Group theory - Sheet 1

The exercises from the book are 1.3, 1.4, 1.5, 2.3, 2.5, 2.7, 2.8.
(1) Determine which of the following subsets of $\mathrm{M}(n, \mathbb{R})$, the set of n by n real matrices, are groups under matrix multiplication:

- $\mathrm{M}(n, \mathbb{R})$,
- $\operatorname{Gl}(n, \mathbb{R})$, the set of n by n matrices with nonzero determinant,
- $\operatorname{Sl}(n, \mathbb{R})$, the set of n by n matrices with determinant 1 ,
- upper triangular matrices with nonzero determinant,
- $\mathrm{O}(n)$, the set of orthogonal matrices,
- symmetric matrices,
- skew symmetric matrices.
(2) Let G be a group and $x \in G$. Show that $x^{n} x^{m}=x^{m} x^{n}=x^{n+m}$ and that $\left(x^{n}\right)^{m}=x^{n m}$.
(3) Show that if every element g in a group G satisfies $g^{2}=e$ then G is Abelian.
(4) Let $\{\mathbf{1}, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$ denote a basis for \mathbb{R}^{4} as a vector space and define an associative \mathbb{R}-bilinear product on \mathbb{R}^{4} by the rules

$$
\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{i} \mathbf{j} \mathbf{k}=-\mathbf{1} \quad \mathbf{1} \mathbf{p}=\mathbf{p} \quad \forall \mathbf{p} \in \mathbb{R}^{4}
$$

- Show that $\mathbf{i j}=-\mathbf{j} \mathbf{i}=\mathbf{k}, \mathbf{j} \mathbf{k}=-\mathbf{k} \mathbf{j}=\mathbf{i}$ and $\mathbf{k i}=-\mathbf{i} \mathbf{k}=\mathbf{j}$,
- For $\mathbf{p}=a \mathbf{1}+b \mathbf{i}+c \mathbf{j}+d \mathbf{k} \in \mathbb{R}^{4}$, with $a, b, c, d \in \mathbb{R}$, let $\overline{\mathbf{p}}=a \mathbf{1}-b \mathbf{i}-c \mathbf{j}-d \mathbf{k} \in \mathbb{R}^{4}$. Show that

$$
\mathbf{p} \overline{\mathbf{p}}=a^{2}+b^{2}+c^{2}+d^{2} .
$$

Conclude that every element in $\mathbb{R}^{4} \backslash\{0\}$ has a multiplicative inverse and hence $\mathbb{R}^{4} \backslash\{0\}$ is a (noncommutative) group.

- Show that for $\mathbf{p}, \mathbf{q} \in \mathbb{R}^{4}, \overline{\mathbf{p} \mathbf{q}}=\overline{\mathbf{q}} \overline{\mathbf{p}}$. Conclude that $\mathbf{p q} \overline{\mathbf{p} \mathbf{q}}=\mathbf{p} \overline{\mathbf{p}} \mathbf{q} \overline{\mathbf{q}}$. Finally, show that $S^{3} \subset \mathbb{R}^{4}$ is a group.

The vector space \mathbb{R}^{4} with this group structure is known as the quaternions.
(5) In lectures we studied the group of symmetries of a regular hexagon. What is the group of symmetries of a regular n-gon?

