 Čech cohomology and maps

A natural question one can ask is how Čech cohomology interacts with smooth maps. Now we let f :
M −→ N be smooth and let U = {Uα : α ∈ A} be an open cover of N . Then it follows from continuity of
f that

f−1(U) = {f−1(Uα) : α ∈ A}
is an open cover of M and hence we can define a map

f∗ : Čk(N ;G;U) −→ Čk(M ;G; f−1(U)), (f∗c)a = ca ◦ f,

where c ∈ Čk(N ;G;U) and a is an ordered multiindex of size k + 1, so that ca : Ua −→ G.
Show that f∗ defined above is an isomorphism of Abelian groups for every k and that it commutes

with differentials, that is,
f∗δ = δf∗.

Conclude that the Čech cohomologies of M and N with respect to the covers U and f−1(U) are isomorphic.
Conclude further that if f is an diffeomorphism, then M and N have isomorphic Čech cohomologies with
respect to any good cover of these manifolds.

Remark: In fact the exercise above shows that if f : M −→ N is smooth, surjective and f−1(U) is a good
cover of M for some good cover of N , then the cohomologies of M and N are isomorphic. An example
where one can use this more general statement is with the map

f : C∗ −→ S1, f(z) =
z

|z|
.

2 Vector bundles

2.1 Real vector bundles

The notion of a vector bundle is a direct generalization of the tangent space of a manifold and permeates
through all differential geometry. Since the tangent space is covered in Warner, we will jump right into
the notion of vector bundle here.

Definition 2.1. A vector bundle of rank k over a manifold M is a manifold E and a surjective smooth
map, the projection map,

π : E −→M

which satisfies the following local triviality condition: there is an open cover U = {Uα : α ∈ A} of M and
diffeomorphisms

Φα : π−1(Uα) −→ Uα × Rk

such that



1. For all x ∈ Uα, v ∈ Rk, π ◦ (Φα)−1(x, v) = x;

2. If Uαβ 6= ∅ the function Φβ ◦ Φ−1
α : Uαβ × Rk −→ Uαβ × Rk satisfies

Φβ ◦ Φ−1
α (x, ·) : Rk −→ Rk is a linear map for all x ∈ Uαβ .

It follows from condition 1 that Φβ ◦Φ−1
α : x×Rk −→ x×Rk hence we can write this composition as

Φβ ◦ Φ−1
α : Uαβ × Rk −→ Uαβ × Rk;

Φβ ◦ Φ−1
α (x, v) = (x, gαβ (x)v), gαβ : Uαβ −→ Gl(k;R).

(5)

There are several natural notions related to vector bundles.

• Firstly, for x ∈M we refer to π−1(x) as the fiber over x and often denote it by Ex;

• A smooth function s : M −→ E such that π ◦ s = Id is called a section of E;

• The pair (Uα,Φα) is called a local trivialisation of E;

• For a pair of local trivialisations, (Uα,Φα) and (Uβ ,Φβ) the functions gαβ defined in (5) are called
transition functions;

• A vector bundle of rank 1 is also called a line bundle.

Example 2.2. [Trivial bundle] The simplest example of a vector bundle of rank k over M is the product
E = M × Rk where we take π to be the projection onto the first factor: π(x, v) = x.

The trivial vector bundle comes equipped with k sections, namely,

si(x) = (x, ei),

where ei = (0, · · · 0, 1, 0, · · · 0) ∈ Rn is the ith coordinate vector. For every x, we have that {s1(x), · · · , sk(x)} ⊂
x× Rk are linearly independent vectors in Rk. We say that the sections {si} are (pointwise) linearly in-
dependend.

For k = 1 we see that a section of E corresponds simply to a function, indeed a section is a map
s : M −→M × R which is the identity on the first factor, hence

s(x) = (x, f(x)) ⊂M × R

where for each x, f(x) is a real number, hence f is simply a smooth real valued function. For the rank k
case, a section is just a collection of k smooth functions.

Definition 2.3. Let E1 and E2 be vector bundles of M , with projection maps π1 and π2. A map
Φ : E1 −→ E2 is a bundle map if the following diagram commutes

E1
Φ //

π1

��

E2

π2

��
M

Id // M

and Φ : (x, ·) : (E1)x −→ (E2)x is linear.
We we say that two vector bundles over M are isomorphic if there is a bundle map Φ : E1 −→ E2

which is a diffeomorphism.

Exercise 2.4. Show that for a bundle map Φ : E1 −→ E2 to be an isomorphism of vector bundles it is
sufficient that Φ(x, ·) : (E1)x −→ (E2)x is an isomorphism of vector spaces for all x ∈M .



Exercise 2.5. Let U = {Uα : α ∈ A} be an open cover of M and assume that two vector bundles E1 and
E2 have trivialisations for this cover:

Φα : π−1
1 (Uα) ⊂ E1 −→ Uα × Rk;

Ψα : π−1
2 (Uα) ⊂ E2 −→ Uα × Rk,

show that if the transition functions for these trivialisations of E1 and E2 agree the bundles E1 and E2

are isomorphic.

In light of the definition of bundle isomorphism, we see that the maps Φα in the definition of vector
bundle correspond to bundle isomorphisms between E|Uα = π−1(Uα) and the trivial bundle Uα × Rk.
That is to say that vector bundles are locally indistinguishable from the trivial vector bundle and any
non-triviality comes from the way different trivialisations are glued together. In particular, since the
bundle is locally trivial, given any point p there is a neighborhood U of p where one can find k (pointwise)
linearly independent sections.

Conversely, given k pointwise linearly independent sections {s1, · · · , sk} of a rank k vector bundle E
defined on an open set U , we can define a map

Φ : U × Rk −→ π−1(U);

Φ(x, a1, · · · ak) = (a1s1(x) + · · · aksk(x)).

It is clear that for each fixed x this is a linear ismorphism from Rk into Ex. Further, this map is clearly
a smooth bijection, hence, due to Exercise 2.4, it is an isomorphism of vector bundles. That is, a local
trivialisation is equivalent to a choice of k linearly independent sections

Example 2.6 (The zero section). Every line bundle comes equipped with a natural section, namely, the
one defined in a local trivialisation (Uα,Φα) by

s(x) = Φ−1
α (x, 0).

Linearity of the transition functions gαβ means that this definition does not depend on the particular
trivialisation chosen:

Φ−1
α (x, 0) = Φ−1

β ◦ (Φβ ◦ Φα)(x, 0) = Φ−1
β (x, gαβ 0) = Φ−1

β (x, 0),

and hence we conclude that s define above is a globally defined section which is called the zero section.

Example 2.7 (Line bundle over the circle). Identify the circle S1 with the interval [0, 1] with ends
identified and let U0 = (0, 1), U1 = (1/2, 1]∪ [0, 1/2). Assume that we have a line bundle E over S1, which
is trivial over each Ui, i.e., we have nonvanishing sections si over Ui, i = 0, 1 which give rise to the local
trivialisation maps

Φ−1
i : Ui × R −→ π−1(Ui),

Φ−1
i (x, λ) = λsi(x).

And hence
Φ1 ◦ Φ−1

0 (x, λ) = (x, λg0
1(x)),

where g0
1(x) is the only real number satisfying s0(x) = g0

1(x)s1(x). Indeed, simply computing the compo-
sition of functions we have

Φ1 ◦ Φ−1
0 (x, λ) = Φ1(λs0(x)) = Φ1(λg0

1(x)s1(x)) = (x, λg0
1(x)).

Since U0 ∩ U1 = (0, 1/2) ∪ (1/2, 1) has two disconnected components g0
1 is actually composed of two

functions, namely its restrictions to (0, 1/2) and (1/2, 1):

g01 : (0, 1/2) −→ R∗; g10 : (1/2, 1) −→ R∗.



If both of these functions have the same sign, say, if they are both positive, then the bundle has a
globally defined section. Indeed, let ϕi, i = 0, 1, be a partition of unity subbordinate to the cover {U0, U1}
and define s = φ0s0 + φ1s1. Since φ0 has compact support in U0, the section φ0s0 has support in U0 and
can be extended as zero to the complement of U0, so that we can regard it as a globally defined section.
The same argument can be applied to φ1s1 to make it into a global section. Now notice that in U1 we
have

φ0s0 + φ1s1 = φ0g
0
1(x)s1(x) + φ1s1 = (φ0g

0
1 + φ1)s1

and that the coefficient φ0g
0
1 + φ1 is nowhere vanishing since it is a sum of two non-negative numbers one

of which is nonzero. Similarly, s is also a nonvanishing section of E over U0 and hence s is a nowhere
vanising section of E. Therefore if g01 and g10 have the same sign, the bundle has a (global) nowhere
vanishing section and hence is trivial.

Next we show that if g01 and g10 have opposite signs, say, g01 is positive and g10 is negative then E
does not have a global nowhere vanishing section and hence it is not trivial. Indeed, assume that E has a
nowhere vanishing section s, then over U0 we have s = fs0 for some nonvanishing real function. Since f
does not vanish, it has a sign. Say f is positive. Then, over (0, 1/2) we have

s = fs0 = fg01s1

and over (1/2, 1)
s = fs0 = fg10s1.

Since f is positive, we see that s is a positive multiple of s1 on (0, 1/2) and a negative multiple of s1 on
(1/2, 1), hence, by continuity, it must vanish at 1, which is a contradiction.

Exercise 2.8. Show that there are only two line bundles over the circle. In the language of the example
above, show that any two bundles for which g01 and g10 have opposite signs are isomorphic.

2.2 Creating a bundle from transition functions

2.2.1 Vector bundles

The same argument used to create a manifold out of domains of Rn and changes of coordinates given in
Section 1.1 can be repeated for vector bundles. Namely, if instead of E

π−→M satisfying the vector bundle
properties one is given an open cover Uα of M of domains of coordinate charts ϕα : Uα −→ Vα ⊂ Rn
together with a collection of transition functions gαβ : Uαβ −→ Gl(k;R) satisfying the properties one would
have if these functions came from a vector bundle, namely

gαα = Id;

gγα · gβγ · gαβ = Id.
(6)

One can try and define a vector bundle over M by taking V = ∪̇(Uα × Rk) and then taking again the
quotient by an equivalence relation, namely, declaring that (x, v) ∈ Uα×Rk is equivalent to (y, w) ∈ Uβ×Rk

if x = y and w = gαβ (x)v. Just as before, the conditions (6) mean that a point (x, v) ∈ Uα × Rk is not

identified with any other point in Uα × Rk and hence we have Uα × Rk ⊂ E. Then the maps

(ϕα, Id) : Uα × Rk ⊂ E −→ Rn × Rk; (ϕα, Id)(x, v) = (ϕα(x), v)

provide a local Euclidean structure for E. Differently from the case of constructing manifolds out of
change of coordinates, now there is no issue regarding the topology of E.

Proposition 2.9. The space E constructed above is a manifold.



Proof. We must prove that the topological space E is second countable and Hausdorff and that the
proposed local Euclidean structure in fact gives smooth change of coordinates.

Smooth structure: The maps above giving the local Euclidean structure themselves already give rise
to a smooth structure as one can readily see composing different charts appropriately:

Φαβ : ϕα(Uα ∩ Uβ)× Rk −→ ϕβ(Uα ∩ Uβ)× Rk

Φαβ(x, v) = (ϕβ ◦ ϕ−1
α (x), gαβ (ϕα(x))v).

Smoothness of the first component follows from the fact that ϕα and ϕβ are coordinates on M and
smoothness of the second factor follows from smoothness of the function gαβ .

Second countability: Since M is a manifold, its topology has a countable basis {Ai : i ∈ N} and we can
take a sub basis

{Ai : Ai ⊂ Uα for some α}.

which we still denote by {Ai}.Then the topology of E is generated by the open sets

{Ai ×Br(v) ⊂ Uα × Rk : Ai ∈ Uα; r ∈ Q+; v ∈ Qk ⊂ Rk},

where Br(v) is the ball or radius r and center v in Rk. Since this set is countable, the topology of E has
a countable basis.

Hausdorff: Given distinct points (x1, v1) ∈ Uα×Rk and (x2, v2) ∈ Uβ×Rk, notice that if x1 6= x2, then
since M is Hausdorff, one can find disjoint open sets A1 and A2 with xi ∈ Ai. In this case (x1, v1) ∈ A1×Rk
and (x2, v2) ∈ A2 × Rk and A1 × Rk does not intersect A2 × Rk, showing the Hausdorff property in this
case. If x1 = x2 then, since no two points in Uα×Rk get identified by the equivalence relation, the we get
that v1 6= v2. Then, since Rk is Hausdorff, there are disjoint open sets V1 and V2 ⊂ Rk such that vi ∈ Vi.
Then (xi, vi) ∈ Uα × Vi, and Uα × V1 and Uα × V2 are disjoint open sets in E. Hence we see that E is
Hausdorff and hence a manifold.

Proposition 2.10. The maps πα : Uα × Rk −→M , πα(x, v) = x satisfy

πα|Uαβ×Rk = πβ |Uαβ×Rk

and hence give rise to a globally defined map

π : E −→M.

The map π makes E into a rank k vector bundle over M and there are trivialisations of E over each Uα
for which the transition functions are the gαβ .

Proof. The first statement follows immediately from the equivalence relation. Namely, if (x, v) ∈ Uα×Rk
is equivalent to (y, w) ∈ Uβ × Rk then x = y and hence πα(x, v) = x = y = πβ(y, w). Since the maps πα
agree on overlaps, they define a global map

π : E −→M ; π(x, v) = πα(x, v) = x on Uα × Rk.

With this, it is clear that identity map from Uα ×Rk ⊂ E to Uα ×Rk is the bundle trivialisation over Uα
and the transition functions for these choices are precisely the gαβ .

As a consequence of this construction we see that the family of functions ǧ = {gαβ : α, β ∈ A} contains
enough information to reconstruct the vector bundle E together with trivialisations over the sets Uα and is
conversely determined by E and trivialisations. In view of our study of Čech cohomology in the first half of
these notes it would be natural to thing of the family ǧ as a Čech cochain, ǧ ∈ Č1(M ;C∞(M ; Gl(k;R));U).
Conditions (6) are then just the usual skew-symmetry of cochains together with a condition that ǧ should
satisfy some sort of cocycle condition. Note however that for k > 1, Gl(k;R) is not Abelian and hence
much of the Čech theory developed in these notes can not be used directly to study vector bundles.



2.3 Classification of line bundles

One way to phrase the computation from previous section is that isomorphism classes of rank k vector
bundles with trivialisations over an open cover {Uα} are in bijective correspondence with families of
transition functions gαβ : Uαβ −→ Gl(k;R) satisfying conditions (6). Of course one is rarely interested in
isomorphism classes of vector bundles with trivialisations. A far more useful question in which people are
more commonly interested is the classifications of isomorphism classes of vector bundles. Next we argue
how to go from what we have developed so far to an answer of the more useful question.

A bundle which is trivial over each open set of a cover U can be trivialised in many different ways over
each open set of the cover, and for each such trivialisation one gets collections of transition functions {gαβ }
all of which describe the same bundle. So, in order to classify rank k vector bundles one must study the
effect these changes of trivialisations have on the family of transition functions. Given two trivialisations
of E over sets of an open cover U

Φα,Ψα : π−1(Uα) −→ Uα × Rk

we can consider the map
Φα ◦Ψ−1

α : Uα × Rk −→ Uα × Rk.

It follows from the basic property of trivialisations that this map is the identity in the first factor and an
invertible linear map on the second, that is, we get

Φα ◦Ψ−1
α (x, v) = (x, fα(x)v),

where fα : Uα −→ Gl(k;R).
We can then use the maps fα to relate the transition functions g̃αβ for the trivialisation Ψ to the

transition functions gαβ for the trivialisation Φ. Indeed, we have

(x, g̃αβ v) = Ψβ ◦Ψ−1
α (x, v) = Ψβ ◦ (Φ−1

β ◦ Φβ) ◦ (Φ−1
α ◦ Φα) ◦Ψ−1

α (x, v)

= (Ψβ ◦ Φ−1
β )(Φβ ◦ Φ−1

α ) ◦ (Φα ◦Ψ−1
α )(x, v)

= (Ψβ ◦ Φ−1
β )(Φβ ◦ Φ−1

α )(x, fαv)

= (Ψβ ◦ Φ−1
β )(x, gαβ ◦ fαv)

= (x, f−1
β ◦ gαβ ◦ fαv)

Hence, we have that g̃αβ = f−1
β ◦ gαβ ◦ fα.

Conversely, given a family of trivialisations Ψα and a family of functions fα : Uα −→ Gl(k;R) we can
form new trivialisations Φα by declaring

Φα = (Id, fα) ◦Ψα.

Until now, we have assumed that we could trivialise any given bundle over our cover. Technically,
every bundle can be trivialised over some cover, but it is at first not clear that there is a cover which
trivialises them all. The key fact which removes this dependence on the cover is the following Lemma,
which we will not prove in these notes

Lemma 2.11. Every rank k vector bundle over a disc D is isomorphic to the trivial one.

Therefore, as long as we take a cover U for which each Uα is diffeomorphic to a disc the hypothesis we
have been using of existence of trivialisation over Uα is automatically guaranteed. Adding this argument
up, what we have had so far in the following:



Proposition 2.12. Let {Uα : α ∈ A} be an open cover of M for which each Uα is diffeomorphic to a disc.
Then isomorphism classes of rank k vector bundles are in one to one correspondence with equivalence
classes of families of functions

{gαβ : Uαβ −→ Gl(k,R) : α, β ∈ A}

satisfying

gαα = Id;

gγα · gβγ · gαβ = Id.

where two families {gαβ } and {g̃αβ } are equivalent if there is a family of functions

{fα : Uα −→ Gl(k,R) : α ∈ A}

such that
g̃αβ = f−1

β ◦ gαβ ◦ fα. (7)

For general vector bundles, the previous proposition is the end of the story. Yet, for line bundles,
since Gl(1,R) = R∗ is commutative, we can use Čech cohomology to go further. Indeed, according to
Proposition 2.10 a cocycle ǧ ∈ Č1(M ;C∞(M ;R∗);U) fully determines the line bundle and if the cover U
is made of discs, any line bundle can be described by a cocycle. Further, condition (7) tells us that two
cocycles represent the same bundle if and only if

gαβ
g̃αβ

=
fβ
fα

= (δf)αβ .

That is, two cocycles represent the same bundle if and only if their “difference” using the group operation
is a coboundary. Hence we conclude

Theorem 2.13. Isomorphim classes of line bundles over a manifold M are in one to one correspondence
with elements in Ȟ1(M ;Z2;U) for any cover U made up of discs.

Corollary 2.14. The group Ȟ1(M ;Z2;U) does not depend on the cover U as long as U made up of discs.

We let

w1 : {isomorphism classes of line bundles} −→ Ȟ1(M ;Z2;U) E 7→ w1(E) ∈ Ȟ1(M ;Z2;U)

be the isomorphism obtained between these two sets.
The map w1 can be extended to higher rank bundles:

Definition 2.15. Let E be a rank k-vector bundle over a manifold M . The first Stiefel-Whitney class of
E is the cohomology class w1(E) ∈ Ȟ1(M ;Z2) corresponding to the line bundle ∧kE under the bijection
of Theorem 2.13.

Corollary 2.16. A vector bundle E over M is orientable if and only if w1(E) = 0.
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