Differentiable manifolds – exercise sheet 9

Exercise 1. Let $\alpha \in \mathbb{R}$ be an irrational number and let $f : \mathbb{R} \longrightarrow T^2$ be defined by

$$f(t) = (e^{2\pi i t}, e^{2\pi \alpha i t})$$

Show that (f, \mathbb{R}) is a submanifold of T^2 . Show that the image of f is dense in T^2 .

Exercise 2. Consider the map $f : \mathbb{R}^4 \longrightarrow \mathbb{R}^2$ defined by

$$f(x, y, s, t) = (x^2 + y, x^2 + y^2 + s^2 + t^2 + y)$$

Show that (0,1) is a regular value of f, and that the level set $f^{-1}\{(0,1)\}$ is diffeomorphic to S^2 .

Exercise 3. For each $a \in \mathbb{R}$, let M_a be the subset of \mathbb{R}^2 defined by the equation

$$M_a = \{(x, y) : y^2 = x(x - 1)(x - a)\}.$$

For which values of a is M_a the image of an embedding? For which values of a is M_a the image of an immersion?

Exercise 4. Define a map $f: S^2 \longrightarrow \mathbb{R}^4$ by

$$f(x, y, z) = (x^2 - y^2, xy, xz, yz).$$

Show that f is an immersion. Further show that if $f(\mathbf{x}) = f(\mathbf{y})$ then $\mathbf{x} = \pm \mathbf{y}$. Prove that f induces am embedding of $\mathbb{R}P^2$ into \mathbb{R}^4 .

Exercise 5. Let $\alpha : M \longrightarrow T^*M$ be a map (not necessarily smooth). Show that α is smooth if and only if for all smooth vector fields X, $\alpha(X)$ is a smooth function.

Exercise 6. In exercise 6 of sheet 8 we showed that any vector bundle can be given a fiberwise metric $\langle \cdot, \cdot \rangle$ which is smooth in the sense that if X and Y are smooth sections of E then $\langle X, Y \rangle$ is a smooth function. In particular TM can be endowed with such a metric in which case we call the pair $(M, \langle \cdot, \cdot \rangle)$ a Riemannian manifold.

- 1. Given $f: M \longrightarrow \mathbb{R}$, show that there is a smooth vector field $\nabla f: M \longrightarrow TM$ such that for all $X \in \mathcal{X}(M), \langle \nabla f, X \rangle = df(X)$. The vector field ∇f is called the gradient of f.
- 2. Show that if $y \in \mathbb{R}$ is a regular value of f then ∇f is orthogonal to the tangent space of the submanifold $f^{-1}(y)$, i.e., if f(p) = y and X is tangent to $f^{-1}(y)$ at p, then $\langle \nabla f, X \rangle = 0$.
- 3. Show that if $\gamma : [0,1] \longrightarrow M$ is such that $\langle \gamma'(t), \nabla f|_{\gamma(t)} \rangle > 0$ then $f \circ \gamma : [0,1] \longrightarrow \mathbb{R}$ is an increasing function.