
Group theory – Mock Exam 2

Notes:

1. Write your name and student number **clearly** on each page of written solutions you
hand in.

2. You can give solutions in English or Dutch.

3. You are expected to explain your answers.

4. You are not allowed to consult any text book, class notes, colleagues, calculators, computers etc.

5. If you are not sure about some definition of notation you encounter in the exam, please ask.

6. Advice: read all questions first, then start solving the ones you already know how to solve or have
good idea on the steps to find a solution. After you have finished the ones you found easier, tackle
the harder ones.

1) Let H and J be subgroups of a finite group G. Show that if the orders of H and J have no common
factors then their intersection is the trivial group, i. e., H ∩ J = {e}.

Let K be the intersection of H and J . Then K is a subgroup of H and and subgroup of J because the
intersection of subgroups is again a subgroup. By Lagrange’s theorem, the order of a subgroup divides
the order of the group. Therefore the order of K divides the order of H and divides the order of J . Since
the order of H and the order of J have no (nontrivial) common divisors, the order of K is 1.

2) Decide which of the following groups are isomorphic, if any:

a) A5 × Z2, S5, D60 and D20 × Z3 .

b) D10 × Z3, D5 × Z6 and D30.

a) All the groups have the same cardinality, so we move on to look at their centers.

ZA5×Z2 = ZA5 × ZZ2 = Z2,

ZS5 = {e}

ZD60 = Z2 because the center of Dn is either trivial, if n is odd, or Z2, if n is even, and 60 is even,

ZD20×Z3 = ZD20 × ZZ3 = Z2 × Z3.

Since isomorphic groups have isomorphic centers, the only two groups of the list which still have a chance
of being isomorphic are A5 × Z2 and D60. However, D60 has an element of order 60 and A5 × Z2 does
not, so those groups are not isomorphic either. So we conclude that the groups of the first list are not
isomorphic to each other.



b) Again all the groups have the same order so we look at their centers again using that ZDn
is trivial

for n odd and Z2 for n even.

ZD10×Z3 = ZD10 × ZZ3 = Z2 × Z3 = Z6,

ZD5×Z6 = ZD5 × ZZ6 = Z6,

ZD30 = Z2

so D30 is not isomorphic to the other two groups on the list. Finally we recall that for n odd, D2n = Dn×Z2

so
D10 × Z3 = D5 × Z2 × Z3 = D5 × Z6,

therefore those two groups are isomorphic.

3) Let G be a finite group. Show that if G has only two conjugacy classes then G is isomorphic to Z2.

Let n be the order of G. The identity is always in a conjugacy class of its own. So, since G has only
two conjugacy classes we conclude that G\{e} is the second conjugacy class. But each conjugacy class is
an orbit of the action of G on itself by the adjoint action, so its size must divide the order of G, by the
Orbit-Stabilizer theorem. So we have that n− 1 must divide n, that is, there is k a positive integer such
that

n

n− 1
= k

The only solution to this equation is n = 2 and k = 2, since for n > 2

1 <
n

n− 1
= 1 +

1
n− 1

< 2

so it can not be an integer. Therefore we must have n = 2 and hence G = Z2 and in fact Z2 has only two
conjugacy classes.

4) Let G be a group of order 5 · 11 · 13. Show that the 11 and the 13 Sylows are normal. Show that the
13-Sylow is in the center of G.

By Sylow’s theorem, we have that the number of 11, n11 Sylows must be

n11 = 1, 12, 23, 34, · · · (1 mod 11)

n11 = 1, 5, 13 or 65( it must divide 5 · 13).

The only common solution to these is n11 = 1, so the 11-Sylow is normal.
Similarly the number of 13-Sylows is given by

n13 = 1, 14, 27, 40, 53, · · · ,

n13 = 1, 5, 11, or 55.

and again the only common solution is n13 = 1 which means that the 13-Sylow is also normal.
First proof that the 13-Sylow is in the center: Now, since the 13-Sylow has 13 elements it is isomorphic

to Z13 and in particular it is cyclic. Let a be one of its generators. Let b ∈ G, then by Lagrange we have
that e = b|G| = b5·11c1̇3.



Since the 13-Sylow is normal we have that bab−1 lies in the 13-Sylow, hence there is an integer k such
that bab−1 = ak. Using that b5·11·13 = e we have

a = b5·11·13ab−5·11·13 = ak5·11·13

so we get that
k5·11·13 = 1 mod 13

So the order of k in (Z13\{0}, ·) must divide 5× 11× 13 and must divide 12, the order of (Z13\{0}. Since
these numbers have no common factors, the order of k is 1 and hence k = 1, that is,

bab−1 = a ∀b ∈ G

Since a is a generator of the 13-Sylow we conclude that the 13-Sylow is in the center of G.

Second proof that the 13-Sylow is in the center: Warning this proves the same thing that the first proof
did, it uses better the concepts we have seen during the course, but it may appear more complicated.

Since the 13-Sylow is normal, we can let G act on it by conjugation:

G× Syl13 −→ Syl13 (g, x) 7→ gxg−1 ∈ Syl13.

Notice that each element of G nor only acts on Syl13 but actually gives rise to an automorphism of that
group because the adjoint action of an element g ∈ G is an automorphism of G. That is, this action is
not only a group homomorphism from G into the permutations of a set with 13 elements, but is actually
a homomorphism between G and the automorphisms of Z13:

φ : G −→ Aut(Z13).

Now an automorphism of Z13 is determined by where it maps the number 1 and 1 can be mapped into
any nonzero element because all of them are generators, so the group of automorphisms of Z13 has 12
elements. By Lagrange and isomorphism theorem, the image of this map must divide the order of G
(5 ·11 ·13) and must divide the order of Aut(Z13), i.e., 12. Since these have no common factors, the image
is the trivial subgroup and the action is trivial, that is

gxg−1 = x ∀x ∈ Syl13,∀g ∈ G.

Hence the 13-Sylow is in the center.

5) For this exercise, let G be a group of order 2n, where n is an odd number greater than 1. Following the
steps below or otherwise, prove that G is not simple.

a) Consider the action of G on itself by left multiplication. This furnishes a group homomorphism

ϕ : G −→ S2n.

Show that ϕ is an injection;

b) According to Cauchy’s theorem there is x ∈ G of order 2. Show that the image of x is an odd
permutation, hence ϕ(G) is not contained in A2n;

c) Identifying G with its image in S2n show that G ∩A2n is a nontrivial normal subgroup of G, hence
G is not simple.



a) Let g ∈ ker(ϕ) Then g gives rise to the trivial permutation, that is gx = x for all x ∈ G. Multiplying
on the right by x−1 we get that g = e and hence ker(ϕ) = {e} and ϕ is injective.

b) Let g be a nonindentity element in G. Then there is no x ∈ G such that gx = x. Indeed, if there
was such an element, by multiplying on the right by x−1 we would get g = e. So a nonidentity element
does not fix any points. Now if g has order 2, then we can write its image in S2n as a product of disjoint
cycles and the order of ϕ(g) is the least common multiple of the orders of those disjoint cycles. Since g
has order 2, each cycle must have order 2. Since ϕ(g) leaves no point fixed, it must permute all the 2n
elements of G, so ϕ(g) is a product of n disjoint transpositions. Since n is odd, ϕ(g) 6∈ A2n.

c) According to a) we can see G as a subgroup of S2n and according to b) G 6∈ A2n. Now we prove
that G ∩ A2n is a subgroup of G with half of the elements of G, i.e., is a subgroup of G of index 2 and
hence is a normal subgroup. G ∩ A2n is a subgroup since it is the intersection of two subgroups. Since
G 6∈ A2n, there is g ∈ G\A2n. Now right multiplication by g is an injection of G ∩ A2n into G\A2n and
right multiplication by g is also an injection from G\A2n into G ∩ A2n. Indeed, if h ∈ G ∩ A2n then h
is even and hence gh ∈ G is odd therefore is in G\A2n. Conversely if h ∈ G\A2n then h is odd and gh
is even, hence in A2n. Injectivity follows from the fact that in any group, left multiplication by a fixed
element is an injective map.

Now since there are injective maps from G\A2n to G∩A2n and viceversa, these two sets have the same
cardinality, so G ∩ A2n has half of the elements in G and hence is a subgroup of index 2 and therefore
normal.

If n > 1, then this subgroup then G∩A2n has cardinality greater than 1 and hence it is nor the trivial
group either, so it is a nontrivial normal subgroup of G, showing that G is not simple.


