Group theory - Exam

Notes:

1. Write your name and student number ${ }^{* *}$ clearly** on each page of written solutions you

 hand in.2. You can give solutions in English or Dutch.
3. You are expected to explain your answers.
4. You are not allowed to consult any text book, class notes, colleagues, calculators, computers etc.
5. Advice: read all questions first, then start solving the ones you already know how to solve or have good idea on the steps to find a solution. After you have finished the ones you found easier, tackle the harder ones.
1) Compute the center of D_{n} for $n \geq 3$. Analyse carefully the cases n even and n odd.

As in lectures $D_{n}=\left\langle a, b: a^{n}=b^{2}=e ; b a b^{-1}=a^{-1}\right\rangle$. Let $c=a^{i} b^{j}$ be an element of D_{n}. Then c is in the center of D if and only if c commutes with the generators of D_{n}, i.e., if and only if the commutator of c with a and b is the identity. So we compute the commutators

$$
c a c^{-1} a^{-1}=a^{i} b^{j} a b^{-j} a^{-i} a^{-1}=a^{i} a^{-1^{j}} a^{-i} a^{-1}=a^{-1+(-1)^{j}}
$$

where in the second equality we used that
$b^{j} a b^{-j}=b^{j-1}\left(b a b^{-1}\right) b^{-j+1}=b^{j-1} a^{-1} b^{-j+1}=b^{j-2}\left(b a^{-1} b^{-1}\right) b^{-j+2}=b^{j-2} b a^{(-1)^{2}} b^{-j+2}=\cdots=a^{(-1)^{j}}$ (recall quiz 2).
So we have that

$$
\operatorname{cac}^{-1} a^{-1}=a^{-1+(-1)^{j}}= \begin{cases}e & \text { if } j \text { is even; } \\ a^{-2} & \text { if } j \text { is odd } .\end{cases}
$$

Since $n>2$ we conclude that, if c is in the center of D_{n}, c must be of the form a^{i}.
Now we compute the commutator of $c=a^{i}$ with b :

$$
c b c^{-1} b^{-1}=a^{i} b a^{-i} b-1=a^{i} a^{i}=a^{2 i}
$$

Therefore c is in the center if and only if $2 i=0 \bmod n$. For n odd the only solution is $i=0$ as 2 is invertible in \mathbb{Z}_{n} under multiplication, while for n even we can have $i=0$ or $i=n / 2$.

Hence $Z_{D_{n}}=\{e\}$ if n is odd and $Z_{D_{n}}=\left\{e, a^{n / 2}\right\}=\mathbb{Z}_{2}$ if n is even.
2) For each list of groups a), b) and c) below, decide which of the groups within each list are isomorphic, if any:
a) $\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{9} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{18} \times \mathbb{Z}_{2}$ and $\mathbb{Z}_{6} \times \mathbb{Z}_{6}$.
b) $S_{4}, A_{4} \times \mathbb{Z}_{2}, D_{12}$ and $\mathbb{H} \times \mathbb{Z}_{3}$, where \mathbb{H} is the quaternion group with 8 elements.
c) $(\mathbb{Q},+),(\mathbb{R},+),\left(\mathbb{R}_{+}, \times\right)$.
a) As we saw in lectures $\mathbb{Z}_{n} \times \mathbb{Z}_{m}=\mathbb{Z}_{n m}$ if and only if n and m are coprimes. So $\mathbb{Z}_{2} \times \mathbb{Z}_{3}=\mathbb{Z}_{6}$ and $\mathbb{Z}_{2} \times \mathbb{Z}_{9}=\mathbb{Z}_{18}$ therefore

$$
\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}=\mathbb{Z}_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{2}=\mathbb{Z}_{6} \times \mathbb{Z}_{6}
$$

and

$$
\mathbb{Z}_{9} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}=\mathbb{Z}_{18} \times \mathbb{Z}_{2}
$$

Also, by the same result,

$$
\mathbb{Z}_{6} \times \mathbb{Z}_{3} \neq \mathbb{Z}_{18}
$$

hence

$$
\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}=\mathbb{Z}_{6} \times \mathbb{Z}_{3} \times \mathbb{Z}_{2} \neq \mathbb{Z}_{18} \times \mathbb{Z}_{2}
$$

Notice that to achieve this conclusion we used that fact that $G \times H=G^{\prime} \times H$ implies $G=G^{\prime}$ for finite groups.

If you don't want to use this result, notice that every nonidentity element in $\mathbb{Z}_{6} \times \mathbb{Z}_{6}$ has order less than or equal to 6 , while $\mathbb{Z}_{18} \times \mathbb{Z}_{2}$ has an element of order 18 , so these two groups can not be isomorphic.
b) Firstly we look at the centers:

$$
Z_{S_{4}}=\{e\}, \quad Z_{A_{4} \times \mathbb{Z}_{2}}=Z_{A_{4}} \times Z_{\mathbb{Z}_{2}}=\mathbb{Z}_{2}, \quad Z_{D_{12}}=\mathbb{Z}_{2}, \quad Z_{\mathbb{H} \times \mathbb{Z}_{3}}=Z_{\mathbb{H}} \times Z_{\mathbb{Z}_{3}}=\mathbb{Z}_{2} \times \mathbb{Z}_{3}
$$

So the only two groups that can be isomorphic are $A_{4} \times \mathbb{Z}_{2}$ and D_{12}. But $A_{4} \times \mathbb{Z}_{2}$ has no elements of order 12 while D_{12} does, so those groups are not isomorphic either.
c) The first group in the list is countable and the other two are not, so there is not bijection between $(\mathbb{Q},+)$ and the other two groups. Finally, $(\mathbb{R},+)$ is isomorphic to $\left(\mathbb{R}_{+}, \cdot\right)$ via the exponential map

$$
\exp : \mathbb{R} \longrightarrow \mathbb{R}_{+} \quad \exp (x)=e^{x}
$$

since $\exp (x+y)=e^{x+y}=e^{x} e^{y}=\exp (x) \exp (y)$, showing that \exp is a group homomorphism. And we know from school that the exponential map is a bijection between \mathbb{R} and \mathbb{R}_{+}whose inverse is the logarithm.
3) Show that $(\mathbb{Q},+)$ is not finitely generated, i.e., if $X \subset \mathbb{Q}$ is a finite set, then the group generated by X is not \mathbb{Q}.

Let $X=\left\{p_{1} / q_{1}, \cdots p_{k} / q_{k}\right\}$ be a finite subset of \mathbb{Q} where p_{i} and q_{i} are coprime integers. Then, the group generated by X is given by

$$
\langle X\rangle=\left\{\sum_{i} m_{i} p_{i} / q_{i}: m_{i} \in \mathbb{Z}\right\}=\left\{\left(\sum_{i}\left(\Pi_{j \neq i} q_{j}\right) m_{i} p_{i}\right) / \Pi_{i} q_{i}: m_{i} \in \mathbb{Z}\right\}
$$

In particular we see that every element in $\langle X\rangle$ is an integer multiple of $1 / \Pi_{i} q_{i}$, so, in particular $\frac{1}{2 \Pi_{i} q_{i}} \notin\langle X\rangle$, hence $\langle X\rangle \neq \mathbb{Q}$.
4) Let p be a prime and X be a set with less than p elements. Show that the only action of \mathbb{Z}_{p} on X is the trivial one.

By the Orbit-Stabilizer theorem the number of elements in an orbit of a \mathbb{Z}_{p} action must divide p, so the orbits must have size either 1 or p. Since $\# X<p$, there is no orbit of size p, so all orbits of this action have size 1 and hence the action is trivial.
5) Let G be a finite group and $H<G$ be a subgroup of index n, i.e., $\# G=n \# H$. Show that $g^{n!} \in H$ for every $g \in G$.
G acts on G / H by left multiplication. This action corresponds to a group homomorphism

$$
\varphi: G \longrightarrow S_{n}
$$

According to Lagrange's theorem if $\sigma \in S_{n}, \sigma^{n!}=e$, hence, for any $g \in G$

$$
\varphi\left(g^{n!}\right)=\varphi(g)^{n!}=e \in S_{n}
$$

That is the left action of $g^{n!}$ is trivial, in particular it fixes the coset H, so $g^{n!} H=H$.Therefore $g^{n!}=g^{n!} e \in g^{n!} H=H$.

6) Show that if a group G has a conjugacy class with two elements then G is not simple.

Let \mathcal{C} be the conjugacy class with 2 elements. Firstly we notice that G has more than two elements, since the conjugacy class of e has only one element, so G must have at least three elements: e and the two elements in \mathcal{C}.

Now, let G act on \mathcal{C} by conjugation. This corresponds to a group homomorphism

$$
\phi: G \longrightarrow S_{2}=\mathbb{Z}_{2}
$$

Since the orbit of $g \in \mathcal{C}$ is \mathcal{C}, ϕ is a nontrivial group homomorphism. Since G has more than 2 elements, the map is not injective, so $\operatorname{ker}(\phi) \neq G$ and $\operatorname{ker}(\phi) \neq\{e\}$. Since the kernel of a group homomorphism is a normal subgroup of the domain, we conclude that $\operatorname{ker}(\phi)$ is a normal subgroup of G which is different from G and $\{e\}$, hence G is not simple.

