Group theory – Sheet 1

The exercises from the book are 1.3, 1.4, 1.5, 2.3, 2.5, 2.7, 2.8.

- (1) Determine which of the following subsets of $M(n, \mathbb{R})$, the set of n by n real matrices, are groups under matrix multiplication:
 - $M(n, \mathbb{R})$,
 - $Gl(n, \mathbb{R})$, the set of n by n matrices with nonzero determinant,
 - $Sl(n, \mathbb{R})$, the set of n by n matrices with determinant 1,
 - upper triangular matrices with nonzero determinant,
 - O(n), the set of orthogonal matrices,
 - symmetric matrices,
 - skew symmetric matrices.
 - (2) Let G be a group and $x \in G$. Show that $x^n x^m = x^m x^n = x^{n+m}$ and that $(x^n)^m = x^{nm}$.
 - (3) Show that if every element g in a group G satisfies $g^2 = e$ then G is Abelian.
- (4) Let $\{1, i, j, k\}$ denote a basis for \mathbb{R}^4 as a vector space and define an associative \mathbb{R} -bilinear product on \mathbb{R}^4 by the rules

$$\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{j}\mathbf{k} = -1$$
 $\mathbf{1}\mathbf{p} = \mathbf{p}$ $\forall \mathbf{p} \in \mathbb{R}^4$.

- Show that ij = -ji = k, jk = -kj = i and ki = -ik = j,
- For $\mathbf{p} = a\mathbf{1} + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \in \mathbb{R}^4$, with $a, b, c, d \in \mathbb{R}$, let $\overline{\mathbf{p}} = a\mathbf{1} b\mathbf{i} c\mathbf{j} d\mathbf{k} \in \mathbb{R}^4$. Show that

$$\mathbf{p}\overline{\mathbf{p}} = a^2 + b^2 + c^2 + d^2$$
.

Conclude that every element in $\mathbb{R}^4 \setminus \{0\}$ has a multiplicative inverse and hence $\mathbb{R}^4 \setminus \{0\}$ is a (non-commutative) group.

• Show that for $\mathbf{p}, \mathbf{q} \in \mathbb{R}^4$, $\overline{\mathbf{p}}\overline{\mathbf{q}} = \overline{\mathbf{q}}\overline{\mathbf{p}}$. Conclude that $\mathbf{p}\mathbf{q}\overline{\mathbf{p}}\overline{\mathbf{q}} = \mathbf{p}\overline{\mathbf{p}}\mathbf{q}\overline{\mathbf{q}}$. Finally, show that $S^3 \subset \mathbb{R}^4$ is a group.

The vector space \mathbb{R}^4 with this group structure is known as the *quaternions*.

(5) In lectures we studied the group of symmetries of a regular hexagon. What is the group of symmetries of a regular n-gon?