Group theory - Hand in sheet 5

(1-2 pt) Prove that the group $S^{3} /\{ \pm \mathrm{Id}\}$ is isomorphic to $\mathrm{SO}(3)$. Check that S^{3} and $\mathrm{SO}(3)$ are not isomorphic to one another. Hint: see example viii in chapter 16.
(2- 4 pt) (Upper central series) Given a group G, let $Z_{0}=\{e\}$ and define inductively

$$
Z_{i}=\left\{g \in G: g h g^{-1} h^{-1} \in Z_{i-1}, \quad \text { for all } h \in G\right\}
$$

1. (1 pt) Show that Z_{1} is the center of G, that $Z_{i} \subset Z_{i+1}$ and that Z_{i} is a normal subgroup of G for every i. Finally, Show that Z_{i+1} / Z_{i} is the center of G / Z_{i}.
Remark: The series

$$
\{e\} \subset Z_{1} \triangleleft Z_{2} \triangleleft \cdots \triangleleft Z_{i} \triangleleft Z_{i+1} \cdots
$$

is called the upper central series.

A group G is called nilpotent if there is an $n \in \mathbb{N}$ for which $Z_{n}=G$. The first n for which this happens is called the nilpotency class of G.
2. (1 pt) Compute the upper central series for G, the group of real upper triangular 3 by 3 matrices whose entries along the diagonal are 1, i.e., the elements in G look like

$$
\left(\begin{array}{ccc}
1 & a_{12} & a_{13} \tag{1}\\
0 & 1 & a_{23} \\
0 & 0 & 1
\end{array}\right)
$$

3. (1 pt) Can you guess what the upper central series is for be the group of real upper triangular n by n matrices whose entries along the diagonal are 1?
4. (1 pt) Show that if the center of G is trivial, then the upper central series is given by $Z_{i}=\{e\}$. Compute the upper central series for D_{7}, D_{28} and D_{8}.
(3- 4 pt) (Lower central series) Given a group G, let $G_{0}=G$ and define inductively

$$
G_{i}=\left\langle g h g^{-1} h^{-1}: g \in G_{i-1}, h \in G\right\rangle,
$$

where $\langle\cdot\rangle$ denotes "the group generated by". So, for example, G_{1} is the commutator subgroup of G.

1. (1 pt) Show that $G_{i+1}<G_{i}$. Further, show that G_{i+1} is a normal subgroup of G_{i} and that the quotient G_{i} / G_{i+1} is Abelian.
Remark: The series

$$
G=G_{0} \triangleright G_{1} \cdots \triangleright G_{i} \triangleright G_{i+1} \triangleright \cdots
$$

is called the lower central series.
2. (1 pt) Compute the lower central series for G, the group of real upper triangular 3 by matrices whose entries along the diagonal are 1.
3. (1 pt) Compute the lower central series of D_{7}, D_{28} and D_{8}.
4. (1 pt) Show that if G is nilpotent with nilpotency class n, then $G_{n}=\{e\}$. Further, if there is an n for which $G_{n}=\{e\}$, then G is nilpotent.
(4-2 pt) Recall from last sheet: Given a finite group G and $n \geq 0$ a natural number, a representation of G is a group homomorphism

$$
\varphi: G \longrightarrow U(n)
$$

A representation is irreducible if there is no subspace $V \subset \mathbb{C}^{n}$, with $V \neq\{0\}, V \neq \mathbb{C}^{n}$, such that

$$
\varphi(g)(V)=V, \quad \forall g \in G
$$

Now new stuff: Given two representations of G, say $\varphi_{1}: G \longrightarrow U(n)$ and $\varphi_{2}: G \longrightarrow U(m)$, we say that a linear map $A: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{m}$ is equivariant if

$$
A\left(\varphi_{1}(g) v\right)=\varphi_{2}(g)(A v) \quad \forall v \in \mathbb{C}^{n}
$$

We say that φ_{1} and φ_{2} are equivalent if there is an equivariant linear map $A: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{m}$ which is an isomorphism of vector spaces.

1. (1 pt) In the situation above, show that $\operatorname{ker}(A) \subset \mathbb{C}^{n}$ and $\operatorname{Im}(A) \subset \mathbb{C}^{m}$ are invariant under the action of G. Conclude that if $\varphi_{1}: G \longrightarrow U(n)$ and $\varphi_{2}: G \longrightarrow U(m)$ are irreducible, then either they are equivalent or the only equivariant map between \mathbb{C}^{n} and \mathbb{C}^{m} is the trivial one.
2. (1 pt) Show that if $A: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ is equivariant for φ_{1}, i.e., $\varphi_{1}(g) A=A \varphi_{1}(g)$ for all $g \in G$ and φ_{1} is irreducible, then A must be a multiple of the identity. (You may assume that A is diagonalizable)
