Mock exam 2 - Group theory

Notes:

1. Write your name and student number ${ }^{* *}$ clearly** on each page of written solutions you

 hand in.2. You can give solutions in English or Dutch.
3. You are expected to explain your answers.
4. You are not allowed to consult any text book, class notes, colleagues, calculators, computers etc.
5. Advice: read all questions first, then start solving the ones you already know how to solve or have good idea on the steps to find a solution. After you have finished the ones you found easier, tackle the harder ones.
1) Let D_{n} be the dihedral group given by

$$
D_{n}=\left\langle a, b: a^{n}=b^{2}=e ; b a b^{-1}=a^{-1}\right\rangle
$$

a) Compute $Z_{D_{n}}$, the center of D_{n}, for $n>1$. Analyse carefully the cases $n=2, n$ even and greater than 2 and n odd.
b) Show that if $n>1$, then $D_{2 n} / Z_{D_{2 n}}$ is isomorphic to D_{n}.
2) For each list of groups a) and b) below, decide which of the groups within that list are isomorphic, if any:
a) D_{3}, S_{3} and the group generated by

$$
\left\langle a, b: a^{3}=b^{2}=e ; a b a^{-1}=b a\right\rangle .
$$

b) $D_{12}, \mathbb{Z}_{4} \times D_{3}$ and S_{4}.
3) Let G be a finite group. We define a sequence $\left(G_{i}\right)$ of subgroups of G as follows. We let $G_{0}=G$ and define inductively G_{i} as the group generated by

$$
G_{i}=\left\langle g h g^{-1} h^{-1}: g \in G \text { and } h \in G_{i-1}\right\rangle
$$

So, for example, G_{1} is the commutator subgroup of G.
a) Show that each G_{i} is subgroup of G_{i-1}. Further, show that $G_{i} \triangleleft G_{i-1}$ and that the quotient G_{i-1} / G_{i} is Abelian.
b) Show that if, for some $i_{0}, G_{i_{0}}=G_{i_{0}+1}$ then $G_{n}=G_{i_{0}}$ for all $n>i_{0}$.
c) Compute the sequence of subgroups G_{i} above for $G=D_{8}, D_{10}$ and A_{5}.
4) Show that if G has order $p_{1} p_{2} \cdots p_{n}$, for p_{i} primes with $p_{i} \leq p_{i+1}$ and $H<G$ is a subgroup of order $p_{2} \cdots p_{n}$, then H is normal.
5) Let G be a group of order $n p^{k}$, with $n>1, k>0, p>2$ and n and p coprimes.
a) Show that if $n<p$ then G is not simple,
b) Show that if $n<2 p$ and $k>1$, then G is not simple,
c) Show that if $k>n / p$ and $n<p^{2}$, then G is not simple.
6) In what follows let G be a finite group and $K, H<G$. Prove or give counter-examples to the following claims.
a) If $K \triangleleft G$, then $K \cap H \triangleleft H$.
b) If K is a p-Sylow of G then $K \cap H$ is a p-Sylow of H.
7) Let $p>2$. What is the order of a p-Sylow of $S_{2 p}$? Give an example of one such group. Finally, find all p-Sylows of $S_{2 p}$.

