Differentiable manifolds - exercise sheet 13

Exercise 1. Let V and W be vector spaces. Show that $V^{*} \otimes W \cong \mathcal{L}(V ; W)$.
Exercise 2. Let $\varphi: M \longrightarrow N$ be a diffeomorphism. Show that the de Rham cohomology of M and N are isomorphic as algebras.

Exercise 3. Show that the 1 -forms $\omega_{1}, \cdots, \omega_{k}$ are linearly independent if and only if $\omega_{1} \wedge \cdots \wedge \omega_{k} \neq 0$.
Exercise 4 (The gradient vector field). Let $g \in \Gamma\left(\operatorname{Sym}^{2} T^{*} M\right)$ be a Riemannian metric on M, i.e., g is a smooth section and for $X \in T_{p} M \backslash\{0\} g(X, X)>0$.

1. Show that g gives rise to a bundle map (which we still denote by g) $g: T M \longrightarrow T^{*} M, X \mapsto g(X, \cdot)$. Show that this bundle map is a bundle isomorphism $g: T M \xrightarrow{\cong} T^{*} M$
2. Given $f \in \Omega^{0}(M)$ define the gradient of $f, \nabla f \in \mathfrak{X}(M)$, as $\nabla f=g^{-1}(d f)$. Show that if $d f_{p} \neq 0$ then ∇f is orthogonal to the level set $f^{-1}(p)$.
3. Show that f increases along the flow of ∇f.

Exercise 5 (Hodge star). Let V be an n-dimensional vector space with a metric g and an orientation. The Hodge star operator is a linear operator on the exterior algebra $\wedge V^{*}$,

$$
\star: \wedge^{k} V^{*} \longrightarrow \wedge^{n-k} V^{*}
$$

defined as follows: Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be a positive orthonormal basis of V^{*} and for $I \subset\{1, \cdots, n\}$, using multiindex notation, define

$$
\star e_{I}= \pm e_{I^{c}}
$$

where the sign is such that

$$
e_{I} \wedge \star e_{I}=e_{1} \wedge \cdots \wedge e_{n}
$$

1. (Try to) prove that this definition is independent of the (positive orthonormal) basis chosen;
2. Show that $e_{I} \wedge \star e_{J}=0$ if $I \neq J$;
3. Show that for any $\alpha \in \wedge^{k} V^{*} \backslash\{0\}, \alpha \wedge \star \alpha$ is a positive multiple of $e_{1} \wedge \cdots \wedge e_{n}$
4. Compute \star^{2}.

Exercise 6 (The curl). Let M^{3} be a 3-dimensional manifold with a Riemannian metric g define the curl of a vector field X as the composition

$$
\nabla \times X:=g^{-1} \star d(g(X))
$$

where, as in exercise 4, we regard g as bundle isomorphism $G: T M \longrightarrow T^{*} M$.
Compute $\nabla \times X$ for a vector field X in \mathbb{R}^{3} with \mathbb{R}^{3} endowed with the Euclidean metric. Show that in general $\nabla \times(\nabla f=0)$ for all $f \in \Omega^{0}(M)$. Finally show that if $H^{1}(M) \neq\{0\}$, there are vector fields X such that $\nabla \times X=0$ but X is not a gradient vector field of any function.

Exercise 7. Let $A \in \Gamma\left(\otimes^{k} T^{*} M\right)$ and $X, Y \in \mathfrak{X}(M)$. Show that

$$
\mathcal{L}_{X} \mathcal{L}_{Y} A-\mathcal{L}_{Y} \mathcal{L}_{X} A=\mathcal{L}_{[X, Y]} A
$$

