Group theory: Orbit-Stabilizer Theorem

1 The orbit stabilizer theorem

Definition 1.1. Given a group G and a set S, an action of G on S is a map

$$
G \times S \longrightarrow S \quad(g, s) \mapsto g \cdot s
$$

which satisfies

- $e \cdot s=s$ for all $s \in S$,
- $g \cdot(h \cdot s)=(g h) \cdot s$.

Given an action of G on S and an element $s \in S$, there are two sets one can define:
Definition 1.2. The orbit of s is the set

$$
\mathcal{O}_{s}=\{g \cdot s \mid g \in G\} \subset S
$$

The stabilizer of s is the set

$$
\mathcal{B}_{s}=\{g \in G \mid g \cdot s=s\}
$$

Lemma 1.3. The stabilizer of a point $s \in S$ is a subgroup of G.
Proof. We will check the three properties required for subgroups.
Check that the identity is in \mathcal{B}_{s}. By definition of group action $e \cdot s=s$ for all $s \in S$, so this follows from the definition of group action.

Check that \mathcal{B}_{s} is closed under inversion. Let $g \in \mathcal{B}_{s}$. Then

$$
s=e \cdot s=\left(g^{-1} g\right) \cdot s=g^{-1} \cdot(g \cdot s)=g^{-1} s
$$

Hence $g^{-1} \in \mathcal{B}_{s}$ and \mathcal{B}_{s} is closed under inversion.
Check that \mathcal{B}_{s} is closed under products. Let $g, h \in \mathcal{B}_{s}$, then

$$
(g h) \cdot s=g \cdot(h \cdot s)=g \cdot s=s
$$

Hence \mathcal{B}_{s} is closed under multiplication and therefore it is a subgroup.
Given a subgroup $H<G$ one can always consider sets the form

$$
g H=\{a \in G \mid a=g h \text { for some } h \in H\}
$$

for $g \in G$. These are called left H-cosets. By the proof of Lagrange's theorem we have that

$$
\begin{equation*}
\#(\text { left } H \text {-cosets }) \cdot \# H=\# G \tag{1}
\end{equation*}
$$

and in particular $\# H$ divides $\# G$.
This statement takes the following form for subgroups obtained as stabilizers
Theorem 1.4. Let G be a finite group, S be a set and $G \times S \longrightarrow S$ be a G-action. Let $s \in S$ then

$$
\# O_{s} \cdot \# B_{s}=\# G
$$

Proof. Due to equation (1), to prove this theorem it suffices to prove that the number of left \mathcal{B}_{s}-cosets is the same as the number of elements in the orbit of s. We achieve this with two observations.

Observation 1: Any two elements in the same left \mathcal{B}-coset map s into the same element. Let a_{1}, a_{2} be two elements in $g \mathcal{B}_{s}$. Then there are h_{1} and h_{2} in \mathcal{B}_{s} such that $a_{1}=g h_{1}$ and $a_{2}=g h_{2}$. Therefore

$$
a_{1} \cdot s=g \cdot\left(h_{1} \cdot s\right)=g \cdot s=g \cdot\left(h_{2} \cdot s\right)=a_{2} \cdot s
$$

Observation 2: If a_{1} and a_{2} are not in the same coset, then $a_{1} \cdot s \neq a_{2} \cdot s$. Indeed, assume that $a_{2} \notin a_{1} \mathcal{B}_{s}$ (i. e., they are not in the same coset) but still $a_{1} \cdot s=a_{2} \cdot s$. Then

$$
a_{1}^{-1} \cdot\left(a_{2} \cdot s\right)=a_{1}^{-1} \cdot\left(a_{1} \cdot s\right)=\left(a_{1}^{-1} a_{1}\right) \cdot s=s
$$

and hence $a_{1}^{-1} a_{2} \in \mathcal{B}_{s}$ or equivalently $a_{2} \in a_{1} \mathcal{B}_{2}$, which is a contradiction. Hence $a_{1} \cdot s \neq a_{2} \cdot s$.
With these two observations, we have established a bijection between the left \mathcal{B}_{s}-cosets and the points in the orbit of s, hence the number of points in the orbit of s equals the number of left B_{s}-cosets in G, which finishes the proof.

