Geometry and Topology – hand-in sheet 4

Hand in by 31/March

Exercise 1 (The birth of long exact sequences). In what follows we let (U, ∂_U) , (V, ∂_V) and (W, ∂_W) be chain complexes, that is, for example, U is a collection of Abelian groups U_i , $i \geq 0$, $\partial_U : U_i \longrightarrow U_{i-1}$ is a group homomorphism for all i and $\partial_U^2 = 0$.

1. Let $f: U \longrightarrow V$ be a group homomorphism (of degree zero), that is $f: U_i \longrightarrow V_i$, is a group homomorphism for all i. Show that if f commutes with the boundary operators, i.e., the diagram ,

$$\cdots \xrightarrow{\partial_{U}} U_{i} \xrightarrow{\partial_{U}} U_{i-1} \xrightarrow{\partial_{U}} \cdots$$

$$\downarrow f \qquad \qquad \downarrow f$$

$$\downarrow f \qquad \qquad \downarrow f$$

$$\cdots \xrightarrow{\partial_{V}} V_{i} \xrightarrow{\partial_{V}} V_{i-1} \xrightarrow{\partial_{V}} \cdots$$

commutes. Then f sends boundaries to boundaries and cycles to cycles. In particular, f induces a map in homology:

$$f_*: H_i(U) \longrightarrow H_i(V), \qquad f_*[u] = [f(u)], \text{ for all } i.$$

2. Let $f: U \longrightarrow V$ and $g: V \longrightarrow W$ be group homomorphisms (of degree zero) which commute with the boundary operators. Assume that f is injective, g is surjective and $\operatorname{im}(f) = \ker(g)$, that is, we have a short exact sequence of chain complexes

$$0 \longrightarrow U \xrightarrow{f} V \xrightarrow{g} W \longrightarrow 0.$$

Show that the induced maps

$$H_i(U) \xrightarrow{f_*} H_i(V) \xrightarrow{g_*} H_i(W)$$

satisfy $im(f_*) = ker(g_*)$.

3. Next we try to define a map $\delta: H_i(W) \longrightarrow H_{i-1}(U)$ as follows. Given a cycle $w \in W_i$ ($\partial_W w = 0$), let $v \in V_i$ be such that g(v) = w. Then

$$0 = \partial_W w = \partial_W g(v) = g(\partial_V v),$$

that is $\partial_V v \in \ker(g) = \operatorname{im}(f)$, hence there is $u \in U_{i-1}$ such that $f(u) = \partial_V v$. Show that $\partial_U u = 0$ and set $\delta[w] = [u]$. Show that δ is well defined.

4. Show that the sequence

$$\cdots \xrightarrow{\delta} H_i(U) \xrightarrow{f_*} H_i(V) \xrightarrow{g_*} H_i(W) \xrightarrow{\delta} H_{i-1}(U) \xrightarrow{f_*} \cdots$$

is exact at every point.