Group theory - Hand in sheet 4

When marking, each item is worth a point.
(1)
a) If $H<G$ is a normal subgroup and $K<G$ is a subgroup, show that $H \cap K$ is a normal subgroup of K.
b) Conclude that A_{n} is the only normal subgroup of S_{n} for $n>5$.
c) Show that S_{4} has a normal subgroup different of A_{4}.
(2) Let $n>4$ and $m<n$. Show that
a) If S_{n} acts on a set with m elements, then the size of any the orbits is either 1 or 2.
b) The only action of A_{n} on a set with m elements is the trivial one.
(3) Let \mathbb{H} denote the space \mathbb{R}^{4} endowed with its quaternionic structure, i. e., we see the standard basis of \mathbb{R}^{4} as $1, i, j, k$ with (associative) multiplication given by the rules

$$
i^{2}=j^{2}=k^{2}=i j k=-1,
$$

which means that for real $a, b, c, d, \alpha, \beta, \gamma, \delta$,

$$
\begin{align*}
(a+b i+c j+d k)(\alpha+\beta i+\gamma j+\delta k) & =a \alpha-b \beta-c \gamma-d \delta+(a \beta+b \alpha+c \delta-d \gamma) i+ \\
& +(a \gamma+c \alpha-b \delta+\beta d) j+(a \delta+d \alpha+b \gamma-c \beta) k \tag{1}
\end{align*}
$$

Define the conjugate operation by

$$
\overline{a+b i+c j+d k}=a-b i-c j-d k .
$$

a) Show that if $p=a+b i+c j+d k$, then

$$
p \bar{p}=a^{2}+b^{2}+c^{2}+d^{2}=|p|^{2} .
$$

Also show that $\overline{p q}=\bar{q} \bar{p}$.
b) Show that the unit sphere inside \mathbb{R}^{4}, given by

$$
S^{3}=\left\{a+b i+c j+d k: a^{2}+b^{2}+c^{2}+d^{2}=1\right\}
$$

is a subgroup of $\mathbb{H} \backslash\{0\}$, endowed with quaternionic multiplication.
c) Show that the map

$$
(a+b i+c j+d k) \mapsto\left(\begin{array}{cc}
a+i b & c+i d \\
-c+i d & a-i b
\end{array}\right)
$$

is an isomorphism between S^{3} and $S U(2)$.
(4) Let G be a finite group and $n \geq 0$ a natural number. A representation of G is a group homomorphism

$$
\varphi: G \longrightarrow U(n)
$$

A representation is irreducible if there is no subspace $V \subset \mathbb{C}^{n}$, with $V \neq\{0\}, V \neq \mathbb{C}^{n}$, such that

$$
\varphi(g)(V)=V, \quad \forall g \in G
$$

a) Show that given two representations $\varphi_{1}: G \longrightarrow U\left(n_{1}\right)$ and $\varphi_{1}: G \longrightarrow U\left(n_{2}\right)$, we can construct a new representation $\left(\varphi_{1}, \varphi_{2}\right): G \longrightarrow U\left(n_{1}+n_{2}\right)$. Is $\left(\varphi_{1}, \varphi_{2}\right)$ irreducible?
b) Show that if G is a finite Abelian group and $\varphi: G \longrightarrow U(n)$ is an irreducible representation, then $n=1$ (hint: you can use without proof that given a set of commuting matrices in $U(n)$, there is a basis which diagonalizes all of them simultaneously.)

