
Group theory – Exam

Notes:

1. Write your name and student number **clearly** on each page of written solutions you
hand in.

2. You can give solutions in English or Dutch.

3. You are expected to explain your answers.

4. You are not allowed to consult any text book, class notes, colleagues, calculators, computers etc.

5. Advice: read all questions first, then start solving the ones you already know how to solve or have
good idea on the steps to find a solution. After you have finished the ones you found easier, tackle
the harder ones.

1) Compute the center of Dn for n ≥ 3. Analyse carefully the cases n even and n odd.

As in lectures Dn = 〈a, b : an = b2 = e; bab−1 = a−1〉. Let c = aibj be an element of Dn. Then c is in the
center of D if and only if c commutes with the generators of Dn, i.e., if and only if the commutator of c
with a and b is the identity. So we compute the commutators

cac−1a−1 = aibjab−ja−ia−1 = aia−1j

a−ia−1 = a−1+(−1)j

where in the second equality we used that

bjab−j = bj−1(bab−1)b−j+1 = bj−1a−1b−j+1 = bj−2(ba−1b−1)b−j+2 = bj−2ba(−1)2b−j+2 = · · · = a(−1)j

(recall quiz 2).

So we have that

cac−1a−1 = a−1+(−1)j

=

{
e if j is even;
a−2 if j is odd.

Since n > 2 we conclude that, if c is in the center of Dn, c must be of the form ai.
Now we compute the commutator of c = ai with b:

cbc−1b−1 = aiba−ib−1 = aiai = a2i

Therefore c is in the center if and only if 2i = 0 mod n. For n odd the only solution is i = 0 as 2 is
invertible in Zn under multiplication, while for n even we can have i = 0 or i = n/2.

Hence ZDn
= {e} if n is odd and ZDn

= {e, an/2} = Z2 if n is even.

2) For each list of groups a), b) and c) below, decide which of the groups within each list
are isomorphic, if any:

a) Z3 × Z3 × Z2 × Z2, Z9 × Z2 × Z2, Z18 × Z2 and Z6 × Z6.



b) S4, A4 × Z2, D12 and H× Z3, where H is the quaternion group with 8 elements.

c) (Q,+), (R,+), (R+,×).

a) As we saw in lectures Zn × Zm = Znm if and only if n and m are coprimes. So Z2 × Z3 = Z6 and
Z2 × Z9 = Z18 therefore

Z3 × Z3 × Z2 × Z2 = Z3 × Z2 × Z3 × Z2 = Z6 × Z6

and
Z9 × Z2 × Z2 = Z18 × Z2

Also, by the same result,
Z6 × Z3 6= Z18

hence
Z3 × Z3 × Z2 × Z2 = Z6 × Z3 × Z2 6= Z18 × Z2

Notice that to achieve this conclusion we used that fact that G ×H = G′ ×H implies G = G′ for finite
groups.

If you don’t want to use this result, notice that every nonidentity element in Z6 × Z6 has order less
than or equal to 6, while Z18×Z2 has an element of order 18, so these two groups can not be isomorphic.

b) Firstly we look at the centers:

ZS4 = {e}, ZA4×Z2 = ZA4 × ZZ2 = Z2, ZD12 = Z2, ZH×Z3 = ZH × ZZ3 = Z2 × Z3.

So the only two groups that can be isomorphic are A4 × Z2 and D12. But A4 × Z2 has no elements of
order 12 while D12 does, so those groups are not isomorphic either.

c) The first group in the list is countable and the other two are not, so there is not bijection between
(Q,+) and the other two groups. Finally, (R,+) is isomorphic to (R+, ·) via the exponential map

exp : R −→ R+ exp(x) = ex

since exp(x + y) = ex+y = exey = exp(x)exp(y), showing that exp is a group homomorphism. And we
know from school that the exponential map is a bijection between R and R+ whose inverse is the logarithm.

3) Show that (Q,+) is not finitely generated, i.e., if X ⊂ Q is a finite set, then the group
generated by X is not Q.

Let X = {p1/q1, · · · pk/qk} be a finite subset of Q where pi and qi are coprime integers. Then, the group
generated by X is given by

〈X〉 = {
∑

i

mipi/qi : mi ∈ Z} = {(
∑

i

(Πj 6=iqj)mipi)/Πiqi : mi ∈ Z}.

In particular we see that every element in 〈X〉 is an integer multiple of 1/Πiqi, so, in particular 1
2Πiqi

6∈ 〈X〉,
hence 〈X〉 6= Q.



4) Let p be a prime and X be a set with less than p elements. Show that the only action of
Zp on X is the trivial one.

By the Orbit-Stabilizer theorem the number of elements in an orbit of a Zp action must divide p, so
the orbits must have size either 1 or p. Since #X < p, there is no orbit of size p, so all orbits of this action
have size 1 and hence the action is trivial.

5) Let G be a finite group and H < G be a subgroup of index n, i.e., #G = n#H. Show that
gn! ∈ H for every g ∈ G.

G acts on G/H by left multiplication. This action corresponds to a group homomorphism

ϕ : G −→ Sn

According to Lagrange’s theorem if σ ∈ Sn, σn! = e, hence, for any g ∈ G

ϕ(gn!) = ϕ(g)n! = e ∈ Sn

That is the left action of gn! is trivial, in particular it fixes the coset H, so gn!H = H.Therefore
gn! = gn!e ∈ gn!H = H.

6) Show that if a group G has a conjugacy class with two elements then G is not simple.

Let C be the conjugacy class with 2 elements. Firstly we notice that G has more than two elements, since
the conjugacy class of e has only one element, so G must have at least three elements: e and the two
elements in C.

Now, let G act on C by conjugation. This corresponds to a group homomorphism

φ : G −→ S2 = Z2

Since the orbit of g ∈ C is C, φ is a nontrivial group homomorphism. Since G has more than 2 elements,
the map is not injective, so ker(φ) 6= G and ker(φ) 6= {e}. Since the kernel of a group homomorphism is
a normal subgroup of the domain, we conclude that ker(φ) is a normal subgroup of G which is different
from G and {e}, hence G is not simple.


