Group theory – Hand in sheet 4

When marking, each item is worth a point.

(1)

- a) If H < G is a normal subgroup and K < G is a subgroup, show that $H \cap K$ is a normal subgroup of K.
- b) Conclude that A_n is the only normal subgroup of S_n for n > 5.
- c) Show that S_4 has a normal subgroup different of A_4 .
- (2) Let n > 4 and m < n. Show that
 - a) If S_n acts on a set with m elements, then the size of any the orbits is either 1 or 2.
 - b) The only action of A_n on a set with m elements is the trivial one.

(3) Let \mathbb{H} denote the space \mathbb{R}^4 endowed with its quaternionic structure, i. e., we see the standard basis of \mathbb{R}^4 as 1, i, j, k with (associative) multiplication given by the rules

$$i^2 = j^2 = k^2 = ijk = -1,$$

which means that for real $a, b, c, d, \alpha, \beta, \gamma, \delta$,

$$(a+bi+cj+dk)(\alpha+\beta i+\gamma j+\delta k) = a\alpha-b\beta-c\gamma-d\delta+(a\beta+b\alpha+c\delta-d\gamma)i++(a\gamma+c\alpha-b\delta+\beta d)j+(a\delta+d\alpha+b\gamma-c\beta)k$$
(1)

Define the conjugate operation by

$$\overline{a+bi+cj+dk} = a-bi-cj-dk$$

a) Show that if p = a + bi + cj + dk, then

$$p\overline{p} = a^2 + b^2 + c^2 + d^2 = |p|^2.$$

Also show that $\overline{pq} = \overline{q} \ \overline{p}$.

b) Show that the unit sphere inside \mathbb{R}^4 , given by

$$S^{3} = \{a + bi + cj + dk : a^{2} + b^{2} + c^{2} + d^{2} = 1\}$$

is a subgroup of $\mathbb{H}\setminus\{0\}$, endowed with quaternionic multiplication.

c) Show that the map

$$(a+bi+cj+dk) \mapsto \begin{pmatrix} a+ib & c+id \\ -c+id & a-ib \end{pmatrix}$$

is an isomorphism between S^3 and SU(2).

(4) Let G be a finite group and $n \ge 0$ a natural number. A representation of G is a group homomorphism

$$\varphi: G \longrightarrow U(n).$$

A representation is irreducible if there is no subspace $V \subset \mathbb{C}^n$, with $V \neq \{0\}, V \neq \mathbb{C}^n$, such that

$$\varphi(g)(V) = V, \qquad \forall g \in G.$$

- a) Show that given two representations $\varphi_1 : G \longrightarrow U(n_1)$ and $\varphi_1 : G \longrightarrow U(n_2)$, we can construct a new representation $(\varphi_1, \varphi_2) : G \longrightarrow U(n_1 + n_2)$. Is (φ_1, φ_2) irreducible?
- b) Show that if G is a finite Abelian group and $\varphi : G \longrightarrow U(n)$ is an irreducible representation, then n = 1 (hint: you can use without proof that given a set of commuting matrices in U(n), there is a basis which diagonalizes all of them simultaneously.)