# Mock exam 2 - Group theory 

Notes:

## 1. Write your name and student number ${ }^{* *}$ clearly** on each page of written solutions you hand in.

2. You can give solutions in English or Dutch.
3. You are expected to explain your answers.
4. You are not allowed to consult any text book, class notes, colleagues, calculators, computers etc.
5. Advice: read all questions first, then start solving the ones you already know how to solve or have good idea on the steps to find a solution. After you have finished the ones you found easier, tackle the harder ones.
1) Let $D_{n}$ be the dihedral group given by

$$
D_{n}=\left\langle a, b: a^{n}=b^{2}=e ; b a b^{-1}=a^{-1}\right\rangle .
$$

a) Compute $Z_{D_{n}}$, the center of $D_{n}$, for $n>1$. Analyse carefully the cases $n=2$, $n$ even and greater than 2 and $n$ odd.
b) Show that if $n>1$, then $D_{2 n} / Z_{D_{2 n}}$ is isomorphic to $D_{n}$.

Remarks useful for the solution. a) This has been covered in exercises and examples in the book. The center of $D_{2 n}$ is given by $\left\{e, a^{n}\right\}$ for $n>2$, while $D_{2}$ is Abelian an isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2} . D_{2 n+1}$ has no center (see exercise 14.10 in Armstrong).
b) Is done for $n=3$ in Armstrong (example 15.i) and is totally analogous for generic $n>2$. Observe that since $D_{2}$ is Abelian, $D_{2}=Z_{D_{2}}$ and here the quotient is trivial.
2) For each list of groups a) and b) below, decide which of the groups within that list are isomorphic, if any:
a) $D_{3}, S_{3}$ and the group generated by

$$
\left\langle a, b: a^{3}=b^{2}=e ; a b a^{-1}=b a\right\rangle .
$$

b) $D_{12}, \mathbb{Z}_{4} \times D_{3}$ and $S_{4}$.

Remarks useful for the solution. a) We have proved and used a few times in class that $D_{3}$ and $S_{3}$ are isomorphic. About the third group, we see the relation $a b a^{-1}=b a$ is equivalent to $b a b=a^{2}=a^{-1}$, so again thisis the dihedral group.

Alternatively, you might point out that there are only two groups of order 6 (we have classified those): $\mathbb{Z}_{6}$ and $D_{3}$. Given that the groups above are not Abelian, they must be isomorphic to $D_{3}$. This second solution is right and would give you full marks for the exercise, however it is far less satisfactory because in order to prove the theorem being used to solve the exercise we had to solve an even harder exercise, namely that every non-Abelian group of order 6 is isomorphic to $D_{3}$ and not just the three listed in this exercise.
b) The three groups listed here have different centers: $Z_{D_{1} 2}=\mathbb{Z}_{2}, Z_{\mathbb{Z}_{4} \times D_{3}} \cong Z_{\mathbb{Z}_{4}} \times Z_{D_{3}} \cong \mathbb{Z}_{4}$ and $Z_{S_{4}}=\{e\}$, so no two are isomorphic.
3) Let $G$ be a finite group. We define a sequence $\left(G_{i}\right)$ of subgroups of $G$ as follows. We let $G_{0}=G$ and define inductively $G_{i}$ as the group generated by

$$
G_{i}=\left\langle g h g^{-1} h^{-1}: g \in G \text { and } h \in G_{i-1}\right\rangle
$$

So, for example, $G_{1}$ is the commutator subgroup of $G$.
a) Show that each $G_{i}$ is subgroup of $G_{i-1}$. Further, show that $G_{i} \triangleleft G_{i-1}$ and that the quotient $G_{i-1} / G_{i}$ is Abelian.
b) Show that if, for some $i_{0}, G_{i_{0}}=G_{i_{0}+1}$ then $G_{n}=G_{i_{0}}$ for all $n>i_{0}$.
c) Compute the sequence of subgroups $G_{i}$ above for $G=D_{8}, D_{10}$ and $A_{5}$.

Remarks useful for the solution. See exercise 3 (lower central series) in the hand-in sheet 5 . There you will find the solution to this question and more facts about this sequence of groups.

The sequence for $A_{5}$ is not computed there, but is rather simple. Since $A_{5}$ is a simple non-Abelian group, and $G_{1}$ is non-trivial and a normal subgroup of $A_{5}$, it must be the whole $A_{5}$. Then according to $b)$ the whole sequence is given by $G_{i}=A_{5}$.
4) Show that if $G$ has order $p_{1} p_{2} \cdots p_{n}$, for $p_{i}$ primes with $p_{i} \leq p_{i+1}$ and $H<G$ is a subgroup of order $p_{2} \cdots p_{n}$, then $H$ is normal.

Remarks useful for the solution. This is an exercise from exercise sheet on Sylow groups (Armstrong exercise 20.12), was also present in the hand in sheet 6 (exercise 2 ) and you can find a solution there.
5) Let $G$ be a group of order $n p^{k}$, with $n>1, k>0, p>2$ and $n$ and $p$ coprimes.
a) Show that if $n<p$ then $G$ is not simple,
b) Show that if $n<2 p$ and $k>1$, then $G$ is not simple,
c) Show that if $k>n / p$ and $n<p^{2}$, then $G$ is not simple.

Remarks useful for the solution. This is an exercise from hand-in sheet 6 (exercise 3 ) and you can find a solution there.
6) In what follows let $G$ be a finite group and $K, H<G$. Prove or give counter-examples to the following claims.
a) If $K \triangleleft G$, then $K \cap H \triangleleft H$.
b) If $K$ is a $p$-Sylow of $G$ then $K \cap H$ is a p-Sylow of $H$.

Remarks useful for the solution. a) This is exercise 1 from hand-in sheet 2 and you can find a solution there (with $H$ and $K$ swapped).
b) This is a small part of exercise 7 from hand-in sheet 6 and you can find a solution there.
7) Let $p>2$. What is the order of a $p$-Sylow of $S_{2 p}$ ? Give an example of one such group. Finally, find all $p$-Sylows of $S_{2 p}$.

Remarks useful for the solution. This is an exercise from hand in sheet 6 (exercise 5) and you can find a solution there.

