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Abstract. We extend the notion of (smooth) stable generalized complex structures to allow for

an anticanonical section with normal self-crossing singularities. This weakening not only allows

for a number of natural examples in higher dimensions but also sheds some light into the smooth

case in dimension four: in this dimension there is a natural connected sum construction for these

structures as well as a smoothing operation which changes a self-crossing stable generalized

complex structure into a smooth stable generalized complex structure on the same manifold.

This allows us to construct large families of stable generalized complex manifolds.

Contents

1. Introduction 2

2. Self-crossing divisors 4

2.1. Divisors 4

2.2. Elliptic divisors 7

2.3. Elliptic versus complex log divisors 10

3. Lie algebroids associated to self-crossing divisors 13

3.1. Complex log tangent bundle 13

3.2. Elliptic tangent bundle 14

3.3. Residue maps 16

4. Self-crossing stable generalized complex structures 16

4.1. Generalized complex structures 17

4.2. Stable generalized complex structures 18

4.3. Complex log symplectic structures 19

4.4. Equivalence with elliptic symplectic 22

4.5. Equivalence with nondegenerate elliptic Poisson 24

4.6. Cohomology 25

5. Self-crossing stable structures in dimension four 25

5.1. Normal forms 26

5.2. Locally complex elliptic symplectic structures 27

5.3. Smoothening self-crossing stable structures 30

6. Connected sums 34

6.1. Glueing divisors 34

6.2. Glueing symplectic structures 35

1



2 GIL R. CAVALCANTI, RALPH L. KLAASSE, AND ALDO WITTE

7. Examples 38

7.1. Simple examples 38

7.2. Main class of examples 40

References 42

1. Introduction

Generalized complex structures, introduced by Hitchin [14] and Gualtieri [10], are a simulta-

neous generalization of complex and symplectic structures. Infinitesimally a generalized complex

structure is equivalent to the product of a complex and a symplectic vector space. The number

of complex directions a generalized complex structure has at a point is the type of the structure,

which is an upper semi-continuous function. Points where the type vanishes form the symplectic

locus while points of maximal type are of complex type. At a region where the type is con-

stant and equal to, say, k, the structure is locally the product of Ck with its complex structure

and R2(n−k) with the standard symplectic structure [10]. Yet a striking feature of generalized

complex structures is that complex and symplectic points may coexist in a connected manifold.

The anticanonical bundle of every generalized complex manifold comes equipped with a nat-

ural section which is nonzero precisely at the symplectic locus. The simplest type-changing

phenomenon in generalized complex geometry happens in smooth stable generalized complex

structures [4, 8]. For those, the anticanonical section is transverse to the zero section. De-

spite of only displaying the simplest type-change behaviour, smooth stable generalized complex

manifolds have a rich geometry and there are several interesting examples, especially in four-

dimensions. Known examples include:

(1) n#CP 2#mCP 2 admits a smooth stable generalized complex structure if and only if it

admits an almost-complex structure, that is if and only if n is odd [3];

(2) n#CP 2#mCP 2#(S1×S3) admits a smooth stable generalized complex structure if and

only if it admits an almost-complex structure, that is if and only if n is even [22];

(3) n#(S2 × S2) admits a smooth stable generalized complex structure if and only if it

admits an almost-complex structure, that is if and only if n is odd [22];

(4) n#(S2 × S2)#(S1 × S3) admits a smooth stable generalized complex structure if and

only if it admits an almost-complex structure, that is if and only if n is even [22];

(5) Most elliptic surfaces admit non symplectic, smooth stable generalized complex struc-

tures [9, 23].

The families (1) to (4) only admit symplectic structures if n = 1 and only admit complex

structures if n = 1, or, in families (2) and (4), if n = 0.

Besides the existence of many examples, the geometry of these four-dimensional generalized

complex structures is very reminiscent of symplectic Landau–Ginzburg models from physics

[15]. Precisely, our examples present themselves in a way that seems to be closely related to the
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setup used by Seidel in his study of the Fukaya category on symplectic manifolds with Lefschetz

fibrations [20] and later used by Auroux–Katzarkov–Orlov [1] in the context of mirror symmetry

of Del Pezzo surfaces.

Yet smooth stable generalized complex structures have a clear shortcoming: no Poisson Fano

manifold is smooth stable generalized complex in real dimension greater than four [12]. Another

quirk of the theory is that even though families (1) to (4) are all connected sums, until now

that seemed to happen nearly by accident. Those manifolds were obtained performing surgeries

on minimal surfaces followed by a computation to determine their diffeomorphism type. The

obvious question here is whether there is a connected sum construction within the class of smooth

stable generalized complex structures.

The present paper aims to tackle both of these issues. We do so by considering generalized

complex structures whose anticanonical section is transverse to zero with self-crossings, hence

are more singular than the original smooth stable case. Allowing for self-crossings is a natural

weakening of the stability condition. In algebraic geometry one often makes no distinction be-

tween holomorphic sections transverse to zero and sections transverse to zero with self-crossings.

This is also completely analogous to the move, in real Poisson geometry, from log-symplectic to

log-symplectic with normal self-crossings [11, 19].

We call these new structures just “stable”, without the adjective “smooth” to indicate that

the zero locus of the anticanonical section is no longer a smooth embedded submanifold. An

immediate consequence of the definition is that CP 2n is a stable generalized complex manifold

and hence, above dimension four, this is a genuine weakening of the original stable condition.

This change in the singular behaviour of the anticanonical section is small enough that much

of the theory developed in [4] for smooth stable structures has a direct extension: we define

complex logarithmic tangent bundle and extend the definition of elliptic tangent bundle. The

existence of a stable generalized complex structure is equivalent to the existence of a symplectic

structure on the elliptic tangent bundle satisfying certain cohomological conditions. This fact

allows us to study stable generalized complex structures using symplectic techniques.

Armed with symplectic techniques, we ask whether our results have any bearing on smooth

stable generalized complex structures. Dimension four turns out to be special:

Theorem 5.12. Any four-dimensional stable generalized complex structure can be deformed

into a smooth stable generalized complex structure.

The study of symplectic structures on the elliptic tangent bundle which fail to satisfy only

some of the conditions needed to produce a stable generalized complex structure turns out to be

a fruitful detour. Indeed, we show that CP 2, CP 2 and S4 all admit symplectic structures which

fail to be of generalized complex type at 0 or 2 (CP 2), 1 or 3 (CP 2) and 1 (S4) points. The

existence of this structure in S4 has a particularly remarkable consequence, namely, that we can

develop a connected sum operation for these manifolds (c.f. Theorem 6.7) and by keeping track

of the number of “problem” points we can also determine when the resulting structure is stable
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generalized complex. The outcome is that we can extend the families (1) to (4) above and prove

directly that:

Theorem 7.5. The manifolds in the following two families admit stable generalized complex

structures:

(1) #n(S2 × S2)#`(S1 × S3), with n, ` ∈ N;

(2) #nCP 2#mCP 2#`(S1 × S3), with n,m, ` ∈ N,

as long as 1− b1 + b+2 is even and the Euler characteristic is non-negative.

Notice that if 1− b1 + b+2 is odd for a four-manifold M , then M does not admit any gener-

alized complex structure as it is not even almost complex by [13] or [7, Theorem 1.4.13]. The

requirement that the Euler characteristic is positive, on the other hand, seems to be more of a

limitation of our methods.

Organisation of the paper. This paper is organised as follows. In Section 2 we introduce

self-crossing complex and elliptic divisors, the basic geometric objects that allow us to develop

the theory of stable generalized complex structures. In Section 3 we will introduce the Lie

algebroids induced by these divisors, which are the spaces where stable generalized complex

structures become the more amenable symplectic structures. In Section 4 we introduce self-

crossing stable generalized complex structures and show that they are equivalent to a certain

class of elliptic symplectic structures. In Section 5 we focus on four-dimensional structures.

Here we prove a normal form theorem for self-intersection points in the divisor and show that a

stable structure can be deformed into a smooth one (Theorem 5.12). In Section 6 we show that

one can perform connected sums of stable generalized complex structures (Theorem 6.7) and in

Section 7 we provide concrete examples obtained via connected sum and prove Theorem 7.5.

Acknowledgements. We thank Eduard Looijenga for useful conversations regarding complex

log divisors and Ornea and Vuletescu for pointing us towards [2] used in part of the argument in

Remark 7.8. RK was supported by ERC consolidator grant 646649 “SymplecticEinstein”. AW

was supported by the NWO through the Utrecht Geometry Centre Graduate Programme.

2. Self-crossing divisors

This section covers the basic definitions and properties of the singularities we will encounter.

We start by recalling the definition of a divisor, before introducing the complex log divisors

we are mostly interested in. After discussing their zero sets in some detail, we turn to elliptic

divisors. These can be induced from complex log divisors, and will play a large role throughout

the paper. Finally we describe the relation between complex log and elliptic divisors in detail.

2.1. Divisors. In this section we define the objects which will govern the singularities of the

geometric structures that are to come. The use of divisors in algebraic geometry is extremely

common, but our terminology differs slightly:
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Definition 2.1. A complex divisor on a manifold M is a pair (L, σ) where L → M is a

complex line bundle and σ ∈ Γ(L) is a section with nowhere dense zero set. ♦

Given a divisor, we can view the section as a map σ : Γ(L∗) → C∞(M ;C) and obtain a

complex ideal Iσ := σ(Γ(L∗)). Divisors admit products, which are obtained by performing tensor

products. For clarity, we have that (L, σ)⊗ (L′, σ′) = (L⊗L′, σ⊗σ′) and hence Iσ⊗σ′ = Iσ · Iσ′ .

Definition 2.2. Let (M, (L, σ)) and (N, (L′, σ′)) be manifolds with divisors. A smooth map

ϕ : M → N is a morphism of divisors if ϕ∗Iσ′ = Iσ, where the left-hand side denotes the

ideal generated by all pullbacks, and is an isomorphism if M = N and ϕ = idM . ♦

The ideal defined by the section actually completely captures the divisor up to isomorphism,

so that we will often use divisors and their corresponding ideals interchangeably. Moreover, we

will sometimes denote a product of ideals by I⊗ I ′ instead of I · I ′. We will mainly be interested

in a specific class of divisors:

Definition 2.3. A complex divisor (L, σ) on a manifold M is a smooth complex log divisor

if σ vanishes transversely. Its vanishing locus is denoted by D := σ−1({0}). ♦

By transversality, the vanishing locus of a smooth complex log divisor is an embedded sub-

manifold of codimension two. To proceed further we will need the following notion.

Definition 2.4. A collection of I1, . . . , Ij ⊂ Ω0(M ;C) of locally principal ideals is functionally

independent if there exist local generators fi of Ii which are functionally independent at their

common zero set. That is, for all multi-indices (i1, . . . , ik) with length smaller or equal to j we

have

dpfi1 ∧ dpfi1 ∧ · · · ∧ dpfik ∧ dpfik 6= 0, for all p ∈ ∩kl=1f
−1
il

({0}). ♦

Definition 2.5. A self-crossing complex log divisor is a complex divisor (L, σ), such that

for every point p ∈M , there exists a neighbourhood U of p such that

Iσ(U) = I1 · . . . · Ij ,

where I1, . . . , Ij are functionally independent smooth complex log divisors on U . ♦

Remark 2.6 (Terminology). Our definition of a smooth complex log divisor appears in [4]

without the prefix smooth attached. For brevity, we will often write “complex log divisor”,

which has to be understood to possibly have self-crossings. Whenever we deal with a smooth

complex log divisor we will explicitly stress this. ♦

Definition 2.7. Let ID be a complex log divisor. For a given point p ∈M , and a neighbourhood

U of p let nU be the number j as in Definition 2.5. The intersection number of p is the

minimum of nU taken over all neighbourhoods of p. The intersection number of the divisor

is the maximum of the intersection numbers of its points. ♦
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Example 2.8. Let {IDi} for i = 1, . . . , n be a collection of functionally independent smooth

complex log divisors. Then their product ID := ⊗ni=1IDi defines a complex log divisor with

intersection number n. We call such a divisor a global normal crossing divisor. 4

By definition every complex log divisor is locally of this form, which will often be used.

Definition 2.9. Given a complex log divisor ID, we call a choice of local smooth complex

divisors near a point as in Example 2.8 a local normal crossing. ♦

Note that up to the germ of a local isomorphism of divisors, the only choice in a local normal

crossing for a given complex log divisor is the ordering of the smooth divisors.

Example 2.10. Let O(k) be the holomorphic line bundle on CPn obtained as the k-fold tensor

product of the dual of the tautological line bundle. Recall that sections of O(k) can be identified

with homogeneous polynomials of degree k in n+ 1 variables. Under this identification we can

view the polynomial p := z0 · . . . · zn as a section of O(n + 1). We conclude that (O(n + 1), p)

defines a complex log divisor with intersection number n on CPn. 4

Example 2.11. Let E → M be a complex line bundle. Then Γ((E1,0)∗) ⊂ C∞(E) generates

an ideal I on E. Locally, if U ⊂ M is an open neighbourhood on which E|U is trivialised,

there exists a corresponding fibre coordinate z on U which generates I. We conclude that every

complex line bundle carries a canonical smooth complex log divisor whose vanishing locus is the

zero section M ⊂ E. 4

Example 2.12. Let (z1, . . . , zj , x2j+1, . . . , x2j+m) be coordinates on Cj×Rm and define smooth

complex log divisors IDi := 〈zi〉. Then the ideal ID = ⊗ji=1IDi is called the standard complex

log divisor with intersection number j on Cj × Rm. 4

Lemma 2.13. If ID is a complex log divisor and p ∈ M is a point of intersection number j,

then ID is locally isomorphic to the standard complex log divisor around p.

Proof. Because the representatives f1, . . . , fj of the ideals of a local normal crossing vanish

transversely and are functionally independent near p, they can be completed to a local coordinate

system on an open neighbourhood of p. These coordinates provide the divisor isomorphism. �

The vanishing locus of a complex log divisor is not an embedded submanifold when its

intersection number is larger then one, it is however immersed.

Lemma 2.14. Let ID be a complex log divisor on M2j+m, and let D be its vanishing locus.

Then the vanishing locus D is an immersed submanifold.

Proof. As being immersed is a local property, we need to show that every point in D has a

neighbourhood on which D is immersed. By Lemma 2.13 it suffices to show that the vanishing

locus of the standard complex log divisor is an immersed submanifold. The obvious map of

inclusions of the different coordinate planes
⋃j
i=1 Cj−1×Rm → Cj×Rm provide this immersion.

�
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Intuitively, the vanishing locus of a complex log divisor is the immersion of a manifold, D̃,

obtained from D by duplicating the intersection locus and separating the strands whenever

self-crossings occur. Here we need to introduce some subtle language variation to distinguish

between different meanings of the word component: a connected component of D is just that,

a connected component of D as a subspace of M , while a component of D is the image of a

connected component of D̃.

The degeneracy locus is not only an immersed submanifold but it is also stratified by em-

bedded smooth submanifolds.

Definition 2.15. Let ID be a complex log divisor with intersection number n on a manifold

M . Given 1 ≤ j ≤ n, the set of points with intersection number at least j will be denoted by

D(j). These sets induce a filtration on M , namely

M = D(0) ⊃ D = D(1) ⊃ D(2) ⊃ · · · ⊃ D(n).

We will call this filtration the intersection stratification of M induced by ID. The strata of

this stratification are denoted by

C(i) := D(i)\D(i+ 1),

and consist of the points with intersection number exactly i, and each have codimension 2i. ♦

The following is immediate, and will be used without further mention throughout this paper.

Lemma 2.16. Let ID be a complex log divisor on a manifold M with intersection number at

least i. Then ID|M\D(i+1) is a complex log divisor on M\D(i+ 1) with intersection number i.

With this in mind we can verify that the definition of the stratification makes sense.

Lemma 2.17. The filtration from Definition 2.15 defines a smooth stratification on M .

Proof. We first note that the highest codimension stratum D(n) is a smooth submanifold by

the regular value theorem. Next, the subset C(i) = D(i)\D(i + 1) is the highest codimension

stratum of the restricted divisor to M\D(i + 1) and is therefore smooth. Finally the filtration

induces a stratification precisely because we have the local form as described in Lemma 2.13. �

2.2. Elliptic divisors. We now introduce self-crossing elliptic divisors. These divisors arise as

the real part of complex log divsors, but can be defined independently.

Definition 2.18 ([4]). A smooth elliptic divisor (R, q) consists of a real line bundle R

together with a section q ∈ Γ(R), whose zero set D = q−1(0) is a codimension-two submanifold

along which its normal Hessian is positive definite. ♦

The normal Hessian of the section q is the section Hess(q) ∈ Γ(D; Sym2N∗D⊗R) containing

the leading term of its Taylor expansion. As was done for complex log divisors we usually refer

to the divisor by its corresponding ideal. Note that a given codimension-two submanifold may

carry multiple smooth elliptic divisor structures. To proceed we again consider divisors which

are local normal crossings of smooth elliptic divisors.
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Definition 2.19. A self-crossing elliptic divisor on a manifold M is a real divisor I|D| such

that for every p ∈M there exists an open neighbourhood U of p such that

I|D|(U) = I|D1| · . . . · I|Dj |.

Here the I|Di| are smooth elliptic divisors on U whose zero loci Di intersect transversely1. ♦

As discussed in Remark 2.6 we will often omit the prefix “self-crossing” and instead add

“smooth” when referring to an elliptic divisor in the sense of [4].

Remark 2.20. The condition that the loci of the smooth elliptic divisors are transverse is

equivalent to the following statement: for all local generators fi of I|Di| we have that

ker Hessp(fi1) ∩ · · · ∩ ker Hessp(fik) for all p ∈ ∩kl=1f
−1
il

({0})

has minimal dimension for all multi-indices (i1, . . . , ik) of length smaller or equal than k. ♦

Many of the notions we defined for complex log divisors with self-crossings can also be defined

for elliptic divisors with self-crossings. In particular they have an intersection number and an

induced stratification, which will be denoted in the same manner as in the complex log case.

An important class of elliptic divisors arises from complex log divisors:

Example 2.21. If ID is a complex log divisor, then ID · ID is invariant under conjugation.

Therefore, there exists a real ideal I|D| such that I|D| ⊗ C = ID · ID. By definition, locally

ID = ID1 · . . . · IDn , where the IDi are smooth complex log divisors with transverse zero loci.

Therefore we see that

I|D|(U)⊗ C = (ID1 · ID1) · . . . · (IDn · IDn),

hence I|D|(U) is given as the product of smooth elliptic divisors with transverse vanishing loci.

We conclude that I|D| is an elliptic divisor, and call it the elliptic divisor induced by a

complex log divisor. 4

The following is completely analogous to the complex log setting (Example 2.8):

Example 2.22. Given smooth complex elliptic divisors I|Di| for which the vanishing loci Di are

transverse, we have that I|D| := ⊗ni=1I|Di| defines an elliptic divisor with intersection number n.

We call this a global normal crossing elliptic divisor. 4

By definition, every elliptic divisor is locally of the above form, warranting the following.

Definition 2.23. Given an elliptic divisor I|D|, we call a choice of local smooth complex divisors

near a point as in Definition 2.19 a local normal crossing. ♦
1A collection of submanifolds {Di} of is said to intersect transversely at a point x ∈M if

codim(
⋂
i

TxDi) =
∑
i

codim(TxDi).
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Example 2.24. Let (x1, y1, . . . , xj , yj , xj+1, . . . , xm) be coordinates on R2j × Rm and define

smooth elliptic divisors I|Di| = 〈x2
i + y2

i 〉. We call I|D| := ⊗ni=1I|Di| the standard elliptic

divisor of intersection number j on R2j × Rm. 4

Using the Morse–Bott lemma we can locally put an elliptic divisor in standard form.

Lemma 2.25. Let I|D| be an elliptic divisor on a manifold M and let p ∈M have intersection

number j. Then I|D| is locally isomorphic to the standard elliptic divisor of intersection number

j on R2j × Rm, where dimM = 2j +m.

Proof. To simplify notation we will consider j = 2 as the proof in the general case is identical. Let

U be an open neighbourhood of a point p of intersection number 2 and let I|D1|, I|D2| be a local

normal crossing. Let f1, f2 be representatives of I|D1|, I|D2| respectively, and apply the Morse–

Bott lemma to obtain coordinates (x1, y1, x2, y2, z3, . . .), (x̃1, ỹ1, x̃2, ỹ2, z̃3, . . .) on neighbourhoods

U1, U2 of p respectively such that f1 = x2
1 + y2

1 and f2 = x̃2
2 + ỹ2

2. Consider

Φ = (x1, y1, x̃2, ỹ2, z3, . . .) : U1 ∩ U2 → Rn,

and

F : Rn → R (x1, . . . , xn) 7→ x2
1 + x2

2 + x2
3 + x2

4.

Then f1 +f2 = F ◦Φ. Note that the normal Hessian of F is non-degenerate and that the normal

Hessian of f1 + f2 is non-degenerate by the independence condition in Remark 2.20. Because

Hessf1+f2 = HessF ◦Φ = HessF (Φ∗·,Φ∗·),

we conclude that Φ∗ must be injective on N(D1 ∩D2). Therefore Φ must be a local diffeomor-

phism and, using the inverse function theorem and possibly shrinking the domain of definition,

we conclude that (x1, y1, x̃2, ỹ2, z3, . . .) gives the required coordinate system. �

It follows from this lemma that, just as for complex divisors, the vanishing locus of an elliptic

divisor, (R, q), is an immersed submanifold, D, with transverse self crossings. Further since q is a

trivialization of R over M\D and D has codimension two, R is also trivializable and q determines

a preferred orientation for R. Therefore, one can define an elliptic divisor alternatively as the

ideal generated by a function f : M → R+ whose zeros are locally of the form

f(x1, y1, . . . , xk, yk, xk+1, . . . , xn) = (x2
1 + y2

1) . . . (x2
k + y2

k).

2.2.1. Examples. A class of examples of elliptic divisors arises from toric geometry.

Example 2.26. Let µ : M → Rn be a toric manifold with moment polytope ∆ and let λi ∈ Rn

be vectors transverse to its faces. If we denote fλi : Rn → R, x 7→ 〈x, λi〉, then the ideal

(2.1) I :=
〈
(µ ◦ fλ1) · . . . · (µ ◦ fλn+1)

〉
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defines an elliptic divisor on M with intersection number n and vanishing locus µ−1(∂∆).

Namely, the functions fλi are linear and have the faces of the moment polytope as zero sets. Be-

cause M is toric, the components of the moment map are definite Morse–Bott functions, hence

so are the compositions µ ◦ fλi . We conclude that the ideal I defines an elliptic divisor. 4

An explicit case of the setting of the above example occurs on the manifold CPn.

Example 2.27. Consider CPn with the moment map

(2.2) µ : CPn → ∆ [z0 : z1 : · · · : zn] 7→ (|z0|2 , |z1|2 , . . . , |zn−1|2)

|z0|2 + |z1|2 + · · ·+ |zn|2
.

Here ∆ = {(x1, . . . , xn) ∈ Rn : xi ≤ 1} denotes the moment polytope. Proceeding as in Example

2.26 endows CPn with the structure of an elliptic divisor. Note that this is the elliptic divisor

induced by the complex log divisor of Example 2.10. 4

2.3. Elliptic versus complex log divisors. As we have seen in Example 2.21, a complex

log divisor (L, σ) induces an elliptic divisor. The complex log divisor also induces a complex

structure on the normal bundle of C(1) via the isomorphism2

dνσ|C(1) : NC(1)→ L|C(1) .

Note however that this complex structure depends on the particular choice of section σ. The

orientation on NC(1) induced by these possibly different complex structures is independent

of such choices. These two pieces of information, the elliptic divisor and the co-orientation,

completely determine the complex log divisor up to isomorphism. This statement was already

mentioned in the smooth case in [4, Section 1.2], but appeared there without proof.

Proposition 2.28. Let M be a manifold. The association

(L, σ) 7→ ((R, q), o)

which sends a complex log divisor on M to its associated elliptic divisor, together with the induced

co-orientation of C(1), induces a bijection of isomorphism classes of complex log divisors and

isomorphism classes of elliptic divisors with chosen co-orientation of C(1).

Proof. Let I1, I2 be two complex log divisors. Assume that I1 and I2 both induce the same

elliptic ideal and the same co-orientation on the normal bundle to C(1). We have to prove that

I1 = I2. We will proceed via several steps.

Injectivity for smooth divisors: We first prove injectivity for smooth divisors. Let z, w

be complex coordinates such that I1 = 〈z〉 and I2 = 〈w〉. By assumption we have I1⊗I1 = I2⊗I2

and thus there exists a nowhere vanishing function g ∈ C∞(M,R) such that gzz = ww. The

fact that I1 and I2 induce the same co-orientation ensures the existence of some strictly positive

function h ∈ C∞(D;R) such that hdνz ∧ dνz = dνw ∧ dνw.

2Because σ vanishes transversely outside of D(2), the normal derivative is an isomorphism.



SELF-CROSSING STABLE GENERALIZED COMPLEX STRUCTURES 11

Claim. We have that h = g|D.

Proof of claim. By taking the derivative of gzz = ww with respect to w, we obtain that

∂g

∂w
zz + g

∂z

∂w
z + gz

∂z

∂w
= w.

By taking the derivative of this equation with respect to z, we get

∂2g

∂z∂w
zz +

∂g

∂w
z +

∂g

∂z

∂z

∂w
z +

∂g

∂z
z
∂z

∂w
+ g

∂z

∂w
=
∂w

∂z
.

In particular we find g|D
∂z
∂w

∣∣
D

= ∂w
∂z

∣∣
D

. Noting that

〈dνw ∧ dνw, ∂z ∧ ∂w〉 =
∂w

∂z
= h

∂z

∂w
,

we can combine these facts to conclude that g|D = h. �

Continuing our main line of reasoning, in order to show that w ∈ I1 we are going to invoke

Malgrange’s Theorem, [18, Theorem 1.1], which states that w ∈ I1 if and only if its formal power

series with respect to z and z is divisible by z. We expand w as a power series in z and z:

w = a10z + a01z +
∑
i+j≥2

aijz
izj .

Claim. We have that |a10|2 = |a01|2 + h.

Proof of claim. Using hdνz ∧ dνz = dνw ∧ dνw, we find

〈dνw ∧ dνw, ∂z ∧ ∂z〉 = h,

but also

〈dνw ∧ dνw, ∂z ∧ ∂z〉 =
∂w

∂z

∂w

∂z
− ∂w

∂z

∂w

∂z

=

∣∣∣∣∂w∂z
∣∣∣∣2 − ∣∣∣∣∂w∂z

∣∣∣∣2
= |a10|2 + |a01|2 . �

Knowing this, we can express the product ww as

ww = (|a10|2 + |a01|2)zz + a10a01z
2 + a10

∑
i+j≥2

aijz
izj+1

+ a01a10z
2 + a01

∑
i+j≥2

aijz
i+1zj + a10

∑
i+j≥2

aijz
izj+1

+ a01

∑
i+j≥2

aijz
i+1zj +

∑
i+j≥2
k+l≥2

aijaklz
i+kzj+l,
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and because |a10|2 = |a01|2 + h, and ww = gzz, we see that

0 = (h− g + 2 |a01|2)zz + a10a01z
2 + a10

∑
i+j≥2

aijz
izj+1

+ a01a10z
2 + a01

∑
i+j≥2

aijz
i+1zj + a10

∑
i+j≥2

aijz
izj+1

+ a01

∑
i+j≥2

aijz
i+1zj +

∑
i+j≥2
k+l≥2

aijaklz
i+kzj+l.

By expanding h− g as a power series, and because g|D = h, we see that h− g =
∑

i+j≥1 bijz
izj .

In conclusion we have obtained the following equality of power series:

0 =

 ∑
i+j≥1

bijz
izj + 2 |a01|2

 zz + a10a01z
2 + a10

∑
i+j≥2

aijz
izj+1

+ a01a10z
2 + a01

∑
i+j≥2

aijz
i+1zj + a10

∑
i+j≥2

aijz
izj+1

+ a01

∑
i+j≥2

aijz
i+1zj +

∑
i+j≥2
k+l≥2

aijaklz
i+kzj+l.

Therefore all the coefficients of this power series need to vanish. The term of degree 1 in z and

degree 1 in z is given by 2 |a01| zz, hence we conclude that a01 = 0. The degree-n term in z is

given by a10a0,n−1z
n. Hence we can conclude that a0,i = 0 for all i ≥ 0. Therefore the formal

power series of w is divisible by z, and we conclude that w ∈ 〈z〉. By symmetry we conclude

that 〈w〉 = 〈z〉, from which we conclude that I1 = I2 which finishes this part of the proof.

Injectivity for global normal crossings: Suppose that I|D| = ⊗iI|Di| is a global normal

crossing elliptic divisor. Let ID1 and ID2 be two complex log divisors which induce I|D|, which

both need to be global normal crossing divisors because I|D| is. Moreover, assume that they

induce the same co-orientation on C(1). This implies that they induce the same co-orientation

on each of the zero loci Di. After reordering, we may assume that

I|D1
i | = I|Di| = I|D2

i |.

Thus for each i, we have that I|D1
i | and I|D2

i | induce the same smooth elliptic divisor and the

same co-orientation and therefore I|D1
i | = I|D2

i | by the above, from which the result follows.

Injectivity for general divisors: Because I|D| is locally a normal crossing of elliptic divisors,

around every point x ∈ D we can find an open neighbourhood U such that I|D|
∣∣
U

is a normal

crossing of elliptic divisors. Therefore, if two general complex log divisors induce the same elliptic

ideal and same co-orientation, we can use the injectivity for global normal crossing divisors and

argue locally to prove that the complex log divisors must be isomorphic.

Surjectivity for smooth divisors: Let I|D| be a smooth elliptic divisor and o an orientation

of ND. Given a choice of representative f ∈ I|D|, we can view Hessν f ∈ Γ(S2N∗D) as a metric

on N∗D. We use this metric to transport the orientation of ND to an orientation on N∗D. The
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orientation together with the metric induces a complex structure on ND, and hence a complex

log divisor structure on ND by Example 2.11. This complex log divisor induces I|D|, which

proves surjectivity for smooth divisors.

Surjectivity for global normal crossings: Let I|D| = ⊗I|Di| be a global normal crossing

elliptic divisor. Because NC(1)|Di\D(2) = NDi|Di\D(2) and D(2) is codimension two in Di we

conclude that each NDi is orientable. Therefore, by the above, there exist complex log divisors

IDi such that I|Di| = IDi ⊗ IDi . We conclude that

I|D| ⊗ C = ⊗i(IDi ⊗ IDi) = (⊗iIDi)⊗ (⊗iIDi).

Surjectivity for general divisors: Because I|D| is locally a global normal crossing of elliptic

divisors, for every point x ∈ D we can find an open neighbourhood U such that I|D|
∣∣
U

is a global

normal crossing. Therefore, by the previous part there exists a complex log divisor IDU which

induces I|D|
∣∣
U

. Let U be an open cover of M , such that I|D| is a global normal crossing on each

open in the cover and construct complex log divisors inducing I|D| on each of these opens. Let

U,U ′ ∈ U and let IU and IU ′ be complex log divisors inducing I|D|
∣∣
U

and I|D|
∣∣
U

. On the overlap

U ∩U ′ both IU ′ |U∩U ′ and IU |U∩U ′ induce the same elliptic ideal, by the above we therefore have

IU |U∩U ′ = IU ′ |U∩U ′ . We conclude that the local complex log divisors glue to a global complex

log divisor which induces I|D|
∣∣
U

, which finishes the proof. �

Motivated by this result we define the following.

Definition 2.29. An elliptic divisor I|D| is co-orientable if C(1) is co-orientable. ♦

3. Lie algebroids associated to self-crossing divisors

In this section we introduce the Lie algebroids associated to self-crossing complex log and

elliptic divisors. Much of this section follows along the same lines as [4]. The Lie algebroids will

be defined by imposing that their sections interact appropriately with the divisors, in that they

must preserve the divisor ideals.

3.1. Complex log tangent bundle.

Lemma 3.1. Let ID be a complex log divisor on a manifold M . The complex vector fields

preserving the complex ideal ID are sections of a complex Lie algebroid AD.

Proof. By Lemma 2.13, at every point there exist coordinates (z1, . . . , zn, xi) such that locally

ID = 〈z1 · . . . · zn〉. One can readily check that in these coordinates the vector fields preserving

ID are generated by

{z1∂z1 , ∂z1 . . . , zn∂zn , ∂zn , ∂xi}
and therefore form a locally free sheaf which, by the Serre–Swan theorem, correspond to sections

of a vector bundle, AD. The Lie bracket of vector fields induces a bracket on the sections of AD
making it into a Lie algebroid. �

Definition 3.2. The Lie algebroid AD is the complex log tangent bundle given by ID. ♦
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There is a local description of the complex log tangent bundle, whose proof is immediate.

Lemma 3.3. Let ID be a complex log divisor on a manifold M , and let ID1 , . . . , IDn be a choice

of local normal crossing on some open U . Then AD is given by a repeated fiber product:

AD|U ' AD1 ×TCM × · · · ×TCM ADn .

3.2. Elliptic tangent bundle. There is also a Lie algebroid associated to an elliptic divisor.

Lemma 3.4. Let I|D| be an elliptic divisor on a manifold M . The vector fields preserving the

ideal I|D| are sections of a Lie algebroid A|D|.

Proof. By Lemma 2.25 there exists coordinates (r1, θ1, . . . , rn, θn, xi) such that locally we have

I|D| =
〈
r2

1 · . . . · r2
n

〉
and in which the vector fields preserving I|D| are generated by

{r1∂r1 , ∂θ1 , . . . , rn∂rn , ∂θn , ∂xi}.

This collection forms a locally free sheaf, hence there exists a Lie algebroid A|D| whose sections

are the vector fields preserving I|D|. �

Definition 3.5. The Lie algebroid A|D| is the elliptic tangent bundle associated to I|D|. ♦

Similar to Lemma 3.3 we have the following local description of the elliptic tangent bundle.

Lemma 3.6. Let I|D| be an elliptic divisor on a manifold M , and let I|D1|, . . . , I|Dn| be a choice

of local normal crossing on some open U . Then A|D| is given by a repeated fiber product:

A|D|
∣∣
U
' A|D1| ×TM × · · · ×TM A|Dn|.

Above we argued that the ideal I|D| determines the elliptic tangent bundle. The converse is

also true. Namely, suppose we are given any Lie algebroid L→ M whose rank agrees with the

dimension of M . The anchor map, ρ, induces a bundle map detρ : ∧n L → ∧nTM , which can

be regarded as a section of the real line bundle ∧nL∗ ⊗ ∧nTM . That is, L determines the real

divisor (∧nL∗ ⊗ ∧nTM, detρ). Given the local expression for generators of A|D| we have:

Lemma 3.7. The elliptic tangent bundle determines its underlying ideal.

When an elliptic divisor is induced from a complex log divisor we can relate the Lie algebroids.

Proposition 3.8. Let ID be a complex log divisor, and let I|D| be the induced elliptic divisor.

Then

AD ×TCM AD = A|D| ⊗ C.

Proof. Using local coordinates as in Lemma 2.13, we see that the anchors of AD and AD are

transverse and hence we can form their fiber product. The anchor maps on sections, mapping

to Γ(TCM), satisfy

ρ(Γ(AD ×TCM AD)) = ρ(Γ(AD)) ∩TCM ρ(Γ(AD)).

The left-hand side consists of the vector fields preserving ID ⊗ ID = I|D| ⊗ C. Therefore

AD ×TCM AD is isomorphic to the complexification of the Lie algebroid from Definition 3.5. �
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Our next step is to compute the cohomology of the complex log tangent bundle. To do that

we need the following topological result regarding divisors with normal crossings.

Lemma 3.9. If D is the standard normal crossing complex log (or elliptic) divisor with inter-

section number n, then C(i) is homotopic to the disjoint union of
(
n
i

)
copies of Tn−i.

Proof. Let ID1 , . . . , IDn be the complex log divisors corresponding to z1, . . . , zn respectively.

Then

C(i) = D(i)\D(i+ 1) =
⊔

(j1,...,ji)⊂(1,...,n)

(Dj1 ∩ · · · ∩Dji)\D(i+ 1).

All the components in C(i) are diffeomorphic. For notational clarity we will thus consider the

component corresponding to the ordered multi-index I := (1, 2, . . . , i). We have

DI := D1 ∩ · · · ∩Di = {0} × · · · × {0}︸ ︷︷ ︸
i−times

×C× · · · × C︸ ︷︷ ︸
(n−i)−times

.

To proceed we consider the intersection of DI with D(i+ 1). To write this down, for k ∈ N let

0k := {0} × · · · × {0}︸ ︷︷ ︸
k−times

, Ck := C× · · · × C︸ ︷︷ ︸
k−times

.

With this notation in hand, one readily verifies that

DI ∩D(i+ 1) = 0i × {0} × Cn−i−1 ∪ 0i × C× {0} × Cn−i−2 ∪ · · · ∪ 0i × Cn−i−1 × {0}.

From this we immediately see that

DI\D(i+ 1) = {0} × · · · × {0}︸ ︷︷ ︸
i−times

×C∗ × · · · × C∗︸ ︷︷ ︸
(n−i)−times

,

which is homotopic to Tn−i. Therefore, all components of C(i) are homotopic to Tn−i, and as

there are
(
n
i

)
of these this finishes the proof. �

The following result regarding cohomology is the self-crossing analogue of [4, Theorem 1.3],

and appears in [6] in the algebraic context.

Theorem 3.10. Let D = (L, σ) be a complex log divisor on a manifold M . Then the inclusion

ι : M\D ↪→M induces an isomorphism

Hk(M,AD) ' Hk(M\D,C).

Proof. We give an argument in the same spirit as [6]. As is shown there it suffices to show

that ι induces an isomorphism on the level of sheaf cohomology. Below we will implicitly

identify the sheaf Ω•(M\D) with its push-forward ι∗(Ω
•(M\D)). Given a point p ∈ M\D and

a contractible neighbourhood U of p which is disjoint from D we have that AD = TD and hence

Hk(U,AD) = Hk(U\D). Next, for any j less than or equal to the intersection number of D, let

p ∈ C(j). Let z1, . . . , zj be coordinates on an open neighbourhood U of p as in Lemma 2.13. In

these coordinates we see thatH•(U,AD) is the free algebra generated by {1, d log z1, . . . , d log zj}.
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By Lemma 3.9 we have that U\D is homotopic to Tj . Under these identifications, the cochain

morphism ι∗ takes the generators of H•(U,AD) to the generators of H•(U\D). Therefore we

conclude that ι∗ is a local isomorphism and hence also globally, which finishes the proof. �

3.3. Residue maps. Let (I|D|, o) be a co-oriented smooth elliptic divisor on a manifold M .

The restriction of the smooth elliptic tangent bundle to D fits into a sequence of Lie algebroids

0→ ker ρ|D → A|D|
∣∣
D
→ TD → 0.

In [4] it is explained that this sequence induces a cochain map

Resq : Ω•(A|D|)→ Ω•−2(TD),

called the elliptic residue. In local Morse–Bott coordinates for the divisor, the elliptic residue

map is given by

Resq(α) = ι∗D(ιr∂r ι∂θα), α ∈ Ω•(A|D|).

Definition 3.11. Let (I|D|, o) be a co-oriented elliptic divisor, and let α ∈ Ω•(A|D|). Its elliptic

residue is defined by

Resq(α) := Resq(ι
∗
M\D(2)α),

where the right-hand side is the elliptic residue for the smooth elliptic divisor I|D|
∣∣
M\D(2)

. ♦

There are more residue maps associated to self-crossing elliptic divisors, but for the purpose

of the present paper we will only briefly mention the ones we need.

Definition 3.12. Let (I|D|, o) be a co-oriented elliptic divisor and let ω ∈ Ω2(A|D|). Consider

oriented coordinates around a point p ∈ D(k) with k ≥ 2 as in Lemma 2.25, and define three

types of residues:

Resrirj ω(p) := ωp(ri∂ri , rj∂rj ), Resriθj ω(p) := ωp(ri∂ri , ∂θj ), Resθiθj ω(p) := ωp(∂θi , ∂θj ). ♦

These expressions do not depend on the chosen coordinates. They do depend on the choice

of co-orientation and the particular ordering of the divisors, but only up to signs.

4. Self-crossing stable generalized complex structures

In this section we will start our discussion of generalized complex geometry, and self-crossing

stable generalized complex structures in particular. We will first recall the basics of generalized

complex geometry, before defining the (self-crossing) stable condition, using the divisors of

Section 2. We then show how these can be described using symplectic-like forms in the complex

log tangent bundle (Theorem 4.12), in analogy with [4]. Next we discuss that these are in

fact symplectic structures in its associated elliptic tangent bundle, satisfying certain additional

cohomological conditions (Theorem 4.15). From that point onwards we can proceed to study

self-crossing stable generalized complex structures using symplectic techniques.
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4.1. Generalized complex structures. Generalized geometry refers to the study of geomet-

ric structures on TM := TM ⊕ T ∗M , for a manifold M . We briefly recall the notions from

generalized complex geometry which are needed in this paper. For a more in depth discussion

see [10].

Definition 4.1. A generalized complex structure on a manifold M is a pair (J, H), where

H ∈ Ω3(M) is a closed three-form and J is an endomorphism of TM for which J2 = −Id and

the +i-eigenbundle L ⊂ (TM)⊗ C is involutive with respect to the Dorfman bracket:

[[X + ξ, Y + η]]H := [X,Y ] + LXη − ιY dξ + ιXιYH, X + ξ, Y + η ∈ Γ(TM). ♦

Two generalized complex structures (J, H) and (J′, H ′) are gauge equivalent if there exists

B ∈ Ω2(M) such that H ′ = H + dB and, using the associated map B[ : TM → T ∗M , we have

J′ =
(

1 B[
0 0

)
J
(

1 −B[
0 0

)
.

Given an element X+ ξ ∈ TM , let (X+ ξ) ·ρ := ιXρ+ ξ∧ρ denote the Clifford action of TM on

elements ρ ∈ ∧•T ∗M , which are called spinors. Moreover, define transposition of an element

in Γ(∧•T ∗M) on decomposable degree k-forms by

(α1 ∧ · · · ∧ αk)T := αk ∧ · · · ∧ α1, αi ∈ Ω1(M).

The Chevalley pairing on spinors, (·, ·)Ch : ∧• T ∗M × ∧•T ∗M → ∧topT ∗M , is defined as

(4.1) (γ, ρ)Ch := (γ ∧ ρT )top, γ, ρ ∈ Γ(∧•T ∗M).

Generalized complex structures can be equivalently described using the following:

Lemma 4.2 ([10]). There is a one-to-one correspondence between generalized complex structures

(J, H) and complex line subbundles K ⊂ ∧•T ∗CM , satisfying the following properties:

• For all x ∈M the vector space Kx is generated over C by spinors of the form(
eB+iω ∧ Ω

)
x
, B, ω ∈ Ω2(M), Ω ∈ Ωk(M),

where Ω is a decomposable form;

• For every nonvanishing local section ρ ∈ Γ(K), there exists u ∈ Γ(TCM) such that

dρ+H ∧ ρ = u · ρ;

• For all non-zero ρx ∈ Kx, we have (ρx, ρx)Ch 6= 0.

The line bundle K is called the canonical line bundle of J. It can be defined in terms of

the generalized complex structure by the relation

L = {u ∈ TCM : u ·K = 0},

where L is the +i-eigenbundle of J. Note here that TCM = TM ⊗ C.

Definition 4.3. Let (J, H) be a generalized complex structure, and let K be its canonical line

bundle. The map s : K → ∧0T ∗CM = C defined by ρ 7→ ρ0, sending a spinor to its degree-zero

part, defines a section s ∈ Γ(K∗) called the anticanonical section of J. ♦
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Example 4.4. Given a complex structure, J , or a symplectic structure, ω, on a manifold M ,

we can endow M with a generalized complex structure (for H = 0) given by

JJ :=

(
−J 0

0 J∗

)
, Jω :=

(
0 −(ω[)−1

ω[ 0

)
.

More interestingly, let (M,J, π) be a holomorphic Poisson manifold with π = πR + iπI and

denote by π]I : T ∗M → TM the map associated to πI . Then

JJ,π :=

(
−J 4π]I
0 J∗

)
is also a generalized complex structure.

The corresponding canonical line bundles and anti-canonical sections are given by:

Kω =
〈
eiω
〉
, KJ = ∧n,0T ∗M, KJ,π = eπ(∧n,0T ∗M),

sω ≡ 1, sJ ≡ 0, sJ,π = ιπnΩvol. 4

There is an interesting relation between generalized complex geometry and Poisson geometry

obtained in [5]. Given a generalized complex structure J, denote by π]J : T ∗M → TM the

associated bundle map obtained by π]J = prTM ◦ J|T ∗M . This map is skew-symmetric, and:

Lemma 4.5. Let J be a generalized complex structure. Then πJ ∈ X2(M) is a Poisson structure.

Moreover, if J, J′ are gauge-equivalent generalized complex structures, then πJ = πJ′.

4.2. Stable generalized complex structures. In this section we will extend the notion of

stable generalized complex structures to allow for the degeneracy locus to have self-crossing

singularities. The main reason to allow for normal crossing singularities is that it gives much

more flexibility: for example, this class is now closed under taking products. This makes it

easier to provide examples (see Section 7), and there are also more constructions available, such

as the connect sum procedure of Section 6. Moreover, in four dimensions these structures can

be used to construct smooth stable generalized complex structures, as explained in Section 5.

Definition 4.6. A (self-crossing) stable generalized complex structure is a generalized

complex structure such that its anticanonical divisor D = (K∗, s) defines a complex log divisor.

We call it smooth stable when D = (K∗, s) defines a smooth complex log divisor. ♦

We can immediately see that the class of such structures is closed under products.

Example 4.7. Let (Li, σi) be two complex log divisors with intersection numbers ni on two

manifolds Mi for i = 1, 2. Then the pair (π∗1L1 ⊗ π∗2L2, π
∗
1σ1 ⊗ π∗2σ2) on the product manifold

M = M1 ×M2, with projection maps pi : M → Mi, is a complex log divisor with intersection

number n1 +n2. This shows that the product (M,π∗1H1 +π∗2H2, J1⊕J2) of two stable generalized

complex manifolds (Mi, Hi, Ji) is endowed with a stable generalized complex structure. 4

Stable generalized complex structures can come about via holomorphic Poisson structures.
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Example 4.8. Let π ∈ X2(M2n;C) be a holomorphic Poisson structure such that the pair

(∧n,0TM,∧nπ) is a complex log divisor. Then JJ,π is a stable generalized complex structure. 4

An important gain from allowing self-crossings is that deformations of higher dimensional

Fano manifolds by holomorphic Poisson bivectors may provide examples of these structures, but

are never smoothly stable [12, Theorem 26].

Example 4.9. One can readily construct a holomorphic Poisson structure on CP 2n for which

(∧nTM,∧nπ) is a complex log divisor, making CP 2n into a stable generalized complex manifold.

Indeed, using the standard coordinates (z1, . . . , z2n+1) on C2n+1, let

π̃ := z1z2∂z1 ∧ ∂z2 + · · · z2n−1z2n∂z2n−1 ∧ ∂z2n

be a holomorphic Poisson structure on C2n+1. This bivector is scaling invariant and therefore

descends to a bivector π on CP 2n. By naturality of the Schouten bracket it follows that π is

Poisson, and by direct computation we see that (∧nTCM,∧nπ) is a complex log divisor. 4

4.3. Complex log symplectic structures. The next sections aim to prove that stable general-

ized complex structures are equivalent to a certain type of symplectic structures on an associated

elliptic tangent bundle. Before we do so, we first prove, in this section, that they are equivalent

to an auxiliary structure. This will be a symplectic-like structure for the complex log tangent

bundle.

Given a complex log divisor ID and its induced elliptic divisor I|D| we consider the Lie

algebroid morphism ι : A|D|⊗C→ AD obtained from Proposition 3.8. If we compose the pullback

ι∗ with taking the imaginary part of a form we obtain a cochain morphism =∗ : Ω•(AD) →
Ω•(A|D|).

Definition 4.10. A form σ ∈ Ω2(AD) is called complex log symplectic if dσ = H ∈ Ω3(M ;R)

and =∗σ ∈ Ω2(A|D|) is non-degenerate. Two complex log symplectic forms σ, σ′ ∈ Ω2(AD) are

said to be gauge equivalent if there exists a two-form B ∈ Ω2(M,R) such that σ′ = σ+B. ♦

Since the symplectic structure given by the imaginary part of a complex log symplectic form

clearly contains important information, it is useful to give it a name as well.

Definition 4.11. Let M be a manifold with an elliptic divisor I|D|. A (self-crossing) elliptic

symplectic form is an elliptic two-form ω ∈ Ω2(A|D|) that is closed and non-degenerate. ♦

The following theorem is the self-crossing generalisation of [4, Theorem 3.2].

Theorem 4.12. Let M be a manifold. There is a one-to-one correspondence between stable

generalized complex structures with self-crossings on M and isomorphisms classes of complex

log divisors endowed with complex log symplectic forms with self-crossings. Moreover, this cor-

respondence preserves gauge equivalences.
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Explicitly, the correspondence is given by the map{
(J, H) :

J is a stable GCS

}
→


(ID, σ) :

ID is a complex log divisor and

σ ∈ Ω(AD) is a complex log-symplectic form.


where ID is the divisor induced by the anticanonical section, and σ = ρ2/ρ0 where ρ is any local

spinor for J.

Proof. We will first consider the direct implication. Let ρ ∈ Ω•(M) be a local pure spinor for the

stable generalized complex structure, defined on an open set U ⊂M . On U\D the anticanonical

section is non-vanishing, and therefore we have that ρ = ceε on U\D for some c ∈ C∞(M ;C) and

ε ∈ Ω2(M ;C). Looking at the degree-zero part of this equation we obtain c = ρ0, and looking

at the degree-two part we obtain ε = ρ2/ρ0. By continuity we conclude that ρ = ρ0e
ρ2/ρ0 on the

entirety of U .

Claim. The two-form σ := ρ2/ρ0 defines a global smooth complex log form, with dσ = −H.

Proof of claim. Assume that the local form, σ, defined using a local canonical section is indeed

a local complex log form and let σ̃ be another local form obtained from another local canonical

section, ρ̃. Then, from the previous argument we have ρ̃ = ρ̃0e
ρ̃2/ρ̃0 . In particular we see that

as complex log forms we have

eσ =
ρ

ρ0
=

ρ̃

ρ̃0
= eσ̃,

where the middle equality follows from the fact that ρ
ρ0

and ρ̃
ρ̃0

are sections of the canonical

bundle with the same degree-zero component. Therefore σ is a global complex log form.

Hence to conclude the result we must prove that σ is a local log form. By the integrability

of the generalized complex structure there exist X + ξ ∈ Γ(TM) such that

dρ0 = ιXρ2 + ξ ∧ ρ0,

dρ2 = ιXρ4 + ξ ∧ ρ2 − ρ0H.

Because ρ4 = 1
2ρ0
ρ2 ∧ ρ2 on U\D, we find that

dρ2 =
ιX(ρ2 ∧ ρ2)

2ρ0
+ ξ ∧ ρ2 − ρ0H.

On U\D we thus have:

d

(
ρ2

ρ0

)
=
dρ2

ρ0
− ρ2 ∧ dρ0

ρ2
0

=
ιX

ρ22
2ρ0

+ ξ ∧ ρ2

ρ0
−H − ρ2 ∧ (ιXρ2 + ξ ∧ ρ0)

ρ2
0

= −H.
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Therefore d(ρ2ρ0 ) extends to a smooth form on U . Rearranging the above terms a bit we find

ρ2 ∧ dρ0

ρ0
= dρ2 + ρ0H,

hence the left-hand side extends to a smooth form on U . Let ρ1
0, . . . , ρ

n
0 be functionally inde-

pendent transverse-vanishing functions such that ρ0 =
∏
i ρ
i
0. Then

dρ0 =
n∑
i=1

ρ1
0 · · · ρ̂i0 · · · ρ

n
0dρ

i
0.

We can write

ρ2 =
∑
i,j

fijdρ
i
0 ∧ dρ

j
0 +

∑
k

dρk0 ∧ αk + β,

where αk ∈ Ω1(M) and β ∈ Ω2(M) do not contain dρi0-terms. We consider then that

dρ0 ∧ ρ2 =
∑
i,j,`

fijρ
1
0 · · · ρ̂`0 · · · ρn0dρi0 ∧ dρ

j
0 ∧ dρ

l
0

−
∑
k,`

ρ1
0 · · · ρ̂`0 · · · ρn0dρk0 ∧ dρ`0 ∧ αk +

n∑
`=1

ρ1
0 · · · ρ̂`0 · · · ρ

n
0dρ

i
0 ∧ β.

Because we know that the left-hand side remains smooth after dividing by ρ0 we find that∑
i,j,`

fij

ρ`0
dρi0 ∧ dρ

j
0 ∧ dρ

`
0 −

∑
k,`

dρk0 ∧ dρ`0 ∧
αk

ρ`0
+
∑
`

dρ`0
ρ`0
∧ β

is smooth. Because every term in the above sum is linearly independent from the others, we con-

clude that each of the terms needs to be smooth separately. From the first term we thus conclude

that
fij
ρl0

needs to be smooth for all i, j, ` pairwise distinct. Hence fij = ρ1
0 · · · ρ̂i0 · · · ρ̂

j
0 · · · ρn0 f̃ij

for some f̃ij ∈ C∞(M ;C). Similarly we find that αk = ρ1
0 · · · ρ̂k0 · · · ρn0 α̃k for some α̃k ∈ Ω1(M ;C)

and lastly that β = ρ0β̃ for some β̃ ∈ Ω2(M ;C). Therefore we conclude that

ρ2

ρ0
= ρ2 =

∑
i,j

f̃ijd log ρi0 ∧ d log ρj0 +
∑
k

d log ρk0 ∧ α̃k + β̃,

extends to a smooth logarithmic form over D, thus σ = ρ2
ρ0
∈ Ω2(U ; logD). �

The algebraic condition (ρ, ρ)Ch 6= 0 results in

|ρ0|2 (σ − σ)n 6= 0.

Therefore we conclude that the elliptic form σ − σ is non-degenerate, and hence σ is a complex

log symplectic form.

Next we consider the converse implication. Let ID denote the complex log divisor, and let

σ ∈ Ω2(AD) be a complex log symplectic form for this ideal. Let 〈eσ〉C ⊂ Ω•(AD) denote the

complex line generated by eσ. Then the product ID ⊗ 〈eσ〉C ⊂ Ω•(AD) is in fact smooth, that

is, ID⊗〈eσ〉C ⊂ Ω•(M). We will show that this line bundle defines a stable generalized complex
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structure. In local coordinates as in Lemma 2.13 we have that ρ = z1 · . . . · zkeσ is a local

trivialisation of the line bundle. Now

(ρ, ρ)Ch = z1
2 · . . . · zk2(=∗σ)n,

defines a volume form because =∗σ is a nondegenerate elliptic form with self-crossings. We are

left to prove integrability of ρ. Since integrability is a closed condition, it is enough check it in

M\D, but by construction in this region the structure is just a B-field transform of a symplectic

structure. �

4.4. Equivalence with elliptic symplectic. As we just saw, a stable generalized complex

structures is closely related to an elliptic symplectic form. Yet, the elliptic tangent bundle,

A|D|, which appears in the context of generalized complex structures arises from a complex log

tangent bundle, AD, and the elliptic symplectic form arises as imaginary part of complex log

symplectic form. Therefore our next step is to pinpoint precisely which elliptic symplectic forms

arise in this way. That is we are interested in describing the image of ‘taking the imaginary

part’: =∗ : Ω•(AD)→ Ω•(A|D|).
From now on we denote this image by Ω•=(A|D|) ⊂ Ω•(A|D|). Describing elements in Ω•=(A|D|)

of arbitrary degree for a general complex divisor is a little involved, so we will focus on our

object of interest: two-forms. To describe elements in Ω2
=(A|D|) we need to use the residue maps

for points in D(2) introduced in Section 3.3, such as, Resrirj and Resriθj . Recall that these

residues depend on an ordering of the coordinates and a choice of co-orientation, the kernels of

some combinations of these residues only depends on the co-orientation of the divisor. To be

precise, given a co-oriented elliptic divisor (I|D|, o), the spaces ker(Resq), ker(Resθirj −Resriθj )

and ker(Resrirj + Resθiθj ) do not depend on the order of the divisors.

Lemma 4.13. Let ID be a complex log divisor and let (I|D|, o) be its associated co-oriented

elliptic divisor. Then

Ω2
=(A|D|) = ker(Resq) ∩ (ker(Resθirj −Resriθj )) ∩ (ker(Resrirj + Resθiθj )).

Proof. Choose local coordinates as in Lemma 2.25. For all pairs i, j and β ∈ Ω1(M ;R) we have:

=∗(d log zi ∧ d log zj) = dθi ∧ d log rj + d log ri ∧ dθj ,

=∗(id log zi ∧ d log zj) = d log ri ∧ d log rj − dθi ∧ dθj ,

=∗(d log zi ∧ β) = dθi ∧ β,

=∗(id log zi ∧ β) = d log ri ∧ β.

Therefore we see that Ω2
=(A|D|) lies in the intersection of the kernels. Conversely, if α is in

the intersection of the kernels then locally it must be a linear combination of the above forms

together with smooth forms. Therefore by the above computation, we see that α ∈ Ω2
=(A|D|)

which concludes the proof. �
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Since =∗ is a map of complexes, Ω•=(A|D|) ⊂ Ω•(A|D|) is a subcomplex and we can compute

its cohomology, as we will do in Section 4.6. Next we see that the imaginary part of a complex

two-form determines it up to gauge equivalence:

Proposition 4.14. Let M be a manifold with a complex log divisor ID, and let (I|D|, o) be its

induced co-oriented elliptic divisor. Then the following sequence of cochain complexes is exact:

0→ Ω•(M ;R)→ Ω•(AD)
=∗→ Ω•=(A|D|)→ 0.

Proof. We can check exactness of the above sequence by checking exactness of the corresponding

sheaf sequence. By Lemma 2.13 we may assume we are in the setting of Example 2.8. The map

=∗ is surjective by definition, and it is clear that that Ω•(M ;R) lies in the kernel of =∗. Therefore

we are left to show that if a general complex log form has vanishing imaginary part, then it

must be smooth. Consider coordinates (z1, . . . , zk, z1, . . . , zk, xi, . . . , xl) and for multi-indices

I = (i1, . . . , il) make use of the following shorthand notation:

zI := zi1 · · · zil , (d log z)I := d log zi1 ∧ · · · ∧ d log zil ,

(dz)I := dzi1 ∧ · · · ∧ dzil .

Using these, a general complex log form ρ ∈ Ω•(AD) may be written locally as

ρ =
∑
I,J,K

αIJK(d log z)I ∧ (dz)J ∧ (dx)K ,

where the αIJK ∈ C∞(M ;C) are smooth, and the sum ranges over all multi-indices. The

vanishing of the imaginary part of ρ implies

0 =
∑
I,J,K

αIJK(d log z)I ∧ (dz)J ∧ (dx)K −
∑
I,J,K

αIJK(d log z)I ∧ (dz)J ∧ (dx)K ,

which using zI(d log z)I = (dz)I gives:

0 =
∑
I,J,K

zJαIJK(d log z)I ∧ (d log z)J ∧ (dx)K −
∑
I,J,K

zJαIJK(d log z)I ∧ (d log z)J ∧ (dx)K .

By linear independence, each of the terms involving (d log z)I ∧ (d log z)J and their conjugates

needs to vanish independently. That is, for all multi-indices I, J,K we have

0 = (zJαIJK(d log z)I ∧ (d log z)J − zIαJIK(d log z)J ∧ (d log z)I) ∧ (dx)K ,

and hence

(zJαIJK − (−1)|I||J |zIαJIK) = 0,

from this we conclude that αIJK is divisible by zI . This proves that ρ is a smooth form. �

Putting Theorem 4.12, Proposition 2.28 and Proposition 4.14 together we have the following.
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Theorem 4.15. Let M be a manifold. There is a correspondence between gauge equivalence

classes of stable generalized complex structures with self-crossings on M and isomorphism classes

of co-oriented elliptic divisors, (I|D|, o), endowed with an elliptic symplectic form ω ∈ Ω2
=(A|D|).

Explicitly, this equivalence is induced by the map{
(J, H) :

J is a Stable GCS

}
→


(I|D|, o, ω) :

(I|D|, o) is a co-oriented elliptic divisor and

ω ∈ Ω=(A|D|) is a symplectic form.


which assigns to each stable generalized complex structure on M the co-oriented elliptic divisor

determined by its anticanonical section and the imaginary part of its corresponding complex log

symplectic form.

Remark 4.16. Under the equivalence above, [H] = δ[ω], where δ is the connecting morphism

coming from Proposition 4.14. ♦

4.5. Equivalence with nondegenerate elliptic Poisson. A consequence of Theorem 4.15 is

that nearly all the information of a stable generalized complex structure is already encoded in

its underlying Poisson structure.

Theorem 4.17. The gauge equivalence class of a stable generalized complex structure (J, H) is

fully determined by its underlying Poisson structure.

Proof. In the symplectic locus the Poisson structure is given by ω−1. By smooth continuation

ω−1 on M\D determines ω on A|D|, which in turn determines J up to gauge equivalence by

Theorem 4.15. The only point that needs attention in this argument is that we extended ω−1

from M\D to A|D| but we did not argue yet that the Poisson structure itself determines A|D|.
This is indeed the case, as shown by Lemma 4.18 below. �

Lemma 4.18. Let I|D| be an elliptic divisor. Given ω ∈ Ω2(A|D|) an elliptic symplectic form,

let π = ρ(ω−1) be its associate Poisson bivector on M , where ρ : A|D| → TM is the anchor map.

Then (∧nTM,∧nπ) defines the elliptic divisor I|D|.

Conversely, if (∧nTM,∧nπ) defines an elliptic divisor I|D|, then π admits a nondegenerate

lift to A|D| and hence defines an elliptic symplectic structure.

Proof. In local coordinates expressing I|D| as a normal crossing, ωn is a volume form, hence

there is a nonvanishing function, f , for which

ωn = fd log r1 ∧ dθ1 ∧ · · · ∧ d log rk ∧ dθk ∧ dx2k+1 ∧ . . . dx2n.

Hence

πn = ρ(ω−n) = f−1r1∂r1 ∧ ∂θ1 ∧ · · · ∧ rk∂rk ∧ ∂θk ∧ ∂x2k+1
∧ . . . ∂x2n ,

which defines the divisor I|D|.

Conversely, assume that (∧nTM,∧nπ) defines an elliptic divisor I|D|. Due to [16, Theorem

A], to prove that π lifts to to A|D| it suffices to show that A∗|D| is locally generated by closed

one-forms. From the local description in Lemma 2.25 this is immediate.
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Since, by Lemma 3.7, the ideal defined by A|D| is I|D|, the lift above is non-degenerate, by

[16, Theorem A]. �

4.6. Cohomology. Due to Theorem 4.15, in order to study stable generalized complex struc-

tures, we can turn our attention to symplectic forms in the associated elliptic tangent bundle

that lie in the subcomplex given by Ω•=(A|D|). Therefore, the cohomology that is relevant to the

study of these symplectic structures is not the elliptic cohomology but, H2
=(A|D|), the cohomol-

ogy of the subcomplex Ω•=(A|D|). We study this cohomology next.

Proposition 4.19. Let M be a manifold and let I|D| be a co-oriented elliptic divisor. Then

H i
=(A|D|) ' H i(M,M\D)⊕H i(M\D).

Proof. We have the following morphism of cochain complexes

0 // Ω•(M,R) //

��

Ω•(AD) //

��

Ω•=(A|D|) //

��

0

0 // Ω•(M,R)
ι∗
M\D // Ω•(M\D,C) // Ω•(M\D,C)/Ω•(M,R) // 0

where ι∗M\D is the natural inclusion, the middle vertical arrow corresponds to restriction to M\D
and the rightmost vertical arrow restriction composed with the quotient map.

Therefore, we have the corresponding commutative diagram in cohomology:

. . . // H•(M) //

��

H•(AD) //

��

H•=(AD) //

��

H•+1(M) //

��

H•+1(AD)

��

// . . .

. . . // H•(M) // H•(M\D,C) // C• // H•+1(M) // H•+1(M\D,C) // . . .

Here we let C• denote the cohomology of the quotient complex. By Theorem 3.10 and the Five

Lemma we conclude that H•=(A|D|) ' C•. The quotient complex splits:

Ω•(M\D,C)/Ω•(M,R) = Ω•(M\D,R)/Ω•(M,R)⊕ iΩ•(M\D,R)

from which we conclude that C• ∼= H•(M\D)⊕H•(M,M\D). Here the last cohomology group

is the relative cohomology of M with respect to M\D. Combining all of these isomorphisms we

conclude that H•=(A|D|) ' H•(M,M\D) + iH•(M\D) as desired. �

5. Self-crossing stable structures in dimension four

In the remaining of this paper we will focus on stable generalized complex structures in four

dimensions. From a practical point of view, dimension four is special because the way different

components of the divisor intersect is very restricted, and at these intersections points the

symplectic structure behaves as a meromorphic volume form. In this dimension it is particularly

simple to state and prove a local normal form for a neighbourhood of a point (Theorem 5.3).

Simple as this local form is, it has interesting consequences. Firstly, it can be used to show that

every self-crossing stable generalized complex structure can be changed into a smooth stable
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structure (Theorem 5.12). Secondly it allows us to introduce a connected sum operation for

stable generalized complex structures (Theorem 6.7).

5.1. Normal forms. Having related stable generalized complex structures to symplectic struc-

tures on a Lie algebroid, we have a wealth of symplectic techniques available to deal with them.

One of the most basic tools from symplectic geometry, the Moser Lemma, carries through to Lie

algebroids with obvious modifications. This allows us to tackle deformations and correspond-

ing neighbourhood theorems. As for regular symplectic structures, the (local) deformations are

governed by the Lie algebroid cohomology in degree two. One new feature, however, is that the

local cohomology of the elliptic tangent bundle is non-trivial and hence the local model must

depend on parameters.

The next lemma is a direct adaptation of the Moser lemma.

Lemma 5.1. Let I|D| be an elliptic divisor on a manifold M , and let ω1, ω2 ∈ Ω2
=(A|D|) be two

elliptic symplectic forms defined on a neighbourhood U of a component of D(i). If [ω1] = [ω2] ∈
H2
=(A|D|) and tω1 +(1− t)ω2 is non-degenerate for all t ∈ [0, 1], then there exists neighbourhoods

U1, U2 ⊂ U of D(i) and a Lie algebroid isomorphism ϕ̃ : A|D|
∣∣
U2
→ A|D|

∣∣
U1

such that ϕ̃∗ω1 = ω2.

Proof. The proof is nearly identical to the usual proof of the Moser Lemma: let α ∈ Ω1
=(A|D|)

be such that ω1 − ω2 = dα and define Xt ∈ Γ(A|D|) by (tω1 + (1 − t)ω2)(Xt) = α. Then the

time-one flow, ϕ̃, of Xt on A|D| (over the flow, ϕ, of ρ(Xt) on U) will satisfy ϕ̃∗ω1 = ω2. Since

Xt ∈ Γ(A|D|), ρ(Xt) is tangent to D(i) and hence if we take a possibly smaller neighbourhood

U2 of D(i) we have ϕ(U2) ⊂ U and taking U1 = ϕ(U2) we obtain the result. �

A Darboux Theorem for points in D(1), the smooth locus of the divisor, was already obtained

in [4]. In four dimensions the only extra stratum available is D(2) and we present the version

of the Darboux Theorem for those points now.

Proposition 5.2. Let (I|D|, o) be a co-oriented elliptic divisor on M4. Let ω ∈ Ω2
=(M) be an

elliptic symplectic form and let p ∈ D(2). Choose coordinates that express I|D| as the standard

elliptic divisor in a neighbourhood of p and denote its residues by

λ1 = Resr1θ2 ω(p) = Resθ1r2 ω(p), λ2 = Resr1r2 ω(p) = −Resθ1θ2 ω(p).

Then λ2
1 + λ2

2 6= 0 and there exists coordinates (r1, θ1, r2, θ2) on a neighbourhood of p on which

I|D| is the standard elliptic divisor and ω is given by:

λ1(d log r1 ∧ dθ2 + d log θ1 ∧ d log r2) + λ2(d log r1 ∧ d log r2 − dθ1 ∧ dθ2).

Proof. Indeed, {d log r1, dθ1, d log r2, dθ2} is a frame for Ω1(A|D|) in a neighbourhood of p. Hence

we can write ω in terms of wedge products of these generators with functions as coefficients. At

p all these coefficients are residues and due to Lemma 4.13 we have

ω(p) = λ1(d log r1 ∧ dθ2 + d log θ1 ∧ d log r2) + λ2(d log r1 ∧ d log r2 − dθ1 ∧ dθ2).

Since ω2(p) 6= 0, we have λ2
1 + λ2

2 6= 0.
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Now consider

ω0 = λ1(d log r1 ∧ dθ2 + d log θ1 ∧ d log r2) + λ2(d log r1 ∧ d log r2 − dθ1 ∧ dθ2) ∈ Ω2
=(A|D|).

Since ω(p) = ω0(p), the convex combination tω + (1 − t)ω0 is symplectic in a neighbourhood

of p for all t ∈ [0, 1] and Proposition 4.19 implies that [ω] = [ω0] ∈ H2
=(A|D|). Since {p} is a

connected component of D(2), the Moser Lemma gives us the desired diffeomorphism between

ω and ω0. �

A direct consequence is a normal form for stable generalized complex structures.

Theorem 5.3. Let M4 be a stable generalized complex manifold. Then for every point p ∈ D(2)

there exists complex coordinates (z1, z2) around p where the complex log divisor is the standard

one and such that a local trivialisation of the canonical line bundle is given by the pure spinor

ρ = eB(λz1z2 + dz1 ∧ dz2),

for some λ ∈ C and B ∈ Ω2(M ;R).

Proof. By Theorem 4.15, gauge equivalence classes of stable generalized complex structures

are in equivalence with elliptic symplectic forms ω ∈ Ω2
=(M). By Proposition 5.2, any such

symplectic form is given, in appropriate coordinates, by

ω = λ1(d log r1 ∧ dθ2 + d log θ1 ∧ d log r2) + λ2(d log r1 ∧ d log r2 − dθ1 ∧ dθ2)

= =∗((λ1 + iλ2)(d log r1 + idθ1) ∧ (d log r2 + idθ2)).

Hence, up to the action of 2-forms, the stable generalized complex structure is given by

(λ1 + iλ2)z1z2 + dz1dz2,

with zj = rje
iθj and the stated normal form follows. �

5.2. Locally complex elliptic symplectic structures. Theorem 4.15 gives an equivalence

between stable generalized complex structures and certain elliptic symplectic forms together

with a co-orientation of the corresponding elliptic divisor. Of course, the main use of that result

is to work on the symplectic side to conclude properties of the generalized complex structure.

Here there is a minor difficulty: we must co-orient an elliptic divisor in the hopes of getting

the desired residue relations, but there is no preferred way to do that step. That is, if we are

interested in constructing a generalized complex structure on a given manifold M with an elliptic

divisor I|D|, we must choose a co-orientation for D but must also keep in mind that we may have

started with the wrong choice. We find it fruitful to introduce a notion that is independent of

the choice of co-orientation and will allow us to get a better grip on the problem.

Definition 5.4. Let I|D| be an elliptic divisor, and let ω ∈ Ω2(A|D|) be an elliptic symplectic

form. We say that ω is locally complex if around every point there exists an open neighbour-

hood U and a complex log divisor ID on U inducing the restricted divisor I|D||U together with

a complex log symplectic form σ ∈ Ω2(U ;AD) such that =∗σ = ω. ♦
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Concretely, ω is locally complex if and only if its elliptic residue vanishes over D(1) and over

D(2), for a choice of co-orientation of D, one of the following two possibilities holds:

(Resθirj ω − Resriθj ω = 0 and Resrirj ω + Resθiθj ω = 0), or(5.1)

(Resθirj ω + Resriθj ω = 0 and Resrirj ω − Resθiθj ω = 0),(5.2)

with the second possibility indicating that the chosen co-orientation for one of the components

of D is not compatible with ω.

In four dimensions, the existence of a locally complex elliptic symplectic structure forces the

degeneracy locus to be of a very specific form.

Proposition 5.5. Let M4 be a four-dimensional compact locally complex elliptic symplectic

manifold with respect to a co-orientable elliptic divisor I|D|. Then the connected components of

D are tori, spheres which intersect themselves in one point, or necklaces of spheres.

Proof. It follows from the normal form from [4], that over D(1) the modular vector field of the

underlying Poisson structure is nowhere-vanishing. In particular, if a connected component D′

of D is smooth and co-orientable, then it is orientable and has a nowhere vanishing vector field,

hence is diffeomorphic to a torus.

Assume that a connected component D′ is immersed but not embedded and let D̃′ → D′

denote the immersion. Because D′\D(2) is a Poisson submanifold, the modular vector field of

the Poisson structure is tangent to D′\D(2) and is nowhere-vanishing on D′\D(2). Moreover,

in local coordinates as in Proposition 5.2 the modular vector field takes the form −r1∂r1−r2∂r2 ,

which lifts to a vector field on D̃′ with positive zeros at the pre-image of D(2). Therefore each

component of D′ is an orientable surface with positive Euler characteristic (equal to the number

of points in D̃′ that map to D(2). That is, each component of D′ is a sphere with two points

in D(2). Thus either the component of D′ intersects itself in one point, or it intersects another

component(s) at two points. That component can in turn intersect the previous component or

some other component. By compactness there are only finitely many components and thus these

spheres have to form a necklace. �

Now we address the question of when a locally complex elliptic symplectic structure is actu-

ally induced by a complex log symplectic form. To do so we introduce the following notion.

Definition 5.6. Let M4 be an oriented manifold with a co-oriented elliptic divisor (I|D|, o). For

each p ∈ D(2) let D1, D2 be the corresponding local normal crossing divisors.

• We say that the intersection index of p is 1 if the isomorphism TpM ' NpD1⊕NpD2

is orientation-preserving;

• We say that the intersection index of p is −1 otherwise. ♦

Since ND1 and ND2 are both two-dimensional their choice of ordering does not effect the

orientation of the resulting direct sum ND1 ⊕ND2.
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An elliptic symplectic structure always provides a preferred orientation for M . If the struc-

ture is also locally complex, we can verify whether an intersection point in D(2) is positive or

not by considering the values of the residues at that point.

Lemma 5.7. Let (M4, I|D|, o) be a manifold endowed with a co-oriented elliptic divisor, and let

ω be a locally complex elliptic symplectic form. Then p ∈ D(2) is positive with respect to the

orientation induced by ω if and only if (5.1) holds.

This can be rephrased in more global terms.

Lemma 5.8. Let M4 be a manifold endowed with a co-oriented elliptic divisor (I|D|, o) and an

elliptic symplectic form, ω. The triple (I|D|, o, ω) is in the image of the map in Theorem 4.15 if

and only if ω is locally complex and each point in D(2) has positive index.

Proof. By Lemma 4.13, ω ∈ Ω2
=(M) if and only if (5.1) holds, which by the previous Lemma

corresponds to all intersection points being positive. �

Whenever a locally complex elliptic symplectic structure has a divisor with a few negative

intersection points, we may try to fix this by flipping the co-orientation of one of the components

arriving at that point. The problem with this is that such a change of co-orientation will also

change the sign at ‘the other’ intersection point of that component. Reflecting on this for a

moment we see that the parity of the number of negative points is the relevant piece of data.

Definition 5.9. Let (M, I|D|, o) be a four-manifold with co-oriented elliptic divisor and let ω be

a locally complex elliptic symplectic structure on M . If we denote by εp the index of p ∈ D(2),

the parity of ω on a connected component D′ of D is given by

εω,D′ = Πp∈D′(2)εp.

If D is connected, we omit D from the notation and refer to εω as the parity of ω. ♦

Lemma 5.10. Let (M, I|D|, o) be a four-manifold with co-oriented elliptic divisor and let ω ∈
Ω2(A|D|) be a locally complex elliptic symplectic form. Then:

• For each connected component D′ of D, the parity, εω,D′, does not depend on the choice

of co-orientation;

• We have εω,D′ = 1 for all connected components D′ of D if and only if there is a co-

orientation o′ of D for which (I|D|, o
′, ω) is in the image of the map in Theorem 4.15.

Proof. The proof relies on Proposition 5.5, which describes what a connected component of D

looks like. The case when D is smooth and co-orientable was treated in [4] so we need to consider

the cases when D has self-intersections.

If D′ has only one component which intersects itself in one point, p if we change the co-

orientation of D′ we change the co-orientation of both strands arriving at p and hence the index

of p does not change. So εω,D′ = 1 if and only if the index of p is 1 which, by Lemma 5.8,
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happens if and only if (I|D|, o, ω) is in the image of the map in Theorem 4.15 in a neighbourhood

of D′.

In general, since each component has two intersection points, changing its co-orientation

changes two signs and hence the parity, εω,D′ , remains unchanged by this operation. The proof

that this is the only relevant invariant can be done intuitively by breaking the necklace of

spheres, D′, at one intersection point, so that we get an array of spheres and then fixing the

co-orientation of ‘the first’ component, D1, of this array. Then we inductively keep or change

the co-orientations of the next components one by one depending on whether the index of the

next intersection point is positive or negative until we get to the last sphere, Dn. Since D′ is

a necklace, not an array, there is one last index to be computed, namely the one between Dn

and D1. Since the parity of the number of negative indexed points is fixed, this last index is

positive if the parity is positive. Hence, again by Lemma 5.8, the parity is positive if and only

if (I|D|, o, ω) is in the image of the map in Theorem 4.15 in a neighbourhood of D′.

It is clear that (I|D|, o, ω) is in the image of the map in Theorem 4.15 if and only if for each

component D′ of D, (I|D|, o, ω) is in the image of the map in Theorem 4.15 in a neighbourhood

of D′. �

5.3. Smoothening self-crossing stable structures. In this section we will show that if a

four-dimensional manifold admits a stable generalized complex structure, then it also admits a

smooth stable generalized complex structure.

Given ε > 0 consider the following two stable generalized complex structures on C2:

(5.3) ρ0 = λz1z2 + dz1 ∧ dz2, ρ1 = (λz1z2 + ε) + dz1 ∧ dz2,

which determine, respectively, the complex log divisors:

ID0 = 〈z1z2〉 , ID1 = 〈λz1z2 + ε〉 ,

and corresponding complex log symplectic forms

(5.4) σ0 =
dz1 ∧ dz2

λz1z2
and σ1 =

dz1 ∧ dz2

λz1z2 + ε
.

Lemma 5.11. Let σ0 and σ1 be the complex log symplectic forms in (5.4). Then there are

annuli A0, A1 ⊂ C2 and a diffeomorphism Φ: A0 → A1 ⊂ C2 which is a morphism of divisors

between ID1 and ID0 and satisfies =∗σ0 = Φ∗=∗σ1. Moreover, the map Φ is ambient isotopic to

the natural inclusion ι : A0 → C2\{0}.

Proof. The proof relies on a version of the Moser argument: We will find annuli A0 and A1

together with a diffeomorphism, ϕ : A0 → A1, with the following properties

• ϕ is a morphism of divisors between ID1 and ID0 ,

• ϕ∗=∗σ1 lies in the same cohomology class of =∗σ0 and

• the line connecting ϕ∗=∗σ1 and =∗σ0 is made of symplectic forms.
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U1

V1

V1

U2V2 V2

X

A0

Figure 1. The divisor associated to ρ0 are the coordinate axes while the divisor

associated to ρ1 is the hyperbola. In the complement of the polydisc of radius

2ε/|λ| both of these lie in U . The vector field X flows the coordinate axes to the

intersection of the hyperbola with A and vanishes in the grey area.

Once we have found such a ϕ, it is clear that the result follows from the Moser argument.

We start by considering A ⊂ C2, the complement of the polydisc of radius 2ε/|λ| on C2, that

is

A = {(z1, z2) : |z1| > 2ε/|λ| or |z2| > 2ε/|λ|}.

On A, we let

U = {(z1, z2) ∈ A : |z1| <
√
ε/|λ| or |z2| <

√
ε/|λ|},

V = {(z1, z2) ∈ A : |z1| < 2
√
ε/|λ| or |z2| < 2

√
ε/|λ|}.

Notice that both U and V consist of two components, namely U1, V1, which are neighbourhoods

of {z2 = 0} ∩ A, and U2, V2, which are neighbourhoods of {z1 = 0} ∩ A. Also, notice that the

zeros of λz1z2 + ε in A also lie inside U , that is U is also a neighbourhood of the zero locus of

the divisor associated to ρ1 (See Figure 1).

Let ψ : [0,∞)→ [0, 1] be a monotone bump function which is 1 on [0, 3
2

√
ε/|λ|] and zero on

[2
√
ε/|λ|,∞), and consider the following complex vector field:

X :=


−ψ(|z2|)ε

λz1
∂z2 on V1,

−ψ(|z1|)ε
λz2

∂z1 on V2,

0 otherwise.

The time-one flow of the real part of this vector field defines a diffeomorphism ϕ : A→ A.

Since in U1, X = − ε
λz1

∂z2 , the flow of its real part is the shear transformation

(5.5) ϕt(z1, z2) = (z1, z2 − t
ε

λz1
)
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as long as the flow remains in U1. Hence the time-one flow satisfies

(5.6) ϕ∗(λz1z2 + ε) = λz1(z2 −
ε

λz1
) + ε = λz1z2.

A similar computation holds in U2 and hence ϕ∗ID1 = ID0 .

Since =∗ is a cochain map, to prove that [=∗ϕ∗σ1] = [=∗σ0] it is enough to prove that

[ϕ∗σ1] = [σ0] ∈ H2(AD0). By Theorem 3.10 we have that H2(A,AD0) ' H2(A\D0). Because

A\D0 deformation retracts onto a torus, for example, T 2 = {|z1| = R, |z2| = R} with R >

2
√
ε/|λ|, we see that H2(A\D0) ' R and we are left to show that

∫
T 2 σ0 =

∫
T 2 ϕ

∗σ1. This torus

is disjoint from V , hence ϕ is the identity near T 2 and we compute∫
T 2

ϕ∗σ1 =

∫
|z1|=R

∫
|z2|=R

dz1 ∧ dz2

λz1z2 + ε

=

∫
|z1|=R

∫
|z2|=R

1

λz1

dz1 ∧ dz2

z2 + ε
λz1

= 2πi

∫
|z1|=R

1

λ

dz1

z1
=
−4π

λ
,

which coincides with the integral of σ0 over the same torus. Therefore we conclude that indeed

[σ0] = [ϕ∗σ1] ∈ H2(A,AD0), and consequently that [=∗σ0] = [ϕ∗=∗σ1] ∈ H2(A,A|D0|).

Next we will find a radius r such that on A\Br (the complement of the ball of radius r) the

form σt := tϕ∗σ1 +(1− t)σ0 is complex log symplectic for all values of t. To find r, we will study

separately the behaviour of σt in three regions: U , A\V and V \U .

Let us start with the region U . If r > 0 is large enough, the vector field X becomes small

on A\Br and its time-one flow starting at U1 is the shear transformation (5.5), hence we have

ϕ∗σ1 = σ0. The same argument holds at U2 and hence, for r large enough, on U\Br, σt = σ0 is

symplectic for all t.

Next we consider A\V . In this region, ϕ = id, and therefore

σt = t
dz1 ∧ dz2

λz1z2 + ε
+ (1− t)dz1 ∧ dz2

λz1z2

=
λz1z2 + (1− t)ε

(λz1z2 + ε)(λz1z2)
dz1 ∧ dz2.

Since in this region |z1| > 2
√
ε/|λ| and |z2| > 2

√
ε/|λ|, the form above does not vanish and

hence its imaginary part is symplectic.

Finally, we deal with V \(U ∪Br). We will focus on V1\U1. Apply the Mean Value Theorem

to the map t 7→ =∗(ϕtX)∗σ1(p), we obtain the estimate

|=∗σ1(p)−=∗ϕ∗σ1(p)| < |=∗LXσ1(p′)|.

for p′ in line segment between p and ϕ(p). Using the explicit forms of X and σ1 we find

|=∗σ1 −=∗ϕ∗σ1| < O(1/r2).
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We can also estimate the difference

|=∗σ0 −=∗σ1| =
∣∣∣∣=∗( εdz0dz1

λz0z1(λz0z1 + ε)

)∣∣∣∣ = O(1/r2).

Therefore, on V1\(U1 ∪Br) we can estimate

=∗σt = =∗σ0+t(=∗ϕ∗σ1−=∗σ0) = =∗σ0−t((=∗ϕ∗σ1−=∗σ1)+(=∗σ1−=∗σ0)) = =∗σ0−tO(1/r2).

Since =∗σ0 = O(1/r) the above is symplectic as long as r is large enough.

Therefore, by picking r as above and R > r we can apply the Moser Lemma to the annulus

A0 = BR\Br to find a diffeomorphism Φ̃: A0 → Φ̃(A0) such that Φ̃∗(ϕ∗=∗σ1) = =∗σ0. That

is, Φ = ϕ ◦ Φ̃ : A0 → (ϕ ◦ Φ̃)(A0) is the diffeomorphism we were looking for. Since Φ is the

composition of flows of vector fields it is ambient isotopic to the inclusion A0 → C2\{0}. �

Using this lemma we can now prove that every locally complex elliptic symplectic structure

can be changed into a smooth one by performing a surgery.

Theorem 5.12. Let (M4, I|D|) be a manifold endowed with a co-oriented elliptic divisor, and

let ω ∈ Ω2(A|D|) be elliptic symplectic. Then:

• If ω is locally complex, then it can be changed into a smooth elliptic symplectic form with

zero elliptic residue ω̃;

• The resulting structure will be induced by a stable generalized complex structure if and

only if the original structure was.

Proof. Since D(2) has codimension four and is compact, it is a finite collection of points. Because

ω is locally complex, given p ∈ D(2) there is a neighbourhood of p in which ω is the imaginary

part of some complex log symplectic form σ. By Lemma 5.3 there exists complex coordinates

(z1, z2) on a ball, B, around p on which σ is (B-field equivalent) to λd log z1∧d log z2. Note that

as σ is scaling-invariant in both the z1- and z2-direction, we can ensure that this ball is as large

as necessary. Therefore we can apply Lemma 5.11 to find an annulus A0 ⊂ B together with its

accompanying diffeomorphism Φ: A0 → A1. We denote by B′ ⊂ B the inner ball enclosed by

A0. Let B̃ ⊂ C2 be the ball enclosed by the outer boundary of the annulus A1. Because Φ is

ambient isotopic to the inclusion of A0 in D4\{0}, we have M 'M\B′ ∪A,ϕ B̃. If we endow B̃

with the smooth stable structure ρ1 in Equation (5.3), we see by Lemma 5.11 that the map Φ

is an elliptic symplectomorphism. We conclude that M obtains an elliptic symplectic structure

with D(2) consisting of one point less. Moreover, as the surgery is purely local in nature we can

ensure that the structure does not change around the remaining points in D(2). By performing

this procedure for all points in D(2) we conclude that M admits a smooth elliptic symplectic

structure with zero elliptic residue.

For the second part of the theorem, if ω was induced by a stable structure, then the local

coordinates from Theorem 5.3 would be orientation-preserving. As all maps used in the surgery

are orientation-reserving we conclude that the resulting divisor is co-orientable. We conclude

that M admits a smooth stable generalized complex structure. If ω is not induced by a stable
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structure, then there is at least one set of coordinates obtained from Theorem 5.3 which is

orientation-reversing. Therefore the resulting divisor will not be co-orientable, which finishes

the proof. �

6. Connected sums

In this section we will introduce a connected sum operation for elliptic symplectic structures

in four dimensions. To do so we will make use of normal form results obtained in Section 5. The

operation will be phrased in terms of locally complex symplectic forms (Definition 5.4) and it

will be useful for us to keep track of the index of points as we perform the connected sum.

6.1. Glueing divisors. We will perform connected sums on elliptic symplectic four-manifolds

at points which lie in their respective sets D(2). In arbitrary dimensions it is possible to take

connected sums of elliptic divisors at points with the same intersection number.

Lemma 6.1. Let (Mn, I|DM |), (Nn, I|DN |) be two oriented manifolds endowed with elliptic di-

visors, and let p ∈ DM (k) and q ∈ DN (k) for k ∈ N. Then M#p,qN admits an elliptic divisor

I|D|, for which the inclusions M\{p}, N\{q} → (M#p,qN) are morphisms of divisors.

Proof. Using Lemma 2.25 there exist coordinates around p and q such that both divisors are

precisely given by the ideal I =
〈
r2

1 · . . . · r2
k

〉
. To take the connected sum of M and N at p and

q, we need to use an orientation-preserving diffeomorphism, F , from an annulus around p to an

annulus around q, which reverses the co-orientation of the sphere and for which F ∗I = I. Here

we consider oriented charts defined in neighbourhoods of p and q which map to the unit ball in

Rn and we will use the diffeomorphism given in spherical coordinates by

(6.1) F : Rn\{0} → Rn\{0}, (r, ϕ1, . . . , ϕn) 7→ (r−1, ϕ1, . . . ,−ϕn).

To verify that F ∗I = I we write r2
i = r2ψi(ϕ1, . . . , ϕn), where ψi is a function which only

depends on the angular coordinates and satisfies ψi(ϕ1, . . . ,−ϕn) = ψi(ϕ1, . . . , ϕn). We have

F ∗(r2
i ) =

1

r2
ψi(ϕ1, . . . , ϕn), and thus r4F ∗(r2

i ) = r2
i .

Hence r4kF ∗(r2
1 · . . . · r2

k) = r2
1 · . . . · r2

k, and as r2k is a non-zero function on Rn\{0} we conclude

that F ∗I = I. �

There are a couple of points about this construction that we should stress.

Remark 6.2. There is some freedom in the glueing of elliptic divisors. Given a choice of

local coordinates (z1, . . . , zm) around p and q we can furthermore compose the map F by a

permutation of the first k coordinates. Note that this does not change M#p,qN , but it could

change the topology of the zero locus of the divisor. Because of this ambiguity in ordering,

there are potentially k! different topological types for the vanishing locus of the divisor on the

connected sum M#p,qN . ♦
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Remark 6.3. The reason for flipping the sign of ϕn in the map in (6.1) is that we assumed that

the coordinates we chose are compatible with the orientations of M and N . If for some reason

only one of the chosen coordinates was compatible with the orientations of M and N , we should

not flip the sign of ϕn. ♦

6.2. Glueing symplectic structures. We will introduce a connected sum operation for elliptic

symplectic structures in dimension four. The existence of such an operation contrasts starkly

with ordinary symplectic geometry, where connected sums are not possible above dimension

two. We first note that F introduced in (6.1) is a local symplectomorphism for a specific order

of the coordinates.

Lemma 6.4. Let (z1, z2) be complex coordinates on M = C2\{0}, and consider the elliptic

symplectic structure on M given by

ω = =∗(i d log z1 ∧ d log z2).

Using polar coordinates

(z1, z2) = (r cosϕ1, r sinϕ1 cosϕ2, r sinϕ1 sinϕ2 cosϕ3, r sinϕ1 sinϕ2 sinϕ3),

the map defined in (6.1) satisfies

F ∗ω = −ω.

Proof. The proof is a direct computation using that we can express F in complex coordinates

as

F (z1, z2) =
1

r2
(z1, z2). �

Definition 6.5. Let ω ∈ Ω2(A|D|) be a locally complex elliptic symplectic form. We say that

ω has imaginary parameter at a point p ∈ D(2) if

Resr1θ2 ω(p) = Resr2θ1 ω(p) = 0. ♦

Note that this definition does not depend on a choice of co-orientation.

Remark 6.6. By Proposition 5.2, an elliptic symplectic form with imaginary parameter ω is

locally isomorphic to

(6.2) λ=∗(id log z1 ∧ d log z2),

for an appropriate choice of complex coordinates, where λ = Resr1r2(ω). This justifies the termi-

nology. It is also immediate that these complex coordinates are compatible with the orientation

defined by the complex structure.

Notice however that if the divisor is co-oriented, the complex coordinates above may not

be compatible with the co-orientations. If we require compatibility between co-orientation and

complex coordinates, ω will be isomorphic to either the form above or

λ=∗(id log z1 ∧ d log z2).
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In the latter case, the complex coordinates and symplectic structure induce opposite orientations.

♦

We can now turn to the main result of this section, namely the connected sum operation

in dimension four for elliptic symplectic structures with imaginary parameter at points in D(2)

whose imaginary parameters match in absolute value.

Theorem 6.7. Let (M, I|DM |) and (N, I|DN |) be four-manifolds with elliptic divisors. Let ω1, ω2

be locally complex elliptic symplectic forms with imaginary parameters at p ∈ DM (2) and q ∈
DN (2), and denote by D′M and D′N the connected components of the divisor containing p and q.

If |Resr1r2 ω1(p)| = |Resr1r2 ω2(q)|, then:

• The connected sum M#p,qN admits a locally complex elliptic symplectic form, ω, for

which the inclusions (M\{p}, ω1), (N\{q}, ω2) ↪→ (M#p,qN,ω) are elliptic symplectic

maps.

• If either D′M (2) or D′N (2) has more than one point, the parity of D′M#N is given by

εD′M#N
= −εD′M εD′N .

• If D′M (2) = {p} and DN (2) = {q}, then D′M#N is co-orientable if and only if p and q

have opposite parities.

Proof. We will prove the claims of the theorem in turn. The tools needed are the normal form

for locally complex elliptic symplectic structures with imaginary parameter from Remark 6.6

and the local symplectomorphisms from Lemma 6.4.

To prove the first claim we choose complex coordinates in a neighbourhood of p which render

the symplectic structure in the form (6.2) and do the same for q, but reverse their order so that

Resr1r2 ω1(p) = −Resr1r2 ω2(q).

For this choice of coordinates, if we use F to perform the connected sum, Lemma 6.4 implies

that the structures on M\{p} and N\{q} agree on their overlap on M#p,qN which therefore

inherits an elliptic symplectic structure.

Now we move to the second claim. Choose co-orientations for D′M and D′N . If p and q

have the same index and, say, D′M (2) has more than one point, we can change the choice of

co-orientation of one of the components arriving at p which causes the index of p to change

sign. So we may assume without loss of generality that the indices of p and q are opposite. We

assume that p has negative index and q has positive index as the other case is analogous.

In this case, the complex coordinates used in a neighbourhood of p in the first claim only give

the correct co-orientation of one of the components of D′M passing through p, say, the one given

by [z2 = 0]. That is the co-orientation of [z1 = 0] is determined by dz2 and the co-orientation of

[z2 = 0] by dz1. Since q has positive index, we may assume that the complex coordinates chosen

for q are compatible with co-orientations. Finally we observe that the map F from Lemma 6.4

sends the line dz1 over [z2 = 0] to itself and sends the line dz2 over [z1 = 0] to dz2. Therefore,

the co-orientations of D′M and D′N are mapped to each other under F and hence D′M#N inherits
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a natural co-orientation from those of D′M and D′N and we can compute its index:

εD′M#N
= Πr∈D′M (2),r 6=pεrΠs∈D′N (2),s 6=qεs = −εpεqΠr∈D′M (2),r 6=pεrΠs∈D′N (2),s 6=qεs = −εD′M εD′N .

Finally we prove the last claim. If the indices of p and q are opposite, the previous argument

shows that a choice of co-orientation for D′M (2) and D′N (2) induces a co-orientation for D′M#N ,

which is therefore co-orientable. If the indices of p and q agree, then the argument above shows

that map F matches co-orientations of one of the strands arriving at p and q and reverses the

other. Since D′M and D′N are both connected, this implies that D′M#N is not co-orientable. �

Instead of performing connected sums of two manifolds we can also perform a connected

sum of a manifold with itself (self-connected sum), that is we can glue neighbourhoods of points

p and q ∈ M by an inversion on the annulus. In this case, if M is connected, this operation

corresponds to attaching a 1-handle and hence the diffeomorphism type of the resulting space

is always M#(S1 × S3). In this context, Theorem 6.7 becomes:

Corollary 6.8. Let (M4, I|D|) be a four-manifold with an elliptic divisor and let ω be a locally

complex elliptic symplectic form with imaginary parameters at {p, q} ∈ D(2) with p 6= q. Denote

by D′p and D′q the connected components of the divisor containing p and q, respectively. If

|Resr1r2 ω(p)| = |Resr1r2 ω(q)|, then:

• M4#(S1×S3) admits a locally complex elliptic symplectic structure for which the inclu-

sion M4\{p, q} ↪→ (M4#(S1 × S3)) is an elliptic symplectic map.

• If {p, q} ( D′p(2) ∪ D′q(2) and D′p 6= D′q, the parity of corresponding divisor, D′, in

M4#(S1 × S3) is given by

εD′ = −εD′pεD′q .

• If {p, q} ( D′p(2) ∪ D′q(2) and D′p = D′q, the parity of corresponding divisor, D′ in

M4#(S1 × S3) is given by

εD′ = −εD′p .

• If {p, q} = D′p(2) ∪ D′q(2) then D′ is co-orientable if and only if p and q have opposite

parities.

Remark 6.9. It might be more desirable to arrive at the conclusion of this corollary by pro-

ducing a stable generalized complex structure on S1 × S3 for which D(2) 6= ∅ and then using

Theorem 6.7 to perform the connected sum. Unfortunately, presently we do not know if S1×S3

has such a structure. ♦

Remark 6.10. Assume that the manifolds M and N , in the connected sum procedure, are

singular torus fibrations. If, in the coordinates that render the generalized complex structure

into canonical form (6.2) and appropriate coordinates on the base, the projection associated to

the torus fibration is given by

(z1, z2) 7→ (‖z2
1‖, ‖z2

2‖),
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then the connected sum M#p,qN inherits a singular torus fibrations from its two halfs, since

the map used for the connected sum is compatible with the fibration projection. ♦

7. Examples

In this section we will use the connected sum procedure of Theorem 6.7 to create several

examples of elliptic symplectic structures and stable generalized complex structures. In order to

do so we will start by constructing several building blocks, which are then combined via connect

sum.

7.1. Simple examples. As we showed in Example 4.9, CP 2 admits a stable generalized complex

structure whose divisor is given by three lines. The next few examples show that S2×S2 has such

a structure as well, while CP 2 and S4 do not, but do have locally complex elliptic symplectic

structures.

Example 7.1 (CP 2). In this example we construct an elliptic symplectic form with imaginary

parameter on CP 2 for the elliptic divisor induced by (O(3), z0z1z2). Needless to say, the structure

we construct is not the imaginary part of a complex log symplectic form, since CP 2 does not

admit generalized complex structures.

Let O(1)→ CP 2 be the dual of the tautological line bundle and for i = 0, 1, 2 let zi ∈ Γ(O(1))

be the section induced by the homogeneous polynomial zi on C3. Consider the three smooth

complex log divisors, Di = (O(1), zi), let D = (O(3), z0z1z2) be their product and let |D| be the

corresponding elliptic divisor. Using the underlying affine coordinates,

u1 =
z1

z0
, u2 =

z2

z0
, v0 =

z0

z1
, v2 =

z2

z1
, w0 =

z0

z2
, w1 =

z1

z2
,

we define the following global elliptic two-form

ω :=


=∗(id log u1 ∧ d log u2) if z0 6= 0,

=∗(−id log v0 ∧ d log v2) if z1 6= 0,

=∗(−id logw1 ∧ d logw0) if z2 6= 0.

It is immediate from the expression above that ω is locally complex with imaginary parameter.

Moreover we see that it induces the orientation opposite from the usual complex structure on

CP 2, hence it is a locally complex elliptic symplectic structure with imaginary parameter for

every point in D(2) on CP 2.

Finally, if we consider the co-orientation of the elliptic divisors induced by the complex log

divisor in Example 2.10 we have that the points D0∩D2 and D0∩D1 have positive index, while

the point in D1 ∩ D2 has negative index. By Lemma 5.10 we conclude that ω cannot be the

imaginary part of a complex log symplectic form. Further, we observe that if we were to choose

the opposite co-orientation for D0, all intersection indices would be −1.

We can provide a simple picture to illustrate this and all the other examples in this section.

Recall that CP 2 admits a singular torus fibration whose fibers are the orbits of the standard torus
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action on CP 2. The quotient space CP 2/T 2 is a triangle and the elliptic symplectic structure

constructed above is invariant under this action (with symplectic fibers). The zero locus of the

divisor is the pre-image of the edges of the triangle and points in D(2) are the pre-images of

the vertices. With this in mind, we use a triangle to represent CP 2 (or CP 2) and decorate each

vertex of the triangle with the intersection index of the corresponding point in D(2) (see Figure

2). 4

+1

+1

−1

Figure 2. We visualise CP 2 as its image under the moment map and each vertex

in the triangle corresponds to a point in D(2). We label the vertices with ±1

according to the intersection index of the corresponding point in CP 2.

Example 7.2 (S2×S2). The manifold S2×S2 admits a complex log symplectic structure σ for

which D(2) consists of four points. The imaginary part of σ is an elliptic symplectic form with

imaginary parameter. Indeed, identifying S2 with the extended complex plane, the vector field

z∂z vanishes transversely at 0 and∞ and hence in S2×S2 (with complex coordinates z and w),

the bivector field π = −izw∂z∂w is Poisson and determines a complex log divisor. Therefore we

can use π to deform the complex structure of S2×S2 into a stable generalized complex structure

(as in Example 4.8). A direct check shows that this structure has imaginary parameter at all

points in D(2). Since this stable generalized complex structure is obtained from a holomorphic

Poisson structure, the natural co-orientation of each component of the divisor (induced by the

complex structure) makes all intersection indices positive. Yet, by changing co-orientations, we

can arrange that any pair or all four points in D(2) have negative index.

Just as for CP 2, we can provide an illustration for this structure using the toric description

of S2 × S2 (see Figure 3). 4

+1

+1

+1

+1

Figure 3. We visualise S2 × S2 as the image under the map given by the two

height functions. We label the vertices with ±1 according to the intersection

index of the corresponding points in S2×S2. Different choices of co-orientations

yield different sign combinations at the vertices.
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Example 7.3 (S4). The manifold S4 admits an elliptic symplectic form with imaginary param-

eter with divisor consisting of two copies of S2 intersecting each other at the north and south

pole.

Consider two copies of D4 and endow one copy with the two-form ω := =∗(id log z1∧d log z2)

and the other copy with −ω. Using the map F , as in Lemma 6.4, we can glue an annulus in one of

the disks to an annulus in the other disk while preserving the elliptic symplectic structures. The

resulting manifold is diffeomorphic to S4 and the divisors intersect at the points (z1, z2) = (0, 0)

in both copies of D4, which correspond to the north and south pole of the sphere. Because

F involves a complex conjugation, a choice of co-orientations for which one point in D(2) has

positive index causes the other point to have negative index. As in the previous examples,

S4 admits a natural torus action which rotates each complex coordinate in D4 for which the

hyperplanes [zi = 0] have S1 isotropy and the north and south poles are fixed points. This

allows us to produce a two-dimensional illustration of this structure (see Figure 4). 4

+1

−1

Figure 4. We visualise S4 as its quotient by the standard torus action: the

edges correspond to the hyperplanes [zi = 0] and the corners to the north and

south poles.

Example 7.4. Because S4 admits an elliptic symplectic form with imaginary parameter, by

Example 7.3, we can use Theorem 5.12 to obtain a smooth elliptic symplectic structure on

S4. However the degeneracy locus is non co-orientable, because the smoothing process did not

preserve co-orientations. Because S4 is orientable, we conclude that the degeneracy locus has

to be non-orientable. Since the modular vector field is tangent to the degeneracy locus and

nowhere zero, we see that the degeneracy locus is diffeomorphic to a Klein bottle. 4

7.2. Main class of examples. In this section we will combine all of our four-dimensional

results to create new examples of elliptic symplectic and stable generalized complex structures

on a large class of four-manifolds exhibited as connected sums.

Theorem 7.5. The manifolds in the following two families admit stable generalized complex

structures:

(1) Xn,` := #n(S2 × S2)#`(S1 × S3), with n, ` ∈ N;

(2) X̂n,m,` := #nCP 2#mCP 2#`(S1 × S3), with n,m, ` ∈ N,

as long as 1− b1 + b+2 is even and the Euler characteristic is non-negative.
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Notice that if 1− b1 + b+2 is odd for a four-manifold M , then M does not admit any gener-

alized complex structure as it is not even almost complex by [13] or [7, Theorem 1.4.13]. The

requirement that the Euler characteristic is positive, on the other hand, seems to be more of a

limitation of our methods.

Proof. We will first prove that the manifolds in the list above admit elliptic symplectic structures

with imaginary parameters as long as the Euler characteristic is non-negative and then show

that these elliptic symplectic structures come from a generalized complex one if 1 − b1 + b+2 is

even.

In Examples 4.9, 7.1 and 7.2 we produced elliptic symplectic structures on CP 2, CP 2 and

S2×S2 with 3, 3 and 4 points in D(2) respectively. These are all locally complex with imaginary

parameter, so that by applying Theorem 6.7 inductively we obtain elliptic symplectic structures

on Xn,0 and X̂n,m,0 for all values of n, m, including the case n = m = 0 by Example 7.3.

The number of points in D(2) in these manifolds is, respectively, n + m + 2 and 2n + 2. By

Corollary 6.8 we can self-connect sum these spaces up to bn+m+2
2 c and n+ 1 times, respectively,

to obtain elliptic symplectic structures with imaginary parameters on the spaces of the list with

non-negative Euler characteristic.

To prove that the elliptic symplectic structures constructed above are induced by stable

generalized complex structures, it suffices to show that the parity is 1, by Lemma 5.10. Due

to Theorem 6.7 and Corollary 6.8, the parity of the symplectic structure for both families is

(−1)n−1+`, which is positive if and only if n− 1 + ` is even, that is, 1− b1 + b+2 is even. �

Example 7.6 (Relation to fibrations). All the examples produced in Theorem 7.5 have as

starting point CP 2, CP 2 and S4. The structures produced in these manifolds are compatible

with the natural torus action as in Remark 6.10: in a way, these three manifolds are symplectic

fibrations over manifolds with corners. Hence the manifolds from Theorem 7.5 are naturally

symplectic fibrations over surfaces with corners, just as their building blocks. The base of this

torus fibration associated to #nCP 2#mCP 2 is a polygon with n+m+2 vertices while examples

that include S1 × S3 factors fiber over a non simply-connected base (see Figure 5) 4

Remark 7.7. Several of the manifolds in Theorem 7.5, although not all, have already appeared

before. The family X̂n,m,0 with n > 0 and m ≥ 0 can be found in [3]. The manifolds Xn,0, Xn,1

and X̂n,m,1) appeared in [22]. The examples with ` > 1 have not appeared before. The main

advantage of our approach is that it is direct. We construct geometric structures on manifolds

which are connected sums by showing that the connected sum operation is compatible with the

structures in question. This is in contrast with those references, which instead construct mani-

folds with the desired structure via surgeries and then determine the resulting diffeomorphism

type at a later stage. ♦

Remark 7.8. The manifolds in both families in Theorem 7.5 do not admit complex or symplectic

structures if n > 1. Indeed, for n > 1, the manifolds are connected sums of manifolds with b+2 > 0
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+1

−1

+1

+1

+1

+1

;

Figure 5. We obtain #2CP 2#(S1 × S3) from #2CP 2 via self-connected sum.

Both spaces can be visualised as fibrations, the former over a rectangle and the

later over a topological annulus with two corners on the outer circle.

and by results from Seiberg–Witten theory due to Taubes (see [21]) no such manifold admits a

symplectic structure.

To prove the non-existence of complex structures requires a slightly longer argument. For

` even, if the manifolds admitted complex structures they would be Kähler and hence also

symplectic, but we ruled out this possibility already. The argument for ` odd comes from a

paper by Belgun [2] and goes as follows. It follows from the Kodaira classification of surfaces

that if one of these manifolds were complex, call it X, then its Kodaira dimension would be

1 and X would be an elliptic surface, possibly with multiple fibers, X → B. But in this case

there is a finite cover, X̃ of X, corresponding to a branched cover B̃ of B which is a genuine

fibration: X̃ → B̃. By a result of Mehara [17], any such X̃ is a quotient of C2 by a discrete

group. In particular, we conclude that X̃ and (hence also X) would be aspherical, which is not

the case for our manifolds. We are thankful to Ornea and Vuletescu for pointing us towards this

argument. ♦
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