Mock exam 2 – Group theory

Notes:

- 1. Write your name and student number $**clearly^{**}$ on each page of written solutions you hand in.
- 2. You can give solutions in English or Dutch.
- 3. You are expected to explain your answers.
- 4. You are **not** allowed to consult any text book, class notes, colleagues, calculators, computers etc.
- 5. Advice: read all questions first, then start solving the ones you already know how to solve or have good idea on the steps to find a solution. After you have finished the ones you found easier, tackle the harder ones.

1) Let D_n be the dihedral group given by

$$D_n = \langle a, b : a^n = b^2 = e; bab^{-1} = a^{-1} \rangle.$$

- a) Compute Z_{D_n} , the center of D_n , for n > 1. Analyse carefully the cases n = 2, n even and greater than 2 and n odd.
- b) Show that if n > 1, then $D_{2n}/Z_{D_{2n}}$ is isomorphic to D_n .

2) For each list of groups a) and b) below, decide which of the groups within that list are isomorphic, if any:

a) D_3 , S_3 and the group generated by

$$\langle a, b : a^3 = b^2 = e; aba^{-1} = ba \rangle.$$

b) D_{12} , $\mathbb{Z}_4 \times D_3$ and S_4 .

3) Let G be a finite group. We define a sequence (G_i) of subgroups of G as follows. We let $G_0 = G$ and define inductively G_i as the group generated by

$$G_i = \langle ghg^{-1}h^{-1} : g \in G \text{ and } h \in G_{i-1} \rangle$$

So, for example, G_1 is the commutator subgroup of G.

a) Show that each G_i is subgroup of G_{i-1} . Further, show that $G_i \triangleleft G_{i-1}$ and that the quotient G_{i-1}/G_i is Abelian.

- b) Show that if, for some i_0 , $G_{i_0} = G_{i_0+1}$ then $G_n = G_{i_0}$ for all $n > i_0$.
- c) Compute the sequence of subgroups G_i above for $G = D_8$, D_{10} and A_5 .

4) Show that if G has order $p_1p_2\cdots p_n$, for p_i primes with $p_i \leq p_{i+1}$ and H < G is a subgroup of order $p_2\cdots p_n$, then H is normal.

- 5) Let G be a group of order np^k , with n > 1, k > 0, p > 2 and n and p coprimes.
 - a) Show that if n < p then G is not simple,
 - b) Show that if n < 2p and k > 1, then G is not simple,
 - c) Show that if k > n/p and $n < p^2$, then G is not simple.

6) In what follows let G be a finite group and K, H < G. Prove or give counter-examples to the following claims.

- a) If $K \triangleleft G$, then $K \cap H \triangleleft H$.
- b) If K is a p-Sylow of G then $K \cap H$ is a p-Sylow of H.

7) Let p > 2. What is the order of a *p*-Sylow of S_{2p} ? Give an example of one such group. Finally, find all *p*-Sylows of S_{2p} .