Group theory - Exam

Notes:

1. Write your name and student number ${ }^{* *}$ clearly** on each page of written solutions you hand in.

2. You can give solutions in English or Dutch.
3. You are expected to explain your answers.
4. You are not allowed to consult any text book, class notes, colleagues, calculators, computers etc.
5. Advice: read all questions first, then start solving the ones you already know how to solve or have good idea on the steps to find a solution. After you have finished the ones you found easier, tackle the harder ones.
1) Compute the center of D_{n} for $n \geq 3$. Analyse carefully the cases n even and n odd.
2) For each list of groups a), b) and c) below, decide which of the groups within each list are isomorphic, if any:
a) $\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{9} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{18} \times \mathbb{Z}_{2}$ and $\mathbb{Z}_{6} \times \mathbb{Z}_{6}$.
b) $S_{4}, A_{4} \times \mathbb{Z}_{2}, D_{12}$ and $\mathbb{H} \times \mathbb{Z}_{3}$, where \mathbb{H} is the quaternion group with 8 elements.
c) $(\mathbb{Q},+),(\mathbb{R},+),\left(\mathbb{R}_{+}, \times\right)$.
3) Show that $(\mathbb{Q},+)$ is not finitely generated, i.e., if $X \subset \mathbb{Q}$ is a finite set, then the group generated by X is not \mathbb{Q}.
4) Let p be a prime and X be a set with less than p elements. Show that the only action of \mathbb{Z}_{p} on X is the trivial one.
5) Let G be a finite group and $H<G$ be a subgroup of index n, i.e., $\# G=n \# H$. Show that $g^{n!} \in H$ for every $g \in G$.
6) Show that if a group G has a conjugacy class with two elements then G is not simple.
