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Chapter 1

Complex vector spaces

1.1 Different ways to describe a complex vector space

For any field, k, a k-vector space is an Abelian group (V,+) endowed with a map (called scalar
multiplication) compatible with the group operation in the sense that for u, v ∈ V and a, b ∈ k,

a(bv) = (ab)v

a(u+ v) = au+ av

(a+ b)u = au+ bu

1u = u.

Since C is a field the definition above leads naturally to the definition of a complex vector space

Definition 1.1. A a vector space over C is a complex vector space.

What makes C interesting, from the linear algebraic point of view, is that it is an extension of
R by adding a square root of −1. Hence we can try and relate the familiar notion of real vector
space to the notion of complex vector space.

The easiest relation is that since R ⊂ C is a subfield, every complex vector space is also a
real vector space by restriction of the scalars.

Exercise 1.1. Show that if {v1, . . . , vk} is a linearly independent set/basis for a complex vector
space V then {v1, iv1, . . . , vk, ivk} is a linearly independent set/basis for the underlying real vector
space, VR. In particular

dimR VR = 2 dimC V.

Conversely, given a real vector space V , we can try to extend scalar multiplication by real
numbers to scalar multiplication by complex numbers. There are two ways to achieve this.

The first is just to declare that now we can multiply vectors by complex numbers and if,
for example, {v1, · · · , vn} was a base for V over R then it is also a base for this ‘complexified’
vector space made out of V . This is extension of the scalars is what is used in a first basic course
in linear algebra to diagonalise a real matrix with complex eigenvalues. The formalism used to
make this construction precise is that of tensor products:
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6 CHAPTER 1. COMPLEX VECTOR SPACES

Definition 1.2. The complexification of a real vector space V is the space VC = C ⊗R V with
scalar multiplication given by

z(w ⊗ v) = zw ⊗ v.

Notice that because of the tensor product over the reals, for a ∈ R, a ⊗ v = 1 ⊗ av. When
dealing with VC we typically do not write the ⊗ operation and do not distinguish 1⊗ v from v.

Exercise 1.2. Show that if V has dimension n as a real vector space, then VC has dimension n
as a complex vector space.

Notice that if V is a complex vector space, we can restrict the scalars so it becomes a real
vector space and then we can complexify this space to obtain a new complex vector space:

V → VR → (VR)C.

This process doubles the (complex) dimension of the space.
The second way to make a real vector space into a complex one requires a little more data.

Since the difference between R and C is the addition of a square root of −1, what we need is a
linear operator I : V → V which doubles as scalar multiplication by i, that is, I2 = −Id. If we
have one such operator, we can extend scalar multiplication from R to C by declaring

(a+ ib)v = av + bIv,

and V with this operation becomes a complex vector space.

Definition 1.3. A (linear) complex structure on a real vector space V is a linear automorphism
I : V → V such that I2 = −Id.

Exercise 1.3. Given a complex vector space V , let VR be the underlying real vector space and
let I : VR → VR be the linear map Iv = iv defined using the original complex multiplication of
V . Show that V is naturally isomorphic as a complex vector space to the complex vector space
obtained from the real vector space with complex structure (VR, I).

Because of this we often do not distinguish between the complex vector space, V , and the
real vector space with complex structure, (VR, I).

There are, however, different ways to describe a complex structure, I, on a real vector space,
V . To start with, we can pick a basis of VC that renders I in its Jordan form. The condition
I2 = −Id not only forces all the eigenvalues of I to be ±i but also forces its Jordan form to be
diagonalizable, that is, we can split VC into the ±i-eigenspaces of I:

VC = V 1,0 ⊕ V 0,1, Iv = iv, Iw = −iw, ∀v ∈ V 1,0,∀w ∈ V 0,1.

Concretely, we have

V 1,0 = {v − iIv : v ∈ V }, V 0,1 = {v + iIv : v ∈ V }.

Notice further that complex conjugation on C gives rise to complex conjugation on VC and since
I is a real operator V 1,0 = V 0,1.

Since knowing the +i-eigenspace determines the −i-eigenspace of I (by complex conjugation)
and these together determine I (as a diagonalizable linear map is determined by its eigenspaces
and corresponding eigenvalues) we have an equivalent definition of complex structure:
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Lemma 1.4. A complex structure on a real vector space V determines and is uniquely determined
by a subspace V 1,0 ⊂ VC such that

V 1,0 + V 1,0 = VC,

V 1,0 ∩ V 1,0 = {0}.

1.2 Linear maps

Linear maps between an m-dimensional complex vector space and an n-dimensional one can be
identified with n×m-matrices with complex entries. Endomorphisms are therefore identified with
n × n matrices and automorphisms can still be characterised as those with nonzero (complex)
determinant. For Cn, these form the complex general linear group, GL (n;C).

From the point of view of the underlying real vector spaces with complex structure, (V, I)
and (W,J) a real linear map A : VR →WR is induced by a complex linear map if and only if

A(Iv) = JAv.

In particular, endomorphisms of (V, I) correspond to real linear maps A for which [A, I] = 0 and
GL (n;C) ⊂ GL (2n;R).

Exercise 1.4. Show that if V has complex dimension 1, then complex linear maps correspond
to multiplication by a complex number. That is, if A : VR → VR satisfies [A, I] = 0 then A is
multiplication by a complex number.

Exercise 1.5. Show that if A : V → W is complex linear then the induced map A : VR → WR
satisfies

A : V 1,0 ⊂ VC →W 1,0 ⊂WC. (1.2.1)

Conversely, if a real linear map A : VR → WR satisfies (1.2.1), then it is induced by a complex
linear map.

1.3 Metrics and symplectic structures

It is often easier to get a handle on a complex structure if we have further structures compatible
with it at our disposal. The first readily available structure is that of a Hermitian metric.

Definition 1.5. A Hermitian metric on a complex vector space V is as bilinear form h : V ×V →
C such that

h(v, v) ∈ R∗+, for v 6= 0,

h(zv, w) = zh(v, w),

h(v, w) = h(w, v).

When considering the underlying real vector space, it is convenient to split a Hermitian metric
h into its real and imaginary parts: h = g + iω.

Lemma 1.6. If h = g + iω is a Hermitiam metric on V , then
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• g is a real metric on VR for which I is an orthogonal map,

• ω is a nondegenerate skew-symmetric 2-form on VR such that ω(Iv, Iw) = ω(v, w) for all
v, w ∈ VR,

• g and ω are related by g(v, w) = ω(Iv, w).

Proof. We start with the third point:

g(Iv, w) + iω(Iv, w) = h(Iv, w) = ih(v, w) = ig(v, w)− ω(v, w).

Equating the imaginary parts of both sides we have ω(Iv, w) = g(v, w).
Regarding the first claim, since to go from V to VR all we do is restrict the scalars we see

directly that the conditions imposed on a Hermitian metric h imply that its real part is a real
metric:

g(v, v) = Re(h(v, v)) ∈ R∗+, for v 6= 0,

g(av, w) = Re(h(av, w)) = aRe(h(v, w)) = ag(v, w), for a ∈ R,
g(v, w) = Re(h(v, w)) = Re(h(w, v)) = Re(h(w, v)) = g(w, v).

Further

g(Iv, Iw) + iω(Iv, Iw) = h(Iv, Iw)) = −i2h(v, w)) = g(v, w) + iω(v, w),

showing that I is orthogonal with respect to g and ω(Iv, Iw) = ω(v, w).
Finally the second point is also a consequence of the previous two we proved. Firstly, since g

is nondegenerate and I is an automorphism, ω(•, •) = −g(I•, •). is nondegenerate and further

ω(v, w) = −g(Iv, w) = −g(I2v, Iw) = g(v, Iw) = g(Iw, v) = −ω(w, v),

showing that ω is skew-symmetric

The previous lemma introduced a few key concepts that we spell out now.

Definition 1.7.

• A symplectic form on a real vector space, V , is a nondegenerate 2-form ω ∈ ∧2V ∗.

• A metric g and a complex structure I on a real vector space are compatible if I is an
orthogonal transformation with respect to g.

• A symplectic structure ω and a a complex structure I on a real vector space are compatible
if I is an orthogonal transformation of with respect to ω, that is ω(Iv, Iw) = ω(v, w), and
g(•, •) = ω(I•, •) is positive definite.

Lemma 1.8. Given a vector space with complex structure, (V, I), the maps

{h : h is a Hermitian metric on V } → {g : g is a metric on V compatible with I}
h 7→ Re(h)

{h : h is a Hermitian metric on V } → {ω : ω is a symplectic structure on V compatible with I}
h 7→ Im(h)

are bijections.
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Proof. Indeed, say, we have for example a metric g compatible with I, then let ω(•, •) = −g(I•, •).
Since I2 = −Id and I is orthogonal for g, we have that ω ids skew symmetric and g 7→ g + iω is
a left and right inverse to the first map.

Exercise 1.6. A complex subspace of a complex space (V, I) is a subspace W ⊂ V preserved by
I, that is, IW = W .

A symplectic subspace of a symplectic space (V, ω) is a subspace W ⊂ V such that the pull-
back of ω to W is a symplectic form on W .

Given a pair of compatible complex and symplectic structures (I, ω) in a vector space V ,
show that if W ⊂ V is a complex subspace then it is also a symplectic subspace. Is the converse
true?

There is a final compatibility that one can consider:

Definition 1.9. A metric g and a symplectic form ω are compatible if I = ω−1 ◦ g is a complex
structure where here we regard both g and ω as linear maps from V to V ∗ which are invertible
by nondegeneracy.

Lemma 1.10. Given a complex vector space (V, I), there is a metric compatible with the complex
structure and the space of metrics compatible with the complex structure is contractible.

Proof. We can define a retraction from the space of all metrics to the space of metrics compatible
with the complex structure:

g̃ 7→ g, g(v, w) =
1

2
(g̃(v, w) + g̃(Iv, Iw)).

It is immediate to check that g is a metric compatible with I and that g̃ = g if and only if g̃ is
compatible with I. Therefore this map is a retract. Since the space of all metrics is contactible (it
is a convex subset of the vector space of symmetric 2-forms), so is the space of metrics compatible
with the complex structure.

Corollary 1.11. Given a complex vector space (V, I), there is a symplectic structure compatible
with the complex structure and the space of symplectic structures compatible with the complex
structure is contractible.

Follows from the bijections in Lemma 1.8.
We quote here for completeness the following result on compatibility of symplectic structures

and complex structures that is covered in the course Symplectic Geometry.

Lemma 1.12. Given a symplectic vector space (V, ω), there is a complex structure compatible
with ω and the space of complex structures compatible with ω is contractible.

1.4 Exterior algebra

Given a complex vector space, V , using duals and tensor product over C we can create a number
of associated complex vector spaces (the whole tensor algebra of V ). Yet, since V can also be
regarded as a real vector space, we can also consider its real tensor algebra. The decomposition

VC = V 1,0 ⊕ V 0,1
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gives rise to a corresponding decomposition of forms:

∧kVC = ⊕p+q=k ∧p V 1,0 ⊗ ∧qV 0,1 =: ⊕p+q=k ∧p,q V.

Since as complex vector spaces V ∼= V 1,0 we see that the exterior algebra of V lies as a subspace
of the exterior algebra of VC and that the latter is much bigger.

Maybe it is good to illustrate this concretely. Say we have a real basis for V of the form

{e1, f1, . . . , en, fn} with Iei = fi

Then
{e1 − iIf1, . . . , en − iIfn}

is a basis for V 1,0 and its conjugate a basis for V 0,1. If we denote by ∂zi = ei − iIfi, then ∧p,qV
is generated by elements of the form ∂zJ ⊗ ∂zK , where J is a multi-index of length p and K a
multi-index of length q.

Wedge product is compatible with the bigrading:

∧ : ∧p,q V × ∧p′,q′V → ∧p+p′,q+q′V.

If V has complex dimension n, then ∧n,0V ⊂ ∧•V is a complex line (because the top power of
any vector space is a line) generated by ∂z1 ∧ · · · ∧ ∂zn . This line is important enough to deserve
a name:

Definition 1.13. The anti-canonical line of a vector space with complex structure (V, I) is the
subspace ∧n,0V ⊂ ∧nVC. The canonical line is the subspace ∧n,0V ∗ ⊂ ∧nV ∗C .

The canonical line is generated by a decomposable element1 ρ ∈ ∧nVC, where n = dimC V ,
with the property that ρ ∧ ρ ∈ ∧2nVC is a volume form.

Exercise 1.7. Let V be a real vector space of dimension 2n and let ρ ∈ ∧nVC be a decomposable
n-form such that ρ∧ ρ ∈ ∧2nVC is a volume form. Define V 1,0 = {v ∈ VC : v ∧ ρ = 0}. Show that
V 1,0 determines a complex structure whose canonical bundle is generated by ρ.

Exercise 1.8. Let V be a complex vector space and A : V → V be a complex linear map. By
restricting the scalars, A is also a map of the underlying real vector space: AR : VR → VR. Show
that detRAR = |detCA|2.

1.5 Relation to conformal geometry

Given a metric g on a real vector space, we can define the angle between two vectors v1 and v2

as the angle θ ∈ [0, π] for which the following holds:

cos θ =
g(v, w)√

g(v, v)g(w,w)
. (1.5.1)

If we denote the metric by 〈•, •〉 instead of g, and by ‖ • ‖ the induced norm, this becomes the
familiar equality

〈v, w〉 = ‖v‖‖w‖ cos θ,

which is true because we define θ this way.

1a decomposable element is one that can be written as a product of degree 1 elements
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Definition 1.14. A conformal transformation on a vector space with metric is a transformation
that preserves angles between vectors.

It is clear that orthogonal transformations preserve angles, as they preserve the metric.
Rescalings also preserve angles because the numerator and denominator in (1.5.1) scale by the
same factor. In fact these are all conformal transformations.

Exercise 1.9. Show that if A : V → V is conformal, then A is the composition of an orthogonal
transformation and multiplication by a nonzero scalar.

In real dimension 2, we can refine the notion of angle to include a sign as long as V is oriented.
Indeed, for v, w ∈ V we let θ ∈ (−π, π] be the angle for which

〈v, w〉 = ‖v‖‖w‖ cos θ,

and sign(θ)v ∧ w is a non-negative volume element.
Also, if we denote by I the linear transformation that corresponds to rotation counterclockwise

by π/2, then I2 = −Id, which makes V into a complex vector. With these two ingredients at
hand we have the following low-dimensional coincidence:

Lemma 1.15. Conformal transformations which preserve orientation of a 2-dimensional real
vector space are the same as the invertible complex linear transformations.

Proof. It follows from Exercise 1.9 that the conformal maps of V which also preserve orientation
are compositions of scalings and elements of SO(2), that is, rotations. It is immedaite to check
that the composition of rotation by an angle θ and rescaling by the number r corresponds to
complex multiplication by reiθ with r 6= 0.

Writing a complex number as a + ib instead of reiθ, we see that orientation preserving con-
formal transformations of R2 are of the form(

a −b
b a

)
.
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Chapter 2

Holomorphic functions

With the basic linear algebra out of the way, we can now focus on the notions of differentiation
and integration.

2.1 Functions of one variable

Recall from the course analysis in one complex variable that a complex function f : C → C is
holomorphic at a point z0 ∈ C (i.e., has a complex derivative at z0) if the limit

lim
z→z0

f(z)− f(z0)

z − z0

exists. Further f is holomorphic if it is holomorphic for all points in its domain. For those used
to real analysis, we can regard f as a function from R2 to itself, f(x, y) = u(x, y) + iv(x, y), and
compute its derivative as a real function:

df =

(
ux uy
vx vy

)
Then f is holomophic at a point z0 if at that point the Cauchy-Riemann relations hold:

ux = vy and uy = −vx

This can be phrased equivalently by saying that

Lemma 2.1. f is holomorphic at z0 if and only if df |z0 exists and corresponds to multiplication
by a complex number, namely, ux + ivx.

Using Exercise 1.4 we can phrase the same concept in a slightly different way.

Lemma 2.2. f is holomorphic at z0 if and only if df : Tz0R2 → Tf(z0)R2 is complex linear, that
is, I ◦ df = df ◦ I.

Where above we are using the induced complex structure on R2: if {∂x, ∂y} is the standard
basis for R2, then I∂x = ∂y is the complex structure induced by the identitfication R2 ∼= C (and

13
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at this stage it should hopefully be clear that we are using the linear structure of these spaces to
identify them with their own tangent space at z0).

There is one last way to describe holomorphicity, this time in terms of differential forms. But
this requires a little explanation. Firstly, the identification C = R2 gives a complex structure to
R2 as described above: I∂x = ∂y. Therefore we also get a dual complex structure, I∗, on (R2)∗,
namely, if ξ ∈ (R2)∗ and X ∈ R2, then

(I∗ξ)(X) = ξ(IX).

Spelling this out in terms of the basis {dx, dy} for (R2)∗ we have Idx = −dy and we can form
dz = dx+ idy ∈ (R2)1,0∗ and dz̄ = dx− idy ∈ (R2)0,1∗, as outlined in Section 1.4.

Indeed, since f takes values on C we can think of df as a complex valued 1-form:

df = ∂xfdx+ ∂yfdy = ∂xudx+ ∂yudy + i(∂xvdx+ ∂yvdy)

And we can split it into its (1, 0) and (0, 1) components:

df =
1

2
(∂x − i∂y)(u+ iv)dz +

1

2
(∂x + i∂y)(u+ iv)dz̄.

The Cauchy Riemann relations are equivalent to the vanishing of (0,1) component of df (the
second summand above).

Summarising, if we denote by ∂ the composition of d with projection onto the (1,0)-forms
and by ∂ the composition of d with projection onto the (0,1)-forms we have

d = ∂ + ∂. (2.1.1)

Lemma 2.3. f is holomorphic at z0 if and only if ∂f |z0 = 0.

2.2 Functions of several variables and the ∂-operator

The notion of derivative of a function has a few different generalisations. One of them is as the
derivative of a function of several variables. Another is as the exterior derivative. We will deal
with these in turn.

Definition 2.4. A continuous map f : Cm → Cn is holomorphic at p if its first derivative at p
exists as a real map and df |p is complex linear. The map f is holomorphic if it is holomorphic
at all points in its domain.

This can be rephrased by saying that dfp exists and each component of f satisfies the Cauchy–
Riemann relations for all the variables independently, but this coordinate based characterisation
of holomorphicity is not very insightful and is rarely used.

The generalization of derivative as exterior derivative requires a bit more setup. As we
mentioned before given a complex function f : C → C we could think of f as a 0-form with
complex coefficients and df as a one-form with complex coefficients. In Cn ∼= R2n we can consider
k-forms with complex coefficients, Ωk(Cn;C) and the exterior derivative. Writing

∂xi = ∂zi + ∂ z̄i , ∂yi = i(∂zi − ∂ z̄i), dxi =
1

2
(dzi + dz̄i), dyi =

1

2i
(dzi − dz̄i),
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we can rewrite the exterior derivative in terms of the complex variables:

d =
∑

∂xidxi + ∂yidyi

= 1
2

∑
(∂zi + ∂ z̄i)(dzi − dz̄i) + i(∂zi − ∂ z̄i)

1

i
(dz + dz̄i)

=
∑

∂zidzi + ∂ z̄idz̄i.

This expression for d shows that it behaves will with respect to the decomposition of complex
valued forms induced by the complex structure, namely, when applied to a (p, q) form α : Cn →
∧p,qT ∗Cn, the exterior derivative either increases the ‘holormorphic degree’, p, or the ‘anti-
holomorphic degree’, q, by one and we can define operators ∂ and ∂ as d composed with the
corresponding projections:

d = ∂ + ∂

∂ =
∑

∂zidzi, ∂ = ∂ z̄idz̄i.

At this stage it is worth doing a couple of concrete examples.

Example 2.5. Now we compute the exterior derivative of a few very simple functions. We take
f1(z) = z, f2(z) = z̄, f3(z) = |z|2 and f4(z) = Re(z).

df1 = dz ⇒ ∂f1 = dz, ∂f1 = 0.

df2 = dz̄ ⇒ ∂f2 = 0, ∂f2 = dz̄.

df3 = d(zz̄) = z̄dz + zdz̄ ⇒ ∂f3 = z̄dz, ∂f3 = zdz̄.

df4 = d(1
2(z − z̄) = 1

2dz −
1
2dz̄ ⇒ ∂f4 = 1

2dz, ∂f4 = 1
2dz̄.

Where the first two were direct computations and the other two follow from those by using the
Leibniz rule and linearity of d. �

It is convenient to place the spaces of (p, q)-forms in a lattice parametrised by the integers p
and q. Once we do this we can indicate the decomposition d = ∂ + ∂ graphically.

Lemma 2.6. The following relations hold:

∂2 = 0, ∂
2

= 0 and ∂∂ + ∂∂ = 0.

Proof. When acting on (p, q)-forms ∂ and ∂ map to different spaces, so the relation d2 = 0
translates into the three relations stated in this lemma.

Example 2.7. For f : C → C we can compute ∂∂f abstractly using ∂ = ∂zdz = 1
2(∂x − i∂y)dz

and similarly for ∂:

∂∂f =
1

2
∂(∂xf + i∂yf)dz̄ =

1

4
(∂2
xf + i∂x∂yf − i∂y∂xf + ∂2

yf)dzdz̄ = 1
4(4f)dzdz̄,

where 4 denotes the Laplacian in R2.
This low dimensional coincidence is at the heart of the connection between holomorphic

functions and harmonic functions. It also leads people studying 1-dimensional complex objects
to call functions in the the kernel of the operator ∂∂ harmonic.

Yet, in higher dimensions cross terms involving ∂xi∂yj appear and neither is ∂∂ related to the
Laplacian operator nor are holomorphic functions related to harmonic functions in any obvious
way. �
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Example 2.8. A smooth function f : Cn → C is holomorphic if and only if ∂f = 0. Yet once
we consider general (p, q)-forms the significance of “being in the kernel of ∂” is not as obvious.

For example, a generic volume form is form α = fdz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n and is of
type (n, n). Being a volume, we have dα = 0 and hence the projections of the dα into further
subspaces also vanish, that is ∂α = ∂α = 0. So the condition ∂α = 0 places no restriction on the
coefficient f . �

One situation in which being in the kernel of ∂ still has holomorphic meaning is for forms of
type (p, 0):

Lemma 2.9. Let α : Cn → ∧p,0T ∗Cn be a form, say

α =
∑
|J |=p

αJdzJ .

Then ∂α = 0 if and only if each coefficient αJ is a holomorphic function.

Proof. Indeed,

∂α =
∑
|J |=p

n∑
j=1

∂ z̄jαJdz̄jdzJ ,

and each term in the sum above lies in a different summand of ∧p+1T ∗Cn, hence the whole
expression vanishes if and only if each coefficient, αJ , is holomorphic with respect to all coordi-
nates.

Definition 2.10. A (p, 0)-form α is holomorphic if ∂α = 0.

2.3 Cauchy integral formula & Hartog’s theorem

One of the main results of the course analysis in one complex variable is Cauchy’s integral formula:

Theorem 2.11. Let f : Ω ⊂ C → C be a holomorphic function, let z0 be an interior point of Ω
and let γ : [0, 1] → Ω be a null-homologous loop that does not pass through z0 and winds around
z0 once counterclockwise. Then

f(z0) =
1

2πi

∫
γ

f(z)

z − z0
dz

Cauchy’s formula has several important consequences, for example given a simply connected
domain with smooth boundary, Ω, and a continuous function g : ∂Ω → C there is a unique
holomorphic function defined on Ω which is equal to g on the boundary, namely

f(z) =
1

2πi

∫
∂Ω

g(w)

(w − z)
dw.

Another important consequence of Cauchy’s integral formula is that holomorphic functions are
analytic, a fact that is very surprising when we first encounter it.

There is an important version of Cauchy integral formula that does not relly on f being
holomorphic.



2.3. CAUCHY INTEGRAL FORMULA & HARTOG’S THEOREM 17

Theorem 2.12. Let f : Ω ⊂ C → C be a C1 function, let γ : [0, 1] → Ω be a simple loop that
traces the boundary of a region U counterclockwise and let z0 ∈ U . Then

f(z0) =
1

2πi

(∫
γ

f(z)

z − z0
dz −

∫
U

∂f ∧ dz
z − z0

)
.

Remark. In the case when f is holomorphic, ∂f = 0, and we obtain (something very close to)
the statement of Cauchy’s integral formula. The proof of this more general statement relies on
Stoke’s Theorem, which you may have guessed is more general than Cauchy’s formula, but now
you can actually see what the relation between the two is.

Proof. Let Dε be a disc of radius ε centered at z0. For ε small Dε ⊂ U . We apply Stokes Theorem
to the form f(z)

z−z0dz integrated over the boundary of U\Dε:∫
γ

f(z)

z − z0
dz −

∫
∂Dε

f(z)

z − z0
dz =

∫
U\Dε

d

(
f

z − z0

)
∧ dz

=

∫
U\Dε

∂f

z − z0
∧ dz,

(2.3.1)

where in the second equality we used that d = ∂ + ∂, for any function h, ∂h ∧ dz = 0 and that

since 1
z−z0 is holomorphic, ∂

(
f

z−z0

)
= ∂ ∂f

z−z0 .

To get the desired result we will prove the following estimates:∫
Dε

∂f

z − z0
∧ dz ε→0−→ 0 (2.3.2)

∫
∂Dε

f(z)

z − z0
dz

ε→0−→ 2πif(z0). (2.3.3)

Indeed, once these are established, we only need to take the limit of (2.3.1) as ε goes to zero.

To prove (2.3.2), we observe that since f is C1, there is a constant M for which |∂ z̄f | ≤ M
and hence ∥∥∥∥∫

Dε

∂f

z − z0
∧ dz

∥∥∥∥ ≤ ∫
Dε

∥∥∥∥ ∂ z̄f

z − z0

∥∥∥∥ 2dx ∧ dy

≤
∫
Dε

M

|z − z0|
2dx ∧ dy

≤
∫ 2π

0

∫ ε

0

M

r
2rdr ∧ dθ

= 2πεM
ε→0−→ 0,

where in the first inequality we used dz̄ ∧ dz = 2idx ∧ dy
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To prove (2.3.3), we let ε2 > 0 and pick ε > 0 so that if ‖z−z0‖ < ε then ‖f(z)−f(z0)‖ < ε2.
Then we compute directly∥∥∥∥∫

∂Dε

f(z)

z − z0
dz − 2πif(z0)

∥∥∥∥ =

∥∥∥∥∫
∂Dε

f(z)− f(z0)

z − z0
dz

∥∥∥∥
≤
∫
∂Dε

∥∥∥∥f(z)− f(z0)

z − z0

∥∥∥∥ ‖dz‖
≤
∫
∂Dε

ε2
ε
‖dz‖

= 2πε
ε2
ε

= 2πε2.

Since ε2 was arbitrary, we conclude that the limit exists and is 2πif(z0).

By induction, one can easily extend Cauchy Integral Formula to functions of more than one
variable. To formulate the, result it is convenient to introduce the notion of a polydisc.

Definition 2.13. Given r = (r1, . . . , rn) with ri > 0, the polydisc of radius r in Cn is the set

Dr = {(z1, . . . , zn) : |zi| < ri for all i}.

If we allow ri =∞ for some i we call D a polycycilinder. If ri = r for all i we call D a polydisc of
radius r and the subtle difference with the first definition of these words is that now r is a real
number instead of a vector in Rn.

Corollary 2.14 (multivariable Cauchy Integral Formula). Let f : Ω ⊂ Cn → C be a holomorphic
function, let Dr ⊂ Ω be a polydisc in the interior of Ω. Then

f(z1, . . . , zn) =

(
1

2πi

)n ∫
‖w1‖=r1

· · ·
∫
‖wn‖=rn

f(w1, . . . , wn)

(w1 − z1) . . . (wn − zn)
dwn ∧ · · · ∧ dw1.

The proof is done by induction using the single variable Cauchy Integral Formula for one
variable at a time.

In principle one can also find a similar formula for C1 functions just as in Theorem 2.12, but
inductive step each integral would split into two and the formulas become unyielding quickly.

The fact that holomorphic functions of many variables are analytic follows from the multi-
variable Cauchy Integral Formula 2.14 following the same line or argument used for the single
variable case.

Exercise 2.1. Every holomorphic function f : Ω ⊂ Cn → C is analytic. Hint: Read up the proof
for a single variable and adapt the estimates to the present case.

Similarly, the maximum modulus principle also holds, which can be proved either by induction
using the single variable maximum modulus principle or using the multivariable Cauchy Integral
Formula:

Exercise 2.2. Let f : Ω ⊂ Cn → C be a holomorphic function. If ‖f‖ achieves its maximum in
the interior of Ω, then f is constant.
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While the techniques used in the previous results still belong to the realm of one complex
variable, the next one is markedly a multivariable result and in fact shows that there is a stark
contrast between singularities in one and in many variables. Denoting by Dr the disc of radius
r in C, in one complex variable, a holomorphic function defined on an annulus D2\D1 can have
arbitrary singularities if one tries to extend it holomorphically to the smaller disc, D1. In higher
dimensions this is not the case.

Theorem 2.15 (Hartog). Let R > r and let f : DR\Dr → C be a holomorphic function defined
on the complement of the polydisc Dr inside DR. If n > 1, then f can be holomorphically extended
to the whole polydisc DR.

Proof. We will only do the case n = 2 as the general case is completely analogous. We define
two functions

F1 : DR → C, F1(z1, z2) =
1

2πi

∫
|z1|=R

f(w, z2)

w − z1
dw.

F2 : DR → C, F2(z1, z2) =
1

2πi

∫
|z2|=R

f(z1, w)

w − z2
dw.

By differentiating under the integral we see that F1 and F2 are holomorphic. Further, for each
fixed z2 with |z2| > r, by Cauchy integral formula the functions f(·, z2) and F1(·, z2) agree.
Similarly f(z1, ·) and F2(z1, ·) agree as long as |z1| > r. In particular if |z1|, |z2| > r, then
F1(z1, z2) = f(z1, z2) = F2(z1, z2). Since F1 and F2 agree on the open set U = {(z1, z2) : |z1| >
r, |z2| > r}, they are both defined on DR and they are both holomorphic, they agree in DR.

One way to interpret Hartog’s theorem is by saying that holomorphic singularities happen in
(complex) codimension one subsets.

One final important result regarding holomorphic objects in Cn is the ∂-Poincaré lemma.
Recall that in Cn the space of forms obtains a double grading: Ω•(Cn) = ⊕p,qΩp,q(Cn) and the
exterior derivative also decomposes according to this double grading d = ∂ + ∂. Among other

things, we have ∂
2

= 0 (Lemma 2.6). At this fresh discovery, the more enthusiastic among us
would immediately jump to the definition

Definition 2.16. The Dolbeault cohomology of Cn is

Hp,q

∂
(Cn) =

ker(∂ : Ωp,q(Cn)→ Ωp,q+1(Cn))

Im(∂ : Ωp,q−1(Cn)→ Ωp,q(Cn))
.

For q = 0, the denominator is the trivial vector space and the Dolbeault cohomology is just
the kernel of the ∂ operator, which, according to 2.10, is given by the holomorphic p-forms:

Hp,0(Cn) = {α ∈ Ωp,0 : α is holomorphic}.

The natural question is: what is the Dolbeault cohomology for q > 0? We deal with that
next.

Lemma 2.17 (Poincaré ∂-Lemma in one variable). Let D be a disc and let α ∈ Ω0,1(D). Then

f(z) = − 1

2πi

∫
D

α ∧ dw
w − z

.

satisfies ∂f = α.
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Proof. The form α is given by α = g dz̄ for some smooth function g and we need to prove that
∂ z̄f = g.

To prove this we fix a reference point z0 and use partitions of unit to write g = g1 + g2 with
g1 supported in disc of radius 2ε arounf z0 and g2 vanishing in a disc of radius ε around z0. The
splitting g = g1 + g2 gives a corresponding splitting f = f1 + f2. For z in the disc of radius ε
around z0, the integral

f2(z) =
1

2πi

∫
D

g2(w) dw ∧ dw̄
w − z

.

is well defined and the integrand is smooth, hence we can compute the derivative of f2 by taking
the derivative under the integral:

∂f2

∂z̄
=

1

2πi

∫
D

∂

∂z̄

g2(w) dw ∧ dw̄
w − z

= 0,

since the integrand is holomorphic in z.
Now we turn to f1. The estimate (2.3.2) used in the proof of Cauchy’s integral formula shows

that f1 is well defined and since g1 has compact support, we have

f1(z) =
1

2πi

∫
D

g1(w) dw ∧ dw̄
w − z

=
1

2πi

∫
C

g1(w) dw ∧ dw̄
w − z

=
1

2πi

∫
C

g1(w + z) dw ∧ dw̄
w

.

This last expression expresses f1 is an integral that depends smoothly on the parameter z, so we
can differentiate under the integral to obtain

∂f1

∂z̄
=

1

2πi

∫
C

∂

∂z̄

g1(w + z) dw ∧ dw̄
w

= g1(z)− 1

2πi

∫
∂D̃

∂g1(w+z)
∂z̄ dw ∧ dw̄

w

= g1(z),

where in second equality we used that g1 has compact support, picked a disc D̃ large enough so
that g1 vanishes at the boundary of D̃ and applied Cauchy’s integral formula.

With these two together we have

∂f(z) = ∂f1(z) + ∂f2(z) = g1dz̄ + 0 = g1(z)dz̄ + g2(z)dz̄ = g(z)dz̄ = α.

Since z0 was arbitrary, the result follows.

Theorem 2.18. The Dolbeault cohomology of any polydisc vanishes for q > 0.

Proof. Consider the polydisc Dr with r = (r1, . . . , rn). Let α ∈ Ωp,q be a ∂-closed form and
expand it in multiindex notation:

α =
∑
I,J

αI,JdzI ∧ dz̄J .
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Then ∂α = 0 produces a number of equations but does not change the dzI factor of each summand
of α. Hence ∂α = 0 is equivalent to

∂(
∑
J

αIJdz̄J) = 0, for all I.

So we can restrict our attention to (0, q)-forms.
Say α =

∑
J αJdz̄J is ∂-closed, we will show it is ∂-exact (in Dr) by inductively subtracting

exact forms from α which successively remove all terms containing dz̄1, dz̄2, etc.
Let’s say that dz̄1, . . . , dz̄i−1 do not appear in α, that is the multi-indices J appearing in the

sum start at i, so we can write

α =
∑
J>i

αi,Jdzi ∧ dz̄J +
∑
J>i

αJdz̄J ,

where J > i denotes the multi-indices whose lowest index is greater than i.
Since ∂α = 0, it follows that

∂αi,J
∂z̄j

= 0 for j < i. Then consider

βi,J(z) =

∫
|w|<ri

αi,J(z1, . . . , w, . . . , zn)
dw ∧ dw̄
w − zi

By differentiating under the integral we have

∂βi,J
∂z̄j

= 0 for all j < i.

Also, by the ∂-Poincaré Lemma in one variable,

∂βi,J
∂z̄i

= αi,J(z1, . . . , zi, . . . , zn).

So if we form

α̃ = α− ∂

(∑
J>i

βi,Jdz̄J

)
,

we see that α̃ is also ∂-closed and dz̄1, . . . , dz̄i do not appear in α̃.
Repeating this n times, we conclude that α is ∂-exact.

Remark. The ∂-Poincaré Lemma also holds on polycylinders [1, page 25]
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Chapter 3

Complex manifolds

3.1 Definition and examples

With the basics of the theory of holomorphic functions behind us, we can now transport that
to the world of manifolds. The first definition of complex manifold is one that we can naturally
guess: simply replace the requirement that the transition functions of an atlas are smooth by the
requirement that they are holomorphic:

Definition 3.1. A complex manifold is a topological manifold (second countable, Hausdorff,
locally Euclidean topological space), M , endowed with an atlas {(Uα, φα) : α ∈ A} for which
each chart takes values in Cn, that is

φα : Uα ⊂M → Vα ⊂ Cn

and all change of coordinates, φβ ◦ φ−1
α are holomorphic in their domain.

Each coordinate chart in a such an atlas is called a holomorphic (coordinate) chart.

Just with the definition at hand we can already produce several examples of complex manifolds
and it is good to go through some of them so over time we create a mental library of examples
with which we can test hypothesis we may eventually raise.

Example 3.2. Euclidean space Cn is a complex manifold covered by a single chart. In fact open
subset of Cn inherits automatically the structure of a complex manifold. �

Example 3.3. The space of complex linear n×m-matrices is diffeomorphic to Cnm and as such
it is a complex manifold. Also the space of invertible n × n-matrices, GL (n,C) is a complex
manifold. Indeed, the complex determinant

det : Mn×n(C)→ C,

is a continuous function (it is a polynomial) and hence GL (n,C) = det−1(C∗) is open in the
space of all n× n-matrices. �

Example 3.4 (Non example). With the previous example at hand, we may start to get ideas...
we may start to think that classic matrix groups based on matrices with complex coefficients are
complex manifolds. We do not have to look far to dispel this idea. Indeed, U(1), the group of

23
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unitary transformations of C, is just the complex numbers of length 1, that is the circle S1 ⊂ C,
which has odd real dimension and therefore is not a complex manifold. Similarly, SU(2) is
diffeomorphic to the 3-dimensional sphere and hence is also not a complex manifold. In fact

dimR U(n) = n2, dimR SU(n) = n2 − 1,

so, by purely dimensional reasons, half of these groups can not be complex manifolds. Inter-
estingly, the other half are complex manifolds, but not in the obvious way that GL(n;C) is.
�

Example 3.5 (The (Riemann) sphere). We can parametrize the sphere using stereographic
projections. From this point of view, one chart covers the whole sphere minus the north pole,
N = (0, 0, 1), and the other chart covers the whole sphere minus the south pole, S = (0, 0,−1):

φN : S2\N → R2, φN (x, y, z) =
(x, y)

1− z
,

φS : S2\S → R2, φS(x, y, z) =
(x,−y)

1 + z
.

Notice that in the charts above we “cheated” a little and for ΦS we composed the stereographic
projection with a reflection. This choice is made so both charts induce the same orientation on
the sphere.

Both maps above are surjective onto R2 and miss only one point on the sphere, so it is natural
to write S2 = R2∪{∞} to indicate that the sphere is the one-point compactification of R2 which
can be concretely visualised as, say, adding the north pole to the codomain of φN .

Since R2 = C, we can write both ΦN and ΦS as complex valued maps and compute the
corresponding change of coordinates:

Φ−1
N (w) =

1

1 + ‖w‖2
(2w, ‖w‖2 − 1), φS(x, y, z) =

(x,−y)

1 + z

ΦS ◦ Φ−1
N (w) =

1

w
.

This shows that the two charts obtained from stereographic projection from the north and south
pole give rise to holomorphic change of coordinates and therefore make the sphere a complex
manifold.

Independently of the computation above, an idea you may have encountered in a course
of analysis in one complex variable is that one can form the one-point compactification of C:
C = C ∪ {∞}. In that context, to ‘see’ what is happening at infinity, one has to ‘invert’ the
complex coordinate and consider w = 1/z1. Intuitively we understand that C should be a sphere
and the previous computation with stereographic projections makes that intuitive picture precise.
�

Example 3.6 (Projective space). The complex projective space, CPn is the set of lines through
the origin in Cn+1, or equivalently, the quotient of Cn+1\{0} by the action of C∗ acting by scalar
multiplication, because two nonzero points are in the same line if and only if they are nonzero
multiples of each other.

The action of C∗ on Cn+1\{0} has two very desirable properties:

1It is very unfortunate that the same letter, z, is used for the third coordinate in R3 and for complex numbers.
Fortunately this appearances of z in both roles in short succession is not something that will come up very often
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• it is free (of fixed points), that is, λ · v = v if and only if λ = 1 and

• it is proper, that is, the map

C∗ × Cn+1\{0} → Cn+1\{0} × Cn+1\{0} (λ, v)→ (v, λv)

is proper (pre-image of compact is compact).

Whenever one has a free and proper action of a Lie group on a manifold, the quotient is a
manifold.

In the present case, we can produce coordinates for CPn which express it as a complex
manifold. From now on we denote the line in CPn that goes through the point (z1, . . . , zn+1) by
[z1, . . . , zn+1]. If we let Ui ⊂ CPn be the set of lines for which the ith coordinate is nonzero, we
can define maps

Φi : Ui → Cn, Φi[z1, . . . , zn+1] =
(
z1
zi
, . . . , ẑi, . . . ,

zn+1

zi

)
,

where the hat indicates that the ith term is missing in the list. Since scalling all coordinates by
the same constant does not change the value Φi takes on the line [z1, . . . , zn+1] we see that Φi is
well defined (and continuous and a homomorphism from its domain onto Cn).

The change of coordinates is given by

Φj ◦ Φ−1
i (z1, . . . , zn) = Φj([z1, . . . , zj , . . . , 1

ith pos

, . . . , zn]) =

(
z1
zj
, . . . , 1

zj
ith pos

, . . . , znzj

)
, (3.1.1)

which is a holomorphic map, making CPn a complex manifold.
This is the same computation done in an introductory “differentiable manifolds” course to

produce coordinates for the real projective space, RPn. It is an interesting fact that while we
are all aware of the existence of RPn, we seem to on purpose avoid it, often by starting our
framework with the condition that M is an orientable manifold. By contrast, CPn is central in
much of the theory of complex manifolds as we will see over and over in this course. �

Exercise 3.1. (Random exercise) Is RPn non orientable for all n?

This example of CPn is so important and will reoccur often enough that we need to introduce
some language to refer back to it. The description of points in CPn using the square bracket
notation, [z1, . . . , zn+1] to describe the line through (z1, . . . , zn+1), is known as homogeneous
coordinates, while describing points in the set Ui by identifying them with points Cn using the
coordinate chart Φi is known as affine coordinates.

Example 3.7 (CP 1). In the previous example, it is worth looking carefully at the manifold CP 1.
Following the argument above, CP 1 is parametrised by two charts, Φ1 and Φ2 and according to
(3.1.1) the change of coordinates is given by

Φ1 ◦ Φ−1
2 (z) =

1

z
.

That is, just like S2, CP 2 is covered by two charts whose codomains are C and the transition
functions agree. That is CP 1 is diffeomorphic to S2. In particular, CP 1 is orientable... I know,
shocker. �
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Exercise 3.2. Show that every complex manifold is orientable.

Exercise 3.3. Show that if two manifolds M1, M2 can be covered by open sets Mi = ∪αUαi and
admit charts Φα

i : Uαi → V α such that the transition functions agree, that is

Φα
1 ◦ (Φβ

1 )−1 = Φα
2 ◦ (Φβ

2 )−1, for all α, β,

then M1 and M2 are diffeomorphic.

Example 3.8 (The torus). If we let {v1, . . . , v2n} be a real basis for R2n, we define a Z2n action
on R2n by translations:

(m1, . . . ,m2n) · (x1, . . . , x2n) 7→ (x1 +m1, . . . , x2n +m2n).

Identifying R2n with Cn and using that “adding a constant” is a holomorphic operation, we see
that this action preserves to complex structure on Cn. This action of Z2n is also free and proper
and the quotient is the 2n-dimensional torus, T 2n. Further, the quotient map π : Cn → T 2n is a
covering map, that is every point on the quotient has a neighbourhood, U with the property that
π−1(U) is a disjoint union of open sets Vi with ı ∈ Z2n such that π : Vi → U is a diffeomorphism
for all i. In particular, since Vi ⊂ Cn is a complex manifold, we can use π to transport that
complex structure to U (because π : Vi → U is a diffeomorphism. Since the identification between
Vi and Vj is by a holomorphic transformation, we see that the complex structure on U obtained
this way does not depend on i and since U is arbitrary, this produces a collection of complex
coordinates in the quotient whose transition functions are holomorphic (compositions of π, π−1

and translations). Hence the torus is a complex manifold.

One interesting feature of this example that will become apparent later is that while all real
tori are diffeomorphic to S1×· · ·×S1, the complex manifold obtained above does depend on the
particular basis {v1, . . . , v2n} with which we started and there are many non-equivalent complex
tori. �

The key fact we used in the example above was that the action of Z2n on Cn is holomorphic
and properly discontinuous (that is, free, proper and the quotient map is a covering space). Any
time these conditions are met the quotient inherits a complex structure.

Example 3.9 (Primary Hopf manifolds). Let α ∈ C be a complex number of length bigger than
1 and let Z act on Cn\{0} by

m · z = αmz.

Just as in the previous example this action is holomorphic and properly discontinuous hence the
quotient is a complex manifold.

Topologically Cn\{0} = S2n−1 × R+ and the action of Z is by dilations on R+ and rotations
on the sphere. Since the action of R+ is properly discontinuous, the argument of α just provides
a way to identify the spheres over, say 1 and α and we see that the quotient Cn\{0}/Z is a
mapping torus. The rotations are smoothly isotopic to the identity this mapping torus is trivial,
that is, Cn\{0}/Z is diffeomorphic to S2n−1 × S1.

Just as with the previous example, different values of the parameter α induce different complex
structures on S2n−1 × S1. �
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3.2 Almost complex structures and integrability

Given a complex manifold M , we can define multiplication by i on its tangent bundle as follows:
for any given point p ∈M , let φ : U → Cn be a holomorphic coordinate chart in a neighbourhood
p. Then define I : TpM → TpM by I = φ−1

∗ ◦ I0 ◦ φ∗, where I0 is the standard complex structure
on the vector space Cn . That is, if {∂xi , ∂yi : i = 1, . . . , n} are the coordinate vector fields
associated to φ, then

I∂xi = ∂yi and I∂yi = −∂xi .

If φ̃ is another holomorphic coordinate chart, we can use it to define a corresponding complex
structure Ĩ = φ̃−1

∗ ◦ I0 ◦ φ̃∗ on TpM . Since the change of coordinates is holomorphic we obtain

I ◦ Ĩ−1 = φ−1
∗ ◦ I0 ◦φ∗ ◦ φ̃−1

∗ ◦ I0
−1 ◦ φ̃∗ = φ−1

∗ ◦φ∗ ◦ φ̃−1
∗ ◦ I0 ◦ I0

−1 ◦ φ̃∗ = φ−1
∗ ◦φ∗ ◦ φ̃−1

∗ ◦ φ̃∗ = Id,

therefore the linear complex structure I : TpM → TpM defined above does not depend on the
chart used. Also in any holomoprhic coordinate chart I is given by the constant matrix, so
I : TM → TM is a bundle automorphism such that I2 = −Id. Said another way, I is a linear
complex structure on TM . At this stage it is not clear if the holomorphic coordinates give us
anything more than a linear complex structure on TM , but as we will see soon there is a marked
difference between these two concepts and it is worth giving a name to the concept we just
encoutered:

Definition 3.10.

• An almost complex structure on a manifold M is a bundle automorphism I : TM → TM
such that I2 = −Id.

• An almost complex manifold is a manifold with an almost complex structure.

• An almost complex structure is integrable if it is induced by a complex structure.

Exercise 3.4. Show that if M has two atlases that make it into a complex manifold, A1 and A2,
and both atlases induce the same almost complex structure, then the identity map Id: (M,A1)→
(M,A2) is a holomorphic map with holomorphic inverse. That is, two complex structures agree
if and only if they induce the same almost complex structure.

This means that an integrable almost complex structure carries the same data as a complex
structure and hence we will not make a distinction between these two concepts.

To grasp the difference between an almost complex manifold and a complex manifold, we
observe that for the latter, in holomorphic coordinates, we can easily write down a local frame
for the +i-eigenspace of I:

T 1,0M = 〈12(∂xi − i∂yi) : i = 1, . . . , n〉

As in Chapter 1, we denote ∂zi = 1
2(∂xi − i∂yi) and by extending the Lie bracket of vector fields

to vector fields with complex coefficients by requiring that it is complex linear, we have that
[∂zi , ∂zj ] = 0 for all i, j. Therefore, if we take combinations of these vector fields with smooth
coefficients we obtain:
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Lemma 3.11. Let M be a complex manifold, then T 1,0M is an involutive subbundle, that is,

[X,Y ] ∈ Γ(T 1,0M) for all X,Y ∈ Γ(T 1,0M).

Involutivity of T 1,0M is an infinitesimal condition (only uses first derivatives of vector fields).
It is not obvious whether there is more data that is needed to decide if an almost complex
structure is integrable or not. The answer is that this is all and this is the result of a deep
theorem:

Theorem 3.12 (Newlander–Nirenberg [5]). An almost complex structure is integrable if and only
if its +i-eigenbundle is involutive.

Therefore, to measure the difference between complex and almost complex manifolds one
needs to quantify how much T 1,0M is/fails to be involutive. Using Lie bracket and projections
from TCM to T 0,1M we can produce an object that measures precisely that.

Definition 3.13. The Nijenhuis tensor of an almost complex structure is the operator

N : Γ(T 1,0M)× Γ(T 1,0M)→ Γ(T 0,1M), N(X,Y ) = πT 0,1M [X,Y ]

Lemma 3.14. The Nijenhuis tensor is skew-smmetric and C∞-linear, that is, it is indeed a
tensor.

Proof. Since the Lie bracket is skew symmetric, it is clear that N is also skew-symmetric. Further,
for any smooth function f we have

N(X, fY ) = πT 0,1M [X, fY ] = πT 0,1Mf [X,Y ] + πT 0,1M (LXf)Y = fπT 0,1M [X,Y ] = fN(X,Y ),

where we used that ΠT 0,1M , being a bundle map, is C∞-linear and that since Y ∈ Γ(T 1,0M),
ΠT 0,1MY = 0. Since N is C∞-linear, it is a tensor.

It is clear from the definition that the +i-eigenbundle of an almost complex structure is
involutive if and only if the Nijenhuis tensor vanishes. Since this is an immediate quantity that
measures how far an almost complex structure is from being integrable, it is worth spending
some time rephrasing this concept.

The first way one can repackage the Nijenhuis tensor is by observing that we have isomor-
phisms TM → T 1,0M and TM → T 0,1M :

i1,0 : TM → T 1,0M, i1,0X = X − iIX,

i0,1 : TM → T 1,0M, i0,1X = X + iIX,

which have inverses given by taking the real part of a vector. So we can compose the Nijenhuis
tensor introduced above with these isomorphisms to obtain a completely real operator which
measures the lack of involutivity of T 1,0M :

Exercise 3.5. Let Ñ : TM × TM → TM be given by

Ñ(X,Y ) = Re(N(i1,0X, i1,0Y )).

Show that T 1,0M is involutive if and only if Ñ vanishes and that

Ñ(X,Y ) = [X,Y ] + I([IX, Y ] + [X, IY ])− [IX, IY ]. (3.2.1)
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In most textbooks expression (3.2.1) is called the Nijenhuis tensor. We won’t make much of
a distinction between the two since they carry the same information.

Theorem 3.15 (Orientable surfaces). Every orientable real surface admits a complex structure

Proof. First we observe that any almost complex structure on a real surface is integrable. Indeed,
given an arbitrary almost complex structure I, if X ∈ Γ(T 1,0M) is a nonvanishing local vector
field, then by virtue of M having complex dimension one, every other local section of T 1,0M is
of the form fX for some function f . We can compute the Nijenhuis tensor of two such generic
sections:

N(fX, gX) = fgN(X,X) = 0,

where in the first equality we used that N is a tensor and in the second that it is skew-symmetric.
By the Newlander–Nirenberg theorem we conclude that I is integrable.

So the quest now is only to produce an almost complex structure on a surface. The idea here
is that an orientation gives the notion of “counterclockwise” rotation and the metric allow us to
rotate by π/2 (counterclockwise) without stretching. The operation “rotation by π/2 without
stretching” squares to “rotation by π without stretching”, that is, −Id and hence defines an
almost complex structure. The formal argument making this precise is done using the Hodge
star operator, so lets have a little break in our proof to introduce that.

Definition 3.16 (Hodge star operator v1). Let Mn be an oriented Riemannian manifold with
Riemannian metric g. Define the Hodge star operator on ∧•TM , as follows. Fix a positive
orthonormal basis {e1, . . . , en} of TpM and define

? : ∧k TM → ∧n−kTM, ?eI = sign(I)eIc ,

where I is a multiindex of length k, Ic is the complementary multindex of I, that is, I ∩ Ic = ∅
and I ∪ Ic = {1, . . . , n} and sign(I) is the sign for which

eI ∧ ?eI = e1 ∧ · · · ∧ en.

This defines ? in basis of ∧•TM and we extend it to ∧•TM by linearity. This operator does not
depend on the particular choice of basis, but only on the orientation and metric g.

Back to our proof, if dimM = n, a direct computation shows that when acting on ∧kTM we
have ?2 = (−1)k(n− k). In the case when M is 2-dimensional, if we consider the action of ? on
TM we obtain ?2 = −Id. That is, for oriented real surfaces, the choice of a metric induces an
almost complex structure, which completes the proof.

A real surface with a complex structure also goes by the names Riemann surface or complex
curve.

Example 3.17 (Non example). The 6-sphere admits an almost complex structure. To introduce
it, we recall that there are four real division algebras:

• the reals, R (ordered, commutative, associative, division algebra),

• the complex numbers, C (commutative, associative, division algebra),

• the quaternions, H (associative, division algebra),
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• the octonions, O (division algebra).

The relevant one for this example is the latter. The octonions, O, are isomorphic to R8 as a
real vector space and can also be described as H⊕H. The reals sit inside the octonions via the
inclusion in the first factor and form the center of the octonions. Multiplication is given by

(p1, q1) · (p2, q2) = (p1p2 − q̄2q1, q2p1 + q1p̄2),

where •̄ denotes quaternionic conjugation.
Just as with complex numbers and quaternions, we can conjugate octonions by flipping the

sign of the imaginary part, (p, q) = (p̄,−q), and using conjugation we can relate octonionic
multiplication with the Euclidean norm of elements: for v, w ∈ O, vv = ‖v‖2. and ‖vw‖ =
‖v‖‖w‖.

The quaterionic condition ij = k has a corresponding octonionic formulation: any two orthog-
onal unitary imaginary octonions, v and w, generate a copy of the quaterions inside O, namely
the vector space generated by {1, v, w, vw}. In particular, the product vw is a unitary imaginary
octonion orthogonal to both v and w.

Now, if we consider S6 as the unit sphere inside the space of imaginary quaternions, then we
can define an automorphism of the tangent space by

I : TS6 → TS6 w ∈ TvS6 I7→ vw

Since vw is imaginary and orthogonal to v, it is tangent to S6 at v. Further, since v is imaginary
of length 1,

I2w = v(vw) = (vv)w = −w

where we used that the space generated algebraically by v and w is isomorphic to the quaternions
and quaternionic multiplication is associative.

This describes an almost complex structure on S6. �

Exercise 3.6. Show that the complex structure defined above on S6 is not integrable.

Theorem 3.18 (Compact Lie groups). Every even dimensional compact Lie group can be made
into a complex manifold.

Proof. For this we will need some more advanced knowledge of Lie theory. This result will not
re-occur in any important passage later in these notes and can be safely skipped.

Let G be an even dimensional compact Lie group. We will use Lemma 1.4 to endow G with
an almost complex structure which we will prove to be integrable. Recall that the Lie algebra,
g, of G can be indentified with the left invariant vector fields on G and the Lie bracket on g
agrees with the Lie bracket of vector fields on G. So to produce a complex structure on G we
will produce a sub-Lie algebra g1,0 ⊂ g⊗ C such that

g1,0 + g1,0 = g⊗ C and g1,0 ∩ g1,0 = {0}.

Since G is compact it admits a bi-invariant metric (invariant under left and right multiplication).
At the Lie algebra, this translates to

〈[u, v], w〉+ 〈v, [u,w]〉 = 0.
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Let T ⊂ G be a maximal torus with Lie algebra t ⊂ g. Let T act on G by conjugation. This
induces an infinitesimal action of t on g by the Lie bracket. Since the metric is bi-invariant, t
acts by infinitesimal isometries. Since t is invariant under its own action (because it is Abelian),
so is the orthogonal complement h = t⊥ ⊂ g.

Since t is Abelian, the representation of t on h decomposses h into one-dimensional irreducible
components: h = ⊕jspam{ej}. For each ej and v ∈ t we have that that [v, ej ] = iαj(v)ej for
some constant αj which depends linearly on v. That is, the αj is in fact a map an element of t∗

and we can use the αj themselves to index the decomposition of h. An α ∈ t∗ that appears in
this decomposition is called a root of g and we write

h =
⊕

α root of g

spam{eα}.

There are a couple of important properties of the set of all roots:

• The roots are real. Indeed, since action preserves the metric we have

0 = 〈[v, eα], eα〉+ 〈eα, [v, eα]〉 = (iα(v)− iα(v))‖eα‖2.

• The roots come in pairs with opposite signs. Indeed, since the underlying action is real we
have that, if eα is an element of h associated to the root α and v ∈ t, then

[v, eα] = [v, eα] = −iα(v)eα,

showing that −α is also a root.

• If α and β are roots with associated generators eα and eβ, then α + β is a root with
associated generator [eα, eβ]. Indeed, using the Jacobi identity, for v ∈ t, we have

[v, [eα, eβ]] = [[v, eα], eβ] + [eα, [v, eβ]] = i(α(v) + β(v))[eα, eβ].

If we pick an element w ∈ h which is not in the kernel of any eα, we can use w to divide the set
of roots into positive and negative, depending on the sign of α(w) and we get

h =
⊕

α +ve root of g

spam{eα ⊕ e−α} =
⊕

α +ve root of g

spam{eα ⊕ eα}},

that is,

h1,0 =
⊕

α +ve root of g

spam{eα}

satisfies the conditions of Lemma 1.4 and therefore determines a complex structure on h.
Finally, if we pick an arbitrary complex structure t1,0 ⊂ t ⊗ C we obtain an almost complex

on G by declaring g1,0 = t1,0⊕h1,0. We claim this complex structure is integrable. To prove that
we need to check that g1,0 is involutive, which we can do just on generators. For v1, v2 ∈ t1,0 and
α and β positive roots we have

[v1, v2] = 0 because t is Abelian,

[v1, eα] = iα(v)eα by the definition of root,

[eα, eβ] = λeα+β by the the properties of roots,
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since α and β are positive roots, so is α+β and we conclude that g1,0 is involutive, showing that
the complex structure is integrable.

Returning to Example 3.4, we may have the warm feeling that now the question of for which
values of n are U(n) and SU(n) complex manifolds is settled:

U(n) SU(n)

n odd % X

n even X %

Figure 3.1: Table showing for which values of n U(n) and SU(n) admit complex structures.

But it is important to notice that in the construction of the complex structures on these spaces
we made no reference to the complex structure on GL(n;C) and as we will see next session the
natural embedding of these groups in GL(n;C) is not a holomorphic map.

3.3 Results from smooth manifolds

This section we take a quick look at how several results from smooth functions translate to
holomorphic functions. We start with some of the most fundamental ones.

Theorem 3.19 (Inverse Function Theorem). Let f : Cn → Cn be holomorphic. If df is invertible
at a point x, then x has a neighbourhood U such that f : U → f(U) is a bijection with holomorphic
inverse.

Proof. Since df is invertible, it follows that x has a neighbourhood U such that f : U → f(U)
is a bijection with smooth inverse. Since f is holomorphic, df is complex linear and therefore
(df)−1 is also complex linear showing that f−1 is holomorphic.

Theorem 3.20 (Implicit Function Theorem). Let f : Cn×Cm → Cm be a holomorphic function
and let x ∈ Cn × Cm be such that d2f |x : Cm → Cm is invertible. Let y = f(x). Then there a
neighbourhood U × V of x and a holomorphic function h : Cn ⊃→ Cn × Cm such that

f−1(y) ∩ U × V = {a, h(a) : a ∈ Cn}.

Proof. Consider the function F : Cn × Cm → Cn × Cm defined by

F (a, b) = (a, f(a, b)),

and let F (x) = (z, y). Then dF is invertible at x and therefore F−1 exists and is holomorphic in
a neighbourhood of (z, y). Since the inclusion ι1 : Cn → Cn × Cm, ι(z) = (z, y) is holomorphic,
the composition h = F−1 ◦ ι1 : Cn ⊃→ Cn×Cm is also holomorphic and we have f(x′) = y if and
only if F (x′) = (z, y) for some z, which happens if and only if F−1(z, y) = x′ for some z, which
happens if and only if x′ ∈ Im(h).

With these theorems at hand, a number of their consequences follow along the same lines as
in the smooth case. We mention a few of them:
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Exercise 3.7 (Immersions). Let Mm and Nn be complex manifolds and let f : M → N be a
holomorphic immersion (immersion means that df : TpM → Tf(p)N is an injection for all p ∈M).
Then given p ∈M , there exist neighbourhoods U of p and V of f(p) and holomorphic coordinate
charts Φ: U → Cm and Ψ: V → Cm × Cn−m centred at p and f(p) such that the expression for
f in these charts is

Ψ ◦ f ◦ Φ−1(z) = (z, 0).

Exercise 3.8 (Submersions). Let Mm and Nn be complex manifolds and let f : M → N be
a holomorphic submersion (submersion means that df : TpM → Tf(p)N is a surjection for all
p ∈ M). Then given p ∈ M , there exist neighbourhoods U of p and V of f(p) and holomorphic
coordinate charts Φ: U → Cn × Cm−n and Ψ: V → Cm × Cn centred at p and f(p) such that
the expression for f in these charts is

Ψ ◦ f ◦ Φ−1(x, y) = x.

A variation of the exercise above is the regular value theorem

Exercise 3.9 (Regular value theorem). Let Mm and Nn be complex manifolds, let f : M → N
be a holomorphic map and let q ∈ N be a regular value of f , that is, for all p ∈ f−1(q),
df : TpM → Tf(p)N is a surjection. Then f−1(q) is am embedded complex submanifold of M
whose tangent space at p is the kernel of df : TpM → TqN .

Example 3.21 (Zeros of polynomials). Let p : Cn+1 → C be a homogeneous polynomial of degree
d. Assume that except for 0, p has no further singular point in p−1(0), that is, on Cn+1\{0}
there is no solution to

p = 0,
∂p

∂zi
= 0, i = 1, . . . n.

Then by the regular value theorem p−1(0) ⊂ Cn+1\{0} is an embedded complex submanifold.
Since p is homogeneous, z ∈ p−1(0) if and only if λz ∈ p−1(0) for all λ 6= 0. That is p−1(0) is

preserved by the free and proper action of C∗ on Cn+1 and as such p−1(0)/C∗ ⊂ CPn is also a
smooth embedded submanifold. �

We finish this section with a result from smooth manoifolds that does not go through to the
holomorphic setting. Whitney’s Embedding Theorem states that any compact smooth manifold
Mn, can be embedded in R2n. One way to prove this involves choosing partitions of unit which
allow to embed M in an RN for large N and then use generic projections into subspaces to cut
the dimension of the codomain down to 2n. In the holomorphic world, partitions of unity are
a big no-no, but the fact that the technique used fails does not mean the result does not hold
and one could still ask the question of whether it is possible to embed complex manifolds in Cn.
Unfortunately the answer is no.

Theorem 3.22. Let M be a compact connected complex manifold and let f : M → Cn be a
holomorphic map. Then f is constant.

Proof. Let Πi : Cn → C be the projection onto the ith coordinate. Then Πi ◦ f : M → C is a
continuous function in a compact set, hence it attains a maximum. Since both f and Πi are
holomorphic, so is their composition, which, by the Maximum Principle 2.2, must be constant.
Since i is arbitrary, f has constant coordinates, hence is the constant function.
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As an aside, we mention that there is an alternative proof of this fact for immersions that
relies on the symplectic structure of Cn and therefore has an extension to symplectic immersions
instead of holomorphic maps.

Theorem 3.23. Let M be a compact connected complex manifold and let f : M → Cn be a
holomorphic immersion. Then M is a point.

Proof. Consider the standard symplectic form in Cn:

ω =
1

2i

∑
dzi ∧ dz̄i =

∑
dxi ∧ dyi = d

(∑
xi dyi

)
=: dα

Let f : M → C be a holomorphic immersion and assume by contradiction that dimM = 2m > 0,
then, by Exercise 1.6, df(TpM) is a symplectic vector subspace of Tf(p)Cn for every p ∈M , which
is equivalent to saying that (f∗ω)p is compatible with the linear complex structure on TpM . Then
(f∗ω)m is a volume form on M , therefore we have

0 6=
∫
M

(f∗ω)m =

∫
M

(f∗dα)m =

∫
M
d(f∗(α ∧ (dα)m−1)) =

∫
δM

f∗(α ∧ (dα)m−1) = 0.

Where above we used that m > 0 to write ωm = dα ∧ (dα)m−1 and Stokes Theorem to obtain a
contradiction.

3.4 Decomposition of forms, ∂ and further integrability

As we have seen, an almost complex structure, I, on a manifold, M , gives rise to a decomposition
of the tangent space into ±i-eigenbundles of I:

TCM = T 1,0M ⊕ T 0,1M,

which in turn decomposes the exterior algebra of TM (the multivector fields) and leads to define
X p,q(M) := Γ(∧pT 1,0M ⊗ ∧qT 0,1M).

It also induces a dual complex structure I∗ on T ∗M defined by

I∗α(•) = α(I•).

And we have a corresponding decomposition

T ∗CM = T ∗1,0M ⊕ T ∗0,1M.

where T ∗1,0M can be described equivalently as either as the +i-eigenbundle of I∗ or the annihi-
lator of T 0,1M .

This decomposition of T ∗CM gives rise to a decomposition of the exterior algebra of T ∗M ,
into subbundles, as we saw in Section 1.4:

∧kT ∗CM = ⊕p+q=k ∧p,q T ∗M,

and we denote the sections of these subbundles by Ωp,q(M) = Γ(∧p,qT ∗M).
The exterior derivative behaves well with respect to this decomposition.
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Ω0,2

Ω1,1

Ω1,0 ∂ //

∂

OON

YY

Ω2,0

Ω0,2

Ω0,1 ∂ //

∂

OO

N

))

Ω1,1

Ω2,0

Figure 3.2: Since Ω2(M ;C) = Ω2,0(M) ⊕ Ω1,1(M) ⊕ Ω0,2(M), the stated decomposition of d is
automatic for 1-forms.

Lemma 3.24. Given an almost complex manifold (M, I) the exterior derivative satisfies

d : Ωp,q(M)→ Ωp+2,q−1(M)⊕ Ωp+1,q(M)⊕ Ωp,q+1(M)⊕ Ωp−1,q+2(M).

Proof. We start with 1-forms. Given α ∈ Ω1,0(M), the lemma does not say much about dα: it
is a 2-form and hence has potentially three components all accounted for in the statement. The
same applies to (0, 1)-forms

To prove the statement of the lemma it is enough to consider decomposable forms, since any
(p, q)-form can be written as sum of decomposable ones. Given a decomposable (p, q)-form, say
φ = α1 ∧ · · · ∧ αp ∧ β1 ∧ · · · ∧ βq, with αi ∈ Ω1,0(M) and βi ∈ Ω0,1(M), then

dφ =
∑
i

(−1)iα1∧· · ·∧dαi∧· · ·∧αp∧β1∧· · ·∧βq+
∑
i

(−1)p+iα1∧· · ·∧αp∧β1∧· · ·∧dβi∧· · ·∧βq.

The first summand lies in Ωp+1,q(M)⊕Ωp,q+1(M)⊕Ωp−1,q+2(M) while the second summand lies
in Ωp+2,q−1(M)⊕ Ωp+1,q(M)⊕ Ωp,q+1(M), therefore proving the statement.

Recall that a degree k linear operator in a graded vector space V • is a linear map A : V →
such that A : V i → V i+k. Given an operator A of degree k and an operator B of degree l on V •

the graded commutator of these operators is

{A,B} = AB − (−1)klBA.

The space of forms on a manifold is a graded vector space (graded by degree) and the operators
d, ∂, ∂,N and N all have degree 1. The condition d2 = 0 can be rewritten as {d, d} = 0 and by
decomposing d in components we obtain

Corollary 3.25. The following relations (and their complex conjugate) hold in an almost complex
manifold

{N ,N} = 0, {N , ∂} = 0, ∂2 + {∂,N} = 0, {∂, ∂}+ {N ,N} = 0.

Proof. Follow the arrows. The sum of all arrows arriving at a lattice point must vanish since it
is one of the components of d2.

This lemma allows us to decompose d into four operators
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N 2
= 0

��
Ωp−2,q+4 {N , ∂} = 0

��
Ωp−1,q+3 ∂

2
+ {N , ∂} = 0

��
Ωp−1,q+2

N

++

∂ //

∂

OON

YY

Ωp,q+2 {N ,N}+ {∂, ∂} = 0

��
Ωp,q+1

N

,,

∂ //

∂

OON

]]

Ωp+1,q ∂2 + {N , ∂} = 0

��
Ωp,q

N

++

∂ //

∂

OON

]]

Ωp+1,q

N

++

∂ //

∂

OON

aa

Ωp+2,q {N , ∂} = 0

��
Ωp+2,q−1

N

**

∂ //

∂

OON

aa

Ωp+3,q−1 . . .

Ωp+4,q−2

Figure 3.3: The condition d2 = 0 gives rise to a web of relations between the operators N , ∂, ∂ and
N .
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Definition 3.26. We denote the different components of d acting on (p, q)-forms by N , ∂, ∂ and
N :

d = N + ∂ + ∂ +N ,

N : Ωp,q(M)→ Ωp+2,q−1(M), N : Ωp,q(M)→ Ωp−1,q+2(M),

∂ : Ωp,q(M)→ Ωp+1,q(M), ∂ : Ωp,q(M)→ Ωp,q+1(M).

Since Lie brackets and exterior derivative are closely related, it is no surprise that we can
recover the Nijenhuis tensor from the action of d on 1-forms:

Proposition 3.27. Let (M, I) be an almost complex manifold and α ∈ Ω0,1(M). Then

N (α)(X,Y ) = −α(N(X,Y )).

In particular I is integrable if and only if

d : Ω0,1(M)→ Ω0,2(M)⊕ Ω1,1(M).

Proof. We compute the (2, 0)-component of dα. For that we let X,Y ∈ X 1,0(M):

(Nα)(X,Y ) = (dα)(X,Y ) = LXιY α− LY ιXα− α([X,Y ]) = −α(N(X,Y )) = 0,

where in the first equality used that the remaining components of dα vanish when applied to two
(0, 1)-vectors, in the second equality we used the expression for computing the exterior derivative
in terms of the Lie bracket of vector fields, in the third equality we used that α is of type (0, 1)
and both X and Y are of type (1, 0), hence the first two summands vanish and the third only
depends on the projection of [X,Y ] onto T 0,1M , which is the definition of the Nijenhuis tensor
of I.

Proposition 3.28. Let (M, I) be an almost complex manifold. Then I is integrable if and only

if ∂
2

= 0.

Proof. If N = 0, then N = 0 and it follows from Corolary 3.25 that

2∂
2

= {∂, ∂} = {∂, ∂}+ {∂,N} = 0.

Conversely, assume that ∂
2

= 0, let X,Y ∈ X 0,1(M) and f : M → C be smooth, then

0 = (∂
2
f)(X,Y ) = (d∂f)(X,Y )

= LX(∂f(Y ))− LY (∂f(X))− ∂f([X,Y ])

= LX(df(Y ))− LY (df(X))− df(Π0,1[X,Y ])

= LXLY f − LY LXf − LΠ0,1[X,Y ]f

= L[X,Y ]f − LΠ0,1[X,Y ]f

= LΠ1,0[X,Y ]f = LN(X,Y )f

Since X,Y ∈ X 0,1(M) are arbitrary we conclude that N = 0 and hence the Nijenhuis tensor
vanishes.
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Exercise 3.10. Let (M2n, I) be an almost complex manifold. Show that for α ∈ Ωp,q(M) and
f ∈ C∞(M ;C), we have

N (fα) = fNα,

that is, N is tensorial.

Exercise 3.11. Let (M2n, I) be an almost complex manifold. Show that I is integrable if and
only if d : Ωn,0(M)→ Ωn,1(M).

As we just saw, in a complex manifold we have ∂
2

= 0. This allows us to define a corresponding
coholomology:

Definition 3.29. The Dolbeault cohomology of a complex manifold, M , are spaces

Hp,q(M) =
Ker(∂ : Ωp,q(M)→ Ωp,q+1(M))

Im(∂ : Ωp,q−1(M)→ Ωp,q(M))
,

and the Hodge numbers of M are their dimensions:

hp,q(M) = dim(Hp,q(M)).

Definition 3.30. A form ρ ∈ Ωp,0(M) is holomorphic if its local representative is holomorphic
in all (holomorphic) charts of M .

Exercise 3.12. Show that ∂ satisfies the Leibniz rule:

∂(α ∧ β) = (∂α) ∧ β + (−1)deg(α)α ∧ ∂β.

Conclude that wedge product of forms induces a product in Dolbeault cohomology

Hp,q(M)×Hp′,q′(M)→ Hp+p′,q+q′(M).

Exercise 3.13 (Integration by parts). Let M2n be a compact almost complex manifold, let
α ∈ Ωk(M ;C), β ∈ Ω2n−k−1(M ;C) and let D denote any of the operators ∂, ∂, N or N . Show
that ∫

M
(Dα) ∧ β = (−1)k+1

∫
M
α ∧ Dβ.

Exercise 3.14. Show that Hp,0(M) corresponds to the vector space of (globally defined) holo-
morphic (p, 0)-form on M . Conclude that if M is compact and connected H0,0(M) = C.

Exercise 3.15. Show that if M is a compact Riemann surface, α ∈ Ω1,0(M) is not identically
zero and satisfies ∂α = 0, then α is d-closed and represents a nontrivial de Rham cohomology
class.

Exercise 3.16. Extend the previous result to higher dimensions: Show that if dimCM = n,
α ∈ Ωn,0(M) is not idetically zero and satisfies ∂α = 0, then α is d-closed and represents a
nontrivial de Rham cohomology class. Conclude that for all n ∈ N, H2n+1,0(CP 2n+1) = {0}.

Exercise 3.17. Compute the Dolbeault cohomology of CP 1.
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Dolbeault cohomology of complex manifolds is the first simple invariant one encounters that
is directly associated to the presence of complex structures. At this moment we only have a
definition which does not lend itself to immediate computations. One of the main objectives of
these notes is to develop tools to compute this cohomology in concrete cases. The close relation
between ∂ and the exterior derivative might suggest that there is at least a slight relation between
Dolbeault and de Rham cohomology. We will spend some time exploring and exploiting this
relation.

A this point it is also good to give a clear warning. Our experience from de Rham cohomology
is that to define it one needs a smooth structure on the manifold, but eventually one proves that
it is isomorphic to R-valued singular cohomology of the underlying topological space and hence
independent of the smooth structure used to define it. For general complex manifolds, Dolbeault
cohomology will not have this behaviour and in fact there are examples of different complex
structures on a fixed differential manifold for which the Dolbeault cohomologies do not agree.

3.4.1 The dc-operator.

Finally we mention that there is another differential operator associated to a complex manifold,
namely one obtained by twisting d by the complex structure. To give a precise account we observe
that there are two related actions of a complex structure on forms. The first is the ‘Lie algebra’
action:

I : ∧p,q TM → ∧p,qTM , I · αp,q = (p− q)iα.

This can be exponentiated to obtain the corresponding ‘Lie group’ action:

e
πI
2 : ∧p,q TM → ∧p,qTM , e

πI
2 · αp,q = i(p− q)α.

The latter is the familiar action

e
πI
2 · α(X1, . . . , Xp+q) = α(IX1, . . . , IXp+q).

which sends real forms to real forms.

The twisting of d by the complex structure is then given by

Definition 3.31. Given a complex manifold (M, I) we let

dc = [I, d] = e
πI
2 de−

πI
2 = i(∂ − ∂).

Exercise 3.18. Show that (dc)2 = 0 and that the dc-cohomology is isomorphic to the de Rham
cohomology.

Exercise 3.19. Show that

dc(α ∧ β) = dc(α) ∧ β) + (−1)kα ∧ dc(β),

where k is the degree of α.



40 CHAPTER 3. COMPLEX MANIFOLDS

3.5 Results on integrability summarised

Given an almost complex manifold (M, I), we can define its Nijenhuis tensor N : ∧2 T 0,1M →
T 1,0M ,

N(X,Y ) = Π1,0[X,Y ].

Also the exterior derivative decomposes d = N + ∂ + ∂ + N where N and N are tensorial
components determined by the Nijenhuis tensor.

Theorem 3.32. The following are equivalent

1. There are holomorphic coordinate charts for M which induce the almost complex structure
I on tangent spaces.

2. T 1,0M is an involutive subbundle,

3. N = 0,

4. d = ∂ + ∂,

5. ∂
2

= 0,

6. d : Ω1,0(M)→ Ω2,0(M)⊕ Ω1,1(M),

7. d : Ωn,0(M)→ Ωn,1(M).



Chapter 4

Complex manifolds and algebraic
topology

Complex manifolds and holomorphic maps play nicely with a number of concepts from topology.
In this short chapter we focus on three such concepts: the degree of a map, Euler characteristic
of surfaces and de Rham cohomology.

4.1 Degree

On manifolds there are two flavours of de Rham cohomology: the usual one and the compact
support one. While the usual de Rham cohomology is the quotient of the space of closed forms
by the space of exact forms, the compact support cohomology relies on the observation that
the space of forms with compact support, Ωc(M), together with the exterior derivative form a
subcomplex of the space of forms

· · · d→ Ωk−1
c (M)

d→ Ωk
c (M)

d→ Ωk+1
c (M)

d→ · · ·

and we can form the quotient

Hk
c (M) =

ker(Ωk
c (M)

d→ Ωk+1
c (M))

Im(Ωk−1
c (M)

d→ Ωk
c (M))

.

Of course, for compact manifolds, Ωk
c (M) = Ωk(M) and therefore Hk

c (M) = Hk(M), so this
distinction is only relevant for noncompact manifolds.

In the same way that one can pull back forms via smooth maps, one can pull back a form,
ρ with compact support, but for the result to have compact support we need that the inverse
image of supp(ρ) is compact. Requiring this for all forms with compact support leads us to a
special class of maps:

Definition 4.1. A continuous map between topological spaces, f : M → N , is proper if f−1(K)
is compact for every compact subset K ⊂ N .

An alternative definition for metric spaces is:

41
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Exercise 4.1. A divergent sequence is one without converging subsequences. Show that a con-
tinuous map between metric spaces is proper if and only if the image of every divergent sequence
is a divergent sequences.

If M is compact, every continuous map f : M → N is proper, while if N is compact f is
proper if and only if M is compact.

A key fact from algebraic topology is that an n-dimensional, orientable connected manifold
M has Hn

c (M) ∼= R and a choice of orientation for M fixes the isomorphism

Hn
c (M ;R)

∼=→ R, [α] 7→
∫
M
α.

Therefore any smooth proper map f : Mn → Nn induces a map f∗ : Hn
c (N) → Hn

c (M),
which, once we fix the isomorphism with R is just multiplication by a scalar:

Definition 4.2. Let f : Mn → Nn be a smooth and proper map between oriented manifolds,
and let [ρ] ∈ Hn

c (N) be a nontrivial class, then degree of f is

deg(f) =

∫
M f∗ρ∫
N ρ

.

The degree gives a measure of how many times ‘M covers N ’. So for example if f is not
surjective, the answer is none:

Exercise 4.2. Let f : Mn → Nn be a smooth and proper map between oriented manifolds.
Show that if f is not surjective, then deg(f) = 0.

Hand-in hand with the definition of degree is the definition of local degree:

Definition 4.3. Let f : Mn → Nn be a smooth and proper map between oriented maniflolds
and let x ∈ M . Assume that x and y = f(x) have contractible neighbourhoods, U and V ,
respectively, such that f : U → V is proper. Then the local degree of f at x is

degx(f) =

∫
U f
∗ρ∫

V ρ
,

where [ρ] ∈ Hn
c (V )

There is a clear relation between the degree of f and the sum of its local degrees.

Proposition 4.4. Let f : Mn → Nn be a smooth and proper map between oriented manifolds .
Fix y ∈ N , and let f−1(y) = {x1, . . . , xk} be its pre-image. Assume that each xi has a contractible
neighbourhood Ui for which the restriction f |Ui : Ui → Vi is proper for some neighbourhood Vi of
y, then

deg(f) =
∑
i

degxi f.

Proof. Indeed, let V = ∩Vi. Shrinking V further we can ensure that if f(z) ∈ V then z ∈ ∪iUi.
Indeed, assume by contradiction that this was not the case. Then we would be able to find a
sequence {yj}j∈N converging to y with pre-images {zj}j∈N such that zj 6∈ ∪iUi. There are two
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possibilities for the sequence {zj}j∈N: it has a convergent subsequence or diverges. If it had a
converging subsequence (which we still denote by {zj}j∈N, say with limit z), then, z 6∈ ∪iUi and
by continuity of f , f(z) = y, which is a contradiction. Therefore {zj}j∈N is a divergent sequence,
but by construction f(zj) converges to y, which is a contradiction to f being proper.

Now, let ρ be an n-form with compact support on V . Then f∗ρ is a form with compact
support in ∪iUi and

deg(f) =

∑
j

∫
Uj
f∗ρ∫

V ρ
=
∑
i

degxj f.

If we restrict ourselves to regular values of f , the degree has a geometric interpretation as
the number of pre-images counted with signs.

Corollary 4.5. Let f : Mn → Nn be a smooth and proper map between oriented manifolds and
let y ∈ N be a regular value of f with pre-image f−1(y) = {x1, . . . , xk}. Define the sign of f
at xi to be ε(f ;xi) = ±1 according to whether dfxi : TxiM → TyN is orientation preserving or
reversing.

deg(f) =
∑
i

ε(f ;xi).

Proof. Indeed, due to the inverse function theorem f is a diffeomorphism between a neighbour-
hood of xi and a neighbourhood of y, so we can compute its local degree and it is ±1 depending
precisely on whether f is orientation preserving or reversing in that neighbourhood, a fact that
can be checked using df |xi .

With the basics of degree out of the way, we can make the relevant observation about holo-
morphic maps:

Theorem 4.6. Let f : M → N be a proper holomorphic map between connected complex mani-
folds of the same dimension. Then for a regular value y ∈ N , deg(f) = #f−1(y). In particular,
if df is an isomorphism at one point, then its degree is positive and f is surjective.

Proof. Indeed, if y is a regular value and x ∈ f−1(y), then df : TxM → TyN is complex linear
and therefore preserves orientations, so ε(f ;x) = 1. It follows from Corollary 4.5 that deg(f) =
#f−1(y).

Further, if there is x for which df |x is an isomorphism, then by the inverse function theorem
there is a neighbourhood U of x such that f : U → f(U) is a diffeomorphism. By Sard’s theorem,
there is a regular value y ∈ f(U) and f−1(y) contains at least one point, so deg(f) > 0 and f is
surjective by Exercise 4.2.

Degrees and local degrees are particularly useful for maps between Riemann surfaces.

Lemma 4.7. Let f : U ⊂ C → C be a nonconstant holomorphic and let p ∈ U . Let k be the
natural number defined by the condition

f ′(p) = · · · = f (k−1)(p) = 0, f (k)(p) 6= 0.
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Then there is a biholomorphism ψ : U → C defined in a neighbourhood of p such that

f ◦ ψ(p+ z) = f(p) + zk.

and in particular degp(f) = k.

Proof. Without loss of generality we may assume that p = f(p) = 0. Since the first k − 1
derivatives of f vanish, we can expand f in power series as

f(z) = zk(
∑
j≥k

ajz
j−k) = zkh(z),

where h is defined by the equality above and satisfies h(0) 6= 0. Picking a branch of the k-th root
we can find a holomorphic function h̃ defined in the neighbourhood of 0 such that (h̃(z))k = h(z),
hence we have

f(z) = (zh̃(z))k.

Since h̃(0) 6= 0, we see that the function z 7→ zh̃(z) has nonzero derivative at 0 and hence has
an inverse defined in a neighbourhood of 0, ψ : U → V , ψ(zh̃(z)) = z. For this map we have

(f ◦ ψ)(ψ−1(z)) = f(z) = (zh̃(z))k = (ψ−1(z))k,

that is, f ◦ ψ(w) = wk.
Finally, the function f(z) = zk maps the open disc of radius r properly to the open disc of

radius rk and we can compute its degree by counting the number of points in the inverse image
of any regular value, which is k, that is, deg0 f = k.

Because of the local behaviour of the function z 7→ zk, the local degree of a map f between
Riemann surfaces at point p is also called the branching number of f at p.

Corollary 4.8. Let f : Σ0 → Σ1 be a proper holomorphic map of degree one between Riemann
surfaces, then f is a biholomorphism.

Proof. Since f has degree 1 it is surjective (by Exercise 4.2). Further, if f had a singular point,
say, x, by Lemma 4.7, degx f > 1 and hence deg f > 1 which is a contradiction, so f has no
singular points. Finally, since the degree counts the number of pre-images of any given regular
value and deg(f) = 1, we conclude that f is injective. That is f is a bijection with invertible
derivative, therefore a biholomorphism.

4.2 Euler characteristic

There are several equivalent ways to define the Euler characteristic of a compact manifold.
Probably the most geometric version consists of taking a triangulation of the manifold and doing
the alternating sum of the number of simplices of each dimension used in the triangulation.
For surfaces, 0-dimensional simplices are called vertices, 1-dimensional simplices are called edges
and 2-dimensional simplices are called, well, faces and the number of each of them used in a
triangulation is typically denoted by V , E and F , respectively. So the Euler characteristic of a
triangulated Riemann surface, Σ, is

χΣ = V − E + F.
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This number is independent of the triangulation and is also equal to the alternating sum of the
Betti numbers of Σ.

Euler characteristic, local and total degree of a map come together nicely in the Riemann–
Hurwicz formula.

Theorem 4.9 (Riemann–Hurwicz). Let f : Σ0 → Σ1 be a non constant holomorphic map between
compact connected Riemann surfaces. Then

χΣ0 = (deg f)χΣ1 −
∑

x : f ′(x)=0

(degx f − 1).

The quantity ∑
x : f ′(x)=0

(degx f − 1)

is also referred to as the total branch number of f .

Sketch of the proof. To prove the theorem one shows that there is a triangulation of Σ1 with the
following properties:

• all the critical values of f are vertices of the triangulation,

• taking the inverse image of the triangulation gives a triangulation of Σ0.

Counting faces, vertices and edges, we conclude that each edge and each face on Σ1 gives rise
to deg(f) edges and faces on Σ0: E(Σ0) = deg(f)E(Σ1), F (Σ0) = deg(f)F (Σ1). For ‘generic’
vertices the same holds, but if a vertex y is a singular value, then f−1(y) will have deg(f) −∑

x∈f−1(y)(degx f − 1) points because each singular point x counts only once as a vertex but has
a contribution degx f for the computation of the degree. Hence

χΣ0 = deg(f)V (Σ1)−
∑

x : f ′(x)=0

(degx f − 1)− deg(f)F (Σ1) + deg(f)F (Σ1)

= (deg f)χΣ1 −
∑

x : f ′(x)=0

(degx f − 1).

This result restricts the existence of holomorphic maps between Riemann surfaces.

Exercise 4.3. Denoting by Σg the orientable surface of genus g (with an arbitrary complex
structure), show that there is no nonconstant holomorphic map f : CP 1 → Σg, for g > 0.

Exercise 4.4. Denoting by Σg the orientable surface of genus g (with an arbitrary complex
structure), show that there is no nonconstant holomorphic map f : Σg → Σh, for h > g > 0.
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4.3 Frölicher spectral sequence

The last topic we treat is a first attempt to relate Dolbeault cohomology to de Rham cohomol-
ogy. Since at the moment we are armed only with the definition of Dolbeault cohomology, the
decomposition of forms ⊕kΩk(M ;C) = ⊕p,qΩp,q(M) and the corresponding decomposition of the
exterior derivative, d = ∂ + ∂, we will just have to magic something out of very few ingredients.

The remark that gets us kick started is that if we are given a form ρ ∈ Ωk(M ;C) and let q0

be the highest value of q for which its (p, q) component ρp,q is nonzero, then one of the conditions
that is necessary for ρ to be closed is ∂ρk−q0,q0 = 0. Further, if we change ρ by an exact form,
dτ , such that q0 − 1 is the highest value of q for which τ q,k−q−1 is nonzero, then the Dolbeault
cohomology class of ρq0,k−q0 does not change (see Figure 4.1). In a way, this is saying that the
Dolbeault cohomology is a coarse first approximation to the de Rham cohomology.

0

0

∂

OO

∂ // 0

0

∂

OO

∂ // ρk−q0,q0

∂

OO

∂ // ?

τk−q0,q0−1

∂

OO

∂ // ρk−q0+1,q0−1

∂

OO

∂ // ?

τk−q0+1,q0−2

∂

OO

∂ // . . .

∂

OO

Figure 4.1: A first approximation to ρ being closed is ∂ρk−q0,q0 = 0, while a first approximation to
ρ being exact if ρk−q0,q0 = ∂τp−q0,q0−1.

The idea next is to improve this coarse approximation in two ways: we consider the “first
two” nonvanishing components of ρ and when changing by exact elements we allow τ to have
one more component (see Figure 4.4). Then we notice that the questions leading to whether ρ is
closed/exact (at least if if ignore terms in dρ with q < q0) do not depend on ρ itself, but on its
Dolbeault cohomology class of ρk−q0,q0 and the cohomology ∂ induces in H∂(M). Explicitly, we
need that ∂ρk−q0,q0 = −∂ρk−q0+1,q0−1, or , in Dolbeault cohomology, ∂[ρk−q0,q0 ] = 0.

As we successively increase the number of components of ρ and τ that we consider we are
eventually left with the de Rham cohomology of M . An interesting aspect of this construction is
that each step can be phrased in terms of data present in the previous step, therefore creating a
“sequence of cohomologies” that starts with the Dolbeault cohomology and shrinks progressively
until it converges to the de Rham cohomology after n steps, where n = dimCM .

It turns out that the algebraic situation we just described using Dolbeault and de Rham
cohomologies pops up in different contexts with some frequency, so before we delve into the
precise steps outlined above to relate these two cohomologies, we present the general framework
which they represent.
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0

0

∂

OO

∂ // 0

τk−q0−1,q0

∂

OO

∂ // ρk−q0,q0

∂

OO

∂ // 0

τk−q0,q0−1

∂

OO

∂ // ρk−q0+1,q0−1

∂

OO

∂ // ?

τk−q0+1,q0−2

∂

OO

∂ // . . .

∂

OO

Figure 4.2: A a second approximation to ρ being closed/exact is that the Dolbeault cohomology
class [ρk−q0,q0 ] is closed/exact for the operator induced by ∂ in Dolbeault cohomology.

The first step is to introduce the basic spaces and differentials.

Definition 4.10.

• A differential double complex of vector spaces is a collection of vector spaces {Ep,q0 }p,q∈N
together with linear maps d0 : Ep,q0 → Ep,q+1

0 and d1 : Ep,q0 → Ep+1,q
0 such that d2

0 = d2
0 =

[d0, d1] = 0.

• The total grading and the total differential of (Ep,q0 )p,q∈N are given by

Ek = ⊕p+q=kEp,q0 , d = d0 + d1.

• In this situation, d : Ek → Ek+1 and d2 = 0, and the total cohomology of {Ep,q0 }p,q∈N is the
cohomology of the complex (E•, d).

Remark. Because we are following the analogy with Dolbeault cohomology, we will use vector
spaces, but the whole theory works with a few changes for R-modules or even just Abelian groups
with the differentials being module/group morphisms. The more algebraic structure we have at
the start, the more structure we will have at the end.

It should be readily recognizable that the total grading plays the role of the natural grading
of forms by degree and the (p, q)-grading plays the role of the bigrading induced by the complex
structure. The objective here is to relate the d0-cohomology to the d-cohomology. The answer
will be rather elaborate and it comes in the form of a spectral sequence.

Definition 4.11. A (first quadrant) spectral sequence of vector spaces is a collection of complexes
of vector spaces {(Ep,qr , dr)}p,q,r∈N,

dr : Ep,qr → Ep+r,q−r+1
r ,

such that Ep,qr+1 is the cohomology of dr in degree p, q.
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For each fixed r, the complex (Ep,qr , dr) is called the rth page of the spectral sequence. It is
useful to think of a spectral sequence as a book whose pages we turn as we increase the value of
r. Figures 4.3, 4.4 and 4.5 show the 0th, 1st and 2nd pages of a spectral sequence. The entries
of the next page are the cohomology of the previous page and the new differential points one
column further to the right and one row further down.

...
...

. . . Ep−1,q
0

d0

OO

Ep,q0

d0

OO

. . .

. . . Ep−1,q−1
0

d0

OO

Ep,q−1
0

d0

OO

. . .

...

d0

OO

...

d0

OO

Figure 4.3: Page 0: The original complex with differential d0.

...
...

. . .
d1 // Ep−1,q

1
d1 // Ep,q1

d1 // . . .

. . .
d1 // Ep−1,q−1

1
d1 // Ep,q−1

1
d1 // . . .

...
...

Figure 4.4: Page 1: The d0-cohomolgy with differential induced by d1.

Because we require p, q ≥ 0 we see that for r > p+ q+ 1 the arrows arriving and leaving Ep,qr
come from and point to trivial spaces, that is the process of taking cohomology has stopped and
the space Ep,qr does not change anymore.

Definition 4.12. A spectral sequence {(Ep,qr , dr)}p,q,r∈N converges to a bigraded space {Ep,q∞ }p,q∈N,
if Ep,qr ∼= Ep,q∞ for all r large enough. Alternatively, we say that {Ep,q∞ }p,q∈N is the limit of the
spectral sequence.

We just argued that every spectral sequence converges to a bigraded space (and here it was
important the indices p and q were bounded from below). Keeping an eye on the prize, de Rham
cohomology or the total cohomology of a double complex do not inherit a double grading so they
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...

d2

))

...

d2

))

...

. . .

d2

))

Ep−1,q
2

d2

**

Ep,q2

d2

**

Ep+1,q
2

d2

))

. . .

. . . Ep−1,q−1
2

d2

**

Ep,q−1
2

d2

**

Ep+1,q−1
2

d2

))

. . .

...
...

...

Figure 4.5: Page 2: The cohomology induced by d1 in the d0-cohomology with a new differential.

cannot be the limit of a spectral sequence as defined above. The notion that allows us to phrase
in which sense the limit of a spectral sequence is related to the total cohomology of the double
complex is that of a filtration.

Definition 4.13.

• A (decreasing) filtration of a (graded) vector space, H•, is a collection of subspaces FpH•
such that

. . .Fp+1H• ⊂ FpH• ⊂ Fp−1H• ⊂ . . .

• A filtration of a differential complex (E•, d) is a filtration of E• such that d : FpE• → FpE•
for all p.

• A filtration is bounded if there are p0 and P0 such that Fp0H• = {0} and FP0H• = H•.

Example 4.14. The complex of forms on a complex manifold has a filtration, namely FpΩ•(M ;C) =∑
p′≥p;q∈N Ωp′,q(M ;C). Similarly the de Rham cohomology inherits a filtration:

FpH• = {a ∈ H• : ∃α ∈ FpΩ•(M ;C) such that [α] = a}.

Similarly a double complex of vector spaces, {Ep,q0 , d0, d1}p,q∈N, admits a filtration FpE•,•0 (M ;C) =∑
p′≥p,q∈NE

p′,q(M ;C) and so does its total cohomology

FpH• = {a ∈ H• : ∃α ∈ FpE•,•0 (M ;C) such that [α] = a}.

�

Definition 4.15. A spectral sequence {(Ep,qr , dr)}p,q,r∈N converges to filtered graded space H•

if FpHk/Fp+1Hk ∼= Ep,k−p∞ for all p and k.

Remark. Since we are dealing with vector spaces, this notion of convergence is equivalent to
Hk ∼= ⊕pEp,k−p∞ , but for R-modules or Abelian groups this last conclusion may not hold.

Now we have introduced all the algebraic gadgetry to be able to state the main theorem of
this session:
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Theorem 4.16. Let {Ep,q0 , d0, d1}p,q∈N be a differential double complex. Then there is a spectral
sequence {(Ep,qr , dr)}p,q,r∈N such that

• first page is the d0-cohomology of {Ep,q0 }p,q∈N with differential induced by d1 and

• the sequence converges to the total cohomology of {Ep,q0 , d}p,q∈N.

Proof. We consider the filtration of E• from Example 4.14:

FpEk =
∑
p′≥p

Ep
′,k−p′ .

So
{0} = Fk+1Ek ⊂ Fk−1Ek ⊂ · · · ⊂ F0Ek = Ek.

Further d : FpE → FpE, that is, d preserves this filtration. Next we try to compute the coho-
mology of d, step by step by ignoring certain terms that appear in dρ and restricting the forms
we allow as primitives using the filtration introduce above.

To be precise, for r ∈ N, we define

Zp,qr = {ρ ∈ FpEp+q : dρ ∈ Fp+rEp+q+1}
Bp,q
r = {dρ ∈ FpEp+q : ρ ∈ Fp−rEp+q−1}

Zp,q∞ = {ρ ∈ FpEp+q : dρ = 0}
Bp,q
∞ = {dρ ∈ FpEp+q : ρ ∈ Ep+q−1}

In words, Zp,qr contains elements that are closed “up to higher terms in the filtration” (the
index r determines how high) and Bp,q

r are exact elements with primitives “not too far down
the fitration” (again the index r determines how low). So, for example Bp,q

0 = d(FpEp+q−1) and
Zp,q0 = FpEp+q.

The spaces Z•,•• and B•,•• are nested:

Bp,q
0 ⊂ Bp,q

1 ⊂ · · · ⊂ Bp,q
∞ ⊂ Zp,q∞ ⊂ . . . Z

p,q
1 ⊂ Zp,q0 .

Further, from the definition of the filtration of cohomology, we have that

FpHk =
Zp,k−p∞

Bp,k−p
∞

and

FpHk

Fp+1Hk
=

Zp,k−p∞

Zp+1,k−p−1
∞ +Bp,k−p

∞
. (4.3.1)

We define Ep,qr as

Ep,qr =
Zp,qr

Zp+1,q−1
r−1 +Bp,q

r−1

(4.3.2)

and to define dr we observe that d induces a map dr : Ep,qr → Ep+r,q−r+1
r because, from the

definition of Zp,qr and Bp,q
r ,

d(Zp,qr ) ⊂ Bp+r,q−r+1 ⊂ Zp+r,q−r+1 and
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d(Zp+1,q−1
r−1 +Bp,q

r−1) = d(Zp+1,q−1
r−1 ) + {0} ⊂ Bp+r,q−r+1

r−1 ⊂ Zp+r+1,q−r+1
r−1 +Bp+r,q−r+1

r−1 .

So we let dr be the map induced by d

dr : Ep,qr =
Zp,qr

Zp+1,q−1
r−1 +Bp,q

r−1

→ Zp+r,q−r+1
r

Zp+r,q−r+1
r−1 +Bp+r,q−r+1

r−1

= Ep+r,q−r+1
r

From (4.3.1) and the definition (4.3.2) we have

FpHk

Fp+1Hk
= Ep,q∞ ,

which means that whatever we are constructing converges to the total cohomology.
Also, since dr is induced by d, it is clear that d2

r = 0. So to prove the theorem we need to
check three facts:

1. Ep,q1 is the d0-cohomology in degree (p, q),

2. d1 : Ep,q1 → Ep+1,q
1 is induced by the differential d1 of the original double complex,

3. Ep,qr+1 is the cohomology of dr at Ep,qr .

Fact 1. Follows directly from the definition of Ep,q1 . Indeed, letting k = p + q, the numerator
of Ep,q1 is

Zp,q1 = {
∑
p′≥p

ρp
′,k−p′ : d0ρ

p,q = 0} = ker(d0 : Ep,q0 → Ep,q+1
0 )⊕p′>p Ep

′,k−p′
0

and the denominator is

Zp+1,q−1
0 +Bp,q

0 = ⊕p′>pEp
′,k−p′

0 + d0(Ep,q−1
0 )},

so the quotient is precisely the d0-cohomology at level (p, q).

Fact 2. Following the recipe above, to obtain the ‘spectral’ d1 we just need to apply d to a
d0-closed form and take the d0-cohomology class of the result, which is precisely how d1 from
the double complex induces a map on the d0-cohomology (because of the commuting relation
d0d1 = d1d0).

Fact 3. Is again a direct computation, but because of all the indices, it is much less intuitive.

This is not a powerful theorem. More often than not, the point of view is that the d0-
cohomology is something computable and the total cohomology is something desirable. In the
best situations we can compute the first or second page of the spectral sequence of a double
complex and use the general shape of those pages (for example, the existence of very few nontrivial
spaces), to conclude something about the final page. This is referred to as lacunary phenomena.

Exercise 4.5. Show that if Hp,q
d0

= {0} for p+ q = 1 mod 2, then the d0-cohomology is isomor-
phic to the total cohomology of the double complex.
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Of course at the moment our main problem when it comes to relating Dolbeault to de Rham
cohomology is that the first page (Dolbeault cohomology) is the unknown one. But there is a
couple of pieces of information we can still get from the spectral sequence.

Proposition 4.17. In a complex manifold M we have

bk ≤
k∑
p=0

hp,k−p,

where bk = dimHk(M) is the kth-Betti number of M . Further, if the Dolbeault cohomology of
M is finite dimensional we have

χM =
n∑

p,q=0

(−1)p+qhp,q,

where χM is the Euler characteristic of M .

Proof. In the process of turning the pages in a spectral sequence, at each step we take the kernel
of an operator and then divide it by the image of another operator. Neither of these operations
increases dimensions, hence dimEp,qr+1 ≤ dimEp,qr . Therefore,

bk = dimHk(M) =
k∑
p=0

dimEp,k−p∞ ≤
k∑
p=0

dimEp,k−p1 =
k∑
p=0

hp,k−p.

The second claim follows from the fact that if

0→ V 0 d0→ V 1 d1→ . . .
dn−1→ V n → {0}

is a complex of vector spaces, that is, each map d is linear and di ◦ di−1 = 0, then we can define
the cohomology, H•, of this sequence. If each V i is finite dimensional, then∑

i = 0n dimV i =
∑

i = 0n dimH i.

Indeed, by the rank nullity theorem we have that dimVi = dim ker(di) + dim Im(di), while by
definition dimH i = dim ker(di)0 dim Im(di−1). Writing down the sums under consideration we
have

n∑
i=0

(−1)i dimH i =
n∑
i=0

(−1)i dim ker(di)− (−1)i dim Im(di−1)

=
n∑
i=0

(−1)i dim ker(di) + (−1)i−1 dim Im(di−1)

=
n∑
i=0

(−1)i dim ker(di) + (−1)i dim Im(di)

=

n∑
i=0

(−1)i dimVi

Since at each turn of page of a spectral sequence we take the cohomology of the previous page,
the alternating sum of the dimensions of the spaces remains constant and can be computed from
the first page whose spaces are all finite dimensional.



Chapter 5

Vector bundles – part I

5.1 Smooth vector bundles

A special type of manifold that appear frequently in many different situations are vector bundles.
We will spend some time and energy studying those and in this section we introduce them, their
basic properties and constructions.

Let us start by recalling the definition of smooth vector bundle.

Definition 5.1. A real vector bundle of rank k over a manifold M is a manifold E together with
a submersion π : E →M such that

• the level sets Ep = π−1(p) have the structure of a k-dimensional real vector space,

• for every point p ∈M there is a neighbourhood U of p and a diffeomorphism Φ: π−1(U)→
U × Rk for which the following diagram commutes

π−1(U)
Φ //

π

��

U × Rk

π1

��
U

Id // U,

(5.1.1)

where π1 is projection onto the first factor and

• Φ|Eq : Eq → Rk × {q} is a linear isomorphism for every q ∈ U .

The level set Ep is also called the fiber over p and any such map Φ as above is called a local
trivialisation. We have a similar notion of complex vector bundle over a smooth manifold if we
replace the vector space Rk by the vector space Ck and require the local trivialisation to be
fiberwise complex linear. From our discussion in Chapter 1, it should be clear that a complex
vector bundle of rank k is the same thing as a real vector bundle of rank 2k, E → M with a
smooth fiberwise complex structure I : Ep → Ep, I

2 = −Id, for all p.

From this point of view, an almost complex structure is a way to turn the tangent bundle
(which is a real vector bundle) into a complex vector bundle.

53



54 CHAPTER 5. VECTOR BUNDLES – PART I

Vector bundles with trivialisations can be equivalently described by their transition functions.
Namely, if we have two trivialisations, Φi : π

−1Ui → Ui × Ck for i = 0, 1, in the overlap U0,1 =
U0 ∩ U1 we can compare the two trivialisations:

U0,1 × Ck

π1

��

π−1(U0,1)
Φ0oo Φ1 //

π

��

U0,1 × Ck

π1

��
U0,1

Id // U0,1
oo Id // U0,1,oo

(5.1.2)

Because the diagram above commutes, there is a map g0
1 : U0,1 → GL (k;C) such that

Φ1 ◦ Φ−1
0 (p, v) = (p, g0

1(p)v)

The map g0
1 is the transition function from the trivialisation Φ0 to the trivialisation Φ1.

If we use a collection of trivialisations to identify fibers overs different open sets and eventually
cycle back to the first trivialisation, as in

(Φα0 ◦ Φ−1
αn ) ◦ (Φαn ◦ Φ−1

αn−1
) ◦ · · · ◦ (Φα1 ◦ Φ−1

α0
),

then cancelling the middle terms, Φ−1
αi ◦ Φαi , we see that we obtain the identity map. This

translates to the fact that transition functions satisfy

gαα = Id, gαnα0
· gαn−1
αn · · · · · gα0

α1
= Id, (5.1.3)

where the · indicates matrix multiplication. Notice that the second identity in (??) follows from
the one that involves only three transition functions

gαα = Id, gα2
α0
· gα1
α2
· gα0
α1

= Id, (5.1.4)

for any choice of three overlapping trivialisations. Indeed, taking α2 = α1 in the triple overlap
we obtain that

gα1
α0
· gα0
α1

= gα1
α0
· gα1
α1
· gα0
α1

= Id

and, for example, for four overlapping trivialisations we can just write

gα3
α0
· gα2
α3
· gα1
α2
· gα0
α1

= gα3
α0
· gα2
α3
· (gα0

α2
· gα2
α0

) · gα1
α2
· gα0
α1

= (gα3
α0
· gα2
α3
· gα0
α2

) · (gα2
α0
· gα1
α2
· gα0
α1

)

= Id · Id

We summarise this discussion in the following lemma:

Lemma 5.2. Given a vector bundle E → M , an open cover U = {Uα : α ∈ A} of M and a
collection of trivialisations of E over each Uα, Φα : E|Uα → Uα × Ck, the transition functions
related to these trivialisations satisfy

gαα = Id, gα2
α0
· gα1
α2
· gα0
α1

= Id, (5.1.5)

The first condition in (5.1.5) is referred to as skew-symmetry and the second is the cocycle
condition.

The converse to this result also holds.
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Lemma 5.3. Given a manifold M , an open cover U = {Uα : α ∈ A} of M and a collection of
functions defined on double overlaps

ǧ = {gαβ : Uαβ → GL (k;C)},

satisfying (5.1.5), there is a vector bundle E →M with trivialisations Φα over Uα for which the
transition functions are the functions in the family ǧ.

Proof. Define E to be the quotient space

E = ∪̇α∈AUα × Ck/ ∼=,

where (x, v) ∈ Uα×Ck is declared to be equivalent to (y, w) ∈ Uβ ×Ck if x = y and w = gαβ (x)v.

The projections onto the first factor Uα × Ck → Uα ⊂ M patch together to give rise to a map
π : E →M .

The cocycle condition implies that if (x, v), (y, w) ∈ Uα × Ck are equivalent, then x = y and
v = w. That is, we have natural inclusions Φα : Uα × Ck → E, which not only express the level
sets of π : E → M as vector spaces but also provide local trivialisations of E, making it into a
vector bundle over M . Finally, by construction the transition function obtained by comparing
the trivialisations Φα and Φβ are precisely the ones used to define the equivalence relation, that
is gαβ .

Using descriptions of bundles via transition functions we see that several constructions of
vector spaces associated to a given one, such as taking duals, tensor products or direct sums,
carry over to vector bundlesholomorphic setting.

Exercise 5.1. Show that if E,F →M are holomorphic vector bundles then E∗, E ⊕ F , E ⊗ F
inherit a natural structure of holomorphic vector bundle over M . Concretely, describe how the
transition functions for E and F determine transition functions for the proposed bundles.

Exercise 5.2. Let E →M be a complex vector bundle over a smooth manifold M . Define E by
declaring that multiplication by complex scalars gets conjugated, that is, as spaces E = E and
the projection map to M for both agree, but

λ ·E v := λ ·E v,

where ·E and ·E are the scalar multiplication operationof each of the bundles.
Show that E is isomorphic to E∗ as complex vector bundles.

Continuing with the relationship between vector bundles and families of transition functions,
we see that Lemmas 5.2 and 5.3 say that isomorphisms classes of vector bundles together with
trivialisations over an open cover U are in equivalence with families of skew-symmetric transition
functions satisfying the cocycle condition. There are two issues with this picture. The first is
the dependance on (the existence of a trivialisation over) the cover U . The second is that vector
bundles are the object of interest, and the a classification we obtained includes as data specific
trivialisations. So next we deal with these shortcomings.

Vector bundles over contractible sets are trivialisable, so as long as we work with a cover
U of M by discs, the requirement that a bundle E → M has trivialisations over the elements
of U is not a restriction. The second issue requires us to study what happens when we change
trivialisations.
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Theorem 5.4 (Classification of isomorphism classes of vector bundles). Let M be a manifold
and let U = {Uα : α ∈ A} be an open cover of M by discs. Isomorphism classes of rank k
complex vector bundles over M are in one-to-one correspondence with equivalence classes of skew
symmetric cocycles ǧ = {gαβ : Uαβ → GL (k;C) : α, β ∈ A} where ǧ and ǧ′ are equivalent if there

is a family of functions f̌ = {fα : Uα → GL (k;C) : α ∈ A} such that

(ǧ′)αβ = fβ · ǧαβ · (fα)−1. (5.1.6)

Proof. We prove only one direction. Say we are given two collections of trivialisation {Φα : α ∈ A}
and {Φ′α : α ∈ A} with transitions functions ǧ and ǧ′ respectively. Over each Uα we can compare
the trivialisation Φα with Φ′α to obtain the transition function between these two:

Φ′α ◦ (Φα)−1(x, v) = (x, fα(x)v).

With this we can relate the transition functions of the two families:

(x, g′
α
β(x)v) = Φ′β ◦ (Φ′α)−1(x, v)

= Φ′β ◦ Φ−1
β ◦ Φβ ◦ Φα ◦ (Φ−1

α ) ◦ (Φ′α)−1(x, v)

= (x, fβ(x) · gαβ (x) · (fα(x))−1v),

showing that ǧ and ǧ′ are equivalent as in (5.1.6).

5.2 Holomorphic vector bundles

If the base manifold is complex we can introduce the notion of holomorphic vector bundles by
requiring that the maps involved are holomorphic (and the fibers are complex vector spaces).

Definition 5.5. A holomorphic vector bundle over a complex manifold M is a complex manifold
E which is a vector bundle over M , π : E →M , and for which

• the map π is holomorphic,

• for every point p ∈ M there is a neighbourhood U and a local trivialisation Φ: π−1(U)→
U × Ck which is a biholomorphism.

The fact that local trivialisations are biholomorphisms translates into the fact that the un-
derlying transition functions

gαβ : Uαβ → GL(k;C)

are holomorphic, where GL (k;C) has the structure of complex manifold described in Example
3.3 (which makes matrix multiplication a holomorphic operation).

Using descriptions of bundles via transition functions we see that several constructions of
vector bundles associated to a given one, such as taking duals, tensor products or direct sums,
carry over to vector the holomorphic setting. Further, all the arguments used in the previous
section to classify vector bundles in terms of a cocycle ǧ of transition functions defined on double
overlaps extend to the holomorphic setting with the requirement that ǧ is made of holomorphic
functions.
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Exercise 5.3. If E → M is a holomorphic vector bundle over a complex manifold M , does E
admit a natural holomorphic structure?

In the theory of vector bundles over real manifolds, there was no preferred way to take
derivatives. To do that, one needed to introduce a connection, ∇. With a connection at hand to
replace the exterior derivative, we can extend it to a map, still denoted by the same symbol,

∇ : Ωk(M ;E)→ Ωk+1(M ;E).

by demanding that it satisfies the Leibniz rule. At this stage it was natural to try to define a
corresponding cohomology theory. However the curvature, F∇, got on the way: since ∇2 = F∇
meant that it did not make sense to divide the kernel of ∇ by its image. The exception was the
case of flat bundles, that is, pairs of bundle with connection, (E,∇) , such that F∇ = 0. These
can be equivalently described by the existence of trivialisations whose transition functions are
locally constant, which indicates that this type of bundle does not occur frequently.

Once we go to the holomorphic world, however, we have seen that holomorphic functions play
the role of constants from the point of view of the ∂ operator. In particular, for a holomorphic
bundle we can define a ∂ operator on the space of sections in a local holomorphic trivialisation.
Given a local trivialisation Φ: π−1(U)→ U × Ck, define

∂ : Γ(E)→ Γ(∧0,1T ∗M ⊗ E), ∂s = (Id⊗ Φ−1)(∂(Φ ◦ s)).

Since the transition functions are holomorphic, this does not depend on the choice of trivialisation.
Further, we can use the Leibniz rule to extend this operator to

∂ : Γ((∧0,qT ∗M ⊗ E) ∈ Γ(∧0,q+1T ∗M ⊗ E), ∂(α⊗ s) = ∂(α)⊗ s+ (−1)deg(α)α ∧ ∂s.

We denote the space Γ((∧0,qT ∗M ⊗ E) by Ωq(M ;E)

Lemma 5.6. Let E → M be a holomorphic vector bundle. Then ∂
2
: Ωq(M ;E) → Ωq+1(M ;E)

satisfies ∂
2

= 0.

Definition 5.7. Given a holomorphic vector bundle E → M , the Dolbeault cohomology of M
with coefficients in E is given by

Hq(M ;E) :=
Ker(∂ : Ωq(M ;E)→ Ωq+1(M ;E))

Im(∂ : Ωq−1(M ;E)→ Ωq(M ;E))
.

Exercise 5.4. Show that Ωq(M ; Ωp,0(M)) = Ωp,q(M) and that the two definitions of ∂ on this
space agree.

Exercise 5.5. Compute H0(TCP 1).

5.3 Line bundles and divisors

While isomorphism classes of general vector bundles can be described in terms of transition
functions, as in Theorem 5.4, for line bundles a more geometric picture quickly emerges: a line
bundle is roughly determined by the vanishing locus of a generic section. The underlying concept
is that of a divisor.
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Definition 5.8. A divisor on a manifold M is an ideal IY ⊂ C∞(M) which is locally generated
by a single function and whose vanishing locus, Y , is nowhere dense on M .

In the life of a differential geometer the ideal defining a divisor may be defined by a real or
a complex function. In these notes, we will focus on complex line bundles and hence our ideals
will be defined by complex functions.

To describe how divisors arise we first recall a notion of transversality.

Definition 5.9. Let E be a smooth manifold and let ιi : Mi → E, i = 0, 1, be two immersed
submanifolds. Let pi ∈ Mi be such that ι0(p0) = ι1(p1). We say that the immersions are
transverse at p0 and p1 if ι0∗(Tp0M0) + ι1∗(Tp1M1) = Tι0(p0)E. The immersions ι0 and ι1 are
transverse if they are transverse at all pairs p0 and p1 for which ι0(p0) = ι1(p1).

Exercise 5.6. Show that if ιi : Mi → E are transverse embeddings, then ι0(M0) ∩ ι1(M1) is an
embedded submanifold of codimension codim(M0) + codim(M1).

Definition 5.10. Let E → M be a vector bundle over M and let si : M → E, i = 0, 1 be two
sections. We say that the sections s0 and s1 are transverse or s0 is transverse to s1 if they are
transverse as immersions si : M → E.

A very common condition to consider is that of a section s : M → E transverse to the zero
section. When this happens, the zero locus of s, say Z, is an embedded submanifold of M whose
codimension in M is the rank of E, by exercise 8.8. Further, there is a relation between E and
the normal bundle of M

Proposition 5.11. Let s : M → E be a section transverse to the zero section and let Z ⊂M be
the zero locus of s, then

dνs = πE ◦ ds : TM → E|Z

has kernel TZ and induces an isomorphism between NZ , the normal bundle of Z, and E|Z .

For p a zero of s, the composition of dsp : TpM → T0E ∼= TpM ⊕Ep with the projection onto
Ep, d

νs = πE ◦ ds, is known as the vertical derivative of s.

Proof. It follows directly from the definition of transversality that s is transverse to the zero
section if and only if the vertical derivative of s is surjective at every point p ∈ Z (since the
tangent space of the zero section already takes up all the “horizontal” directions). Further, since
s vanishes over Z, we have that for all X ∈ TZ, dνs(X) = 0, so the vertical derivative descends
to a surjective bundle map, which we still denote by dνs

dνs : NZ = TM/TZ → E|Z .

Since these bundles have the same rank, this map is a bundle isomorphism.

When E →M is a line bundle, a divisor arises:

Proposition 5.12. Let L → M be a line bundle and let s : M → L be a section transverse to
the zero section, then

Is = {σ(s) : σ ∈ Γ(L∗)}
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Exercise 5.7. Let (Σ, I) be a Riemann surface. Let {p1, . . . , pn} be a finite collection of points
of Σ and let {m1, . . . ,mn} be a collection of integers. Consider the following cover of Σ. For
each i let Ui be a disc centered at pi, that is, Ui is the domain of a coordinate chart centered at
pi whose image is a disc. Assume that the sets Ui are chosen small enough so that Ui ∩ Uj = ∅
for i 6= j. Let U0 = Σ\{p1, . . . , pn}, and define transition functions g0

i (z) = zmi .
Show that these transition functions give rise to a holomorphic line bundle, E, over Σ which

admits a meromorphic section s with zeros and poles only at the points {p1, . . . , pn}. Further for
mi ≥ 0, pi is a zero of order mi of s and for mi < 0, pi is a pole of order |mi|.

Finally argue that holomorphic sections of E correspond to meromorphic functions on Σ with
poles of order at most |mi| at pi for all i such that mi < 0 and zeros of order at least |mi| at pi
for all i such that mi ≥ 0.
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Chapter 6

Blow-ups

A once we introduce an object and obtain a few examples, it is natural to ask if there ways to
modify those examples to obtain yet more examples. For smooth manifolds, a typical procedure
that follows this paradigm is taking connected sums. In that case, from a sphere and a torus we
can produce all orientable surfaces.

Complex manifolds are more rigid objects because of their analytic nature and a number
of differentiable constructions have no analogue in the holomorphic world. Yet there is one
construction that has great power and that we study in this chapter: the complex blow-up.

6.1 The tautological bundle and the blow-up of the origin

The tautological bundle over CPn lies at the heart of the blow-up construction, so we spend this
session studying it in some detail.

Consider the subspace τn ⊂ Cn+1 × CPn given by the natural incidence relation: a pair
consisting of a point (in Cn+1) and a line (in CPn) are in τn if the point is in the line, or, in
symbols,

τn = {(z, l) ∈ Cn+1 × CPn : z ∈ l}.

The subset τn is in fact an embedded submanifold and we can readily cover it with a few
parametrisations. Namely, for 1 = 1, . . . , n+ 1, we define

φi : Cn+1 → τn, φi(λ, z1, . . . , zn) = (λ(z1, . . . , 1
ith pos

, . . . , zn), [z1, . . . , 1
ith pos

, . . . , zn]),

One can readily compute the change of parametrizations. For example, for j < i, we have

φ−1
j ◦ φi(λ, z1, . . . , zn) = φ−1

j (λ(z1, . . . , zj , . . . , 1
ith pos

, . . . , zn), [z1, . . . , zj , . . . , 1
ith pos

, . . . , zn])

= φ−1
j (λzj(

z1

zj
, . . . , 1

jth pos

, . . . ,
1

zj
ith pos

, . . . ,
zn
zj

), [
z1

zj
, . . . , 1

jth pos

, . . . ,
1

zj
ith pos

, . . . ,
zn
zj

])

= (λzj ,
z1

zj
, . . . ,

1

zj
, . . . ,

zn
zj

).

This shows that τn is a complex manifold as it has holomorphic change of coordinates.
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The ambient space Cn+1×CPn has two natural projections which we can restrict to τn. Let’s
consider them one at a time.

Projection onto the second factor and τn as a line bundle. The level sets of the projection
π2 : τn → CPn are lines. Namely, π−1

2 (l) consists of all the points in l, including 0. This strongly
suggests that τn → CPn is a line bundle and in fact the parametrizations φi defined above provide
local trivialisations (the parameter λ parametrizes the level sets in a linear way) and from the
expression for the change of parametrizations we see that the transition functions for this line
bundle are given by gij(z1, . . . , zn) = zj .

There is another space that is closely related to τn, namely,

Hn = CPn+1\[1, 0, . . . , 0].

We have a natural map

π : H → CPn, π([z0, . . . , zn+1]) = [z1, . . . , zn+1]

.

We can cover Hn with the same coordinates we covered CPn+1 (Example 3.6) but since the
line [1, 0, . . . , 0] has been removed we can do without the chart Φ0. Changing the name of the
variable z0 to λ, for 0 < j < i we have, from Example 3.6, that

Φj ◦ Φ−1
i (λ, z1, . . . , zn+1) =

(
λ
zj
, z1zj , . . . ,

1
zj

ith pos

, . . . , znzj

)
,

which is nearly the same as the change of coordinates for τn, except that now λ is divided by zj
instead of multiplied.

We conclude that Hn → CPn is a line bundle, the affine coordinate charts in CPn+1 express
H as a line bundle with transition functions 1

zj
.

Lemma 6.1. The line bundles τn and Hn are dual to each other. In particular, as real line
bundles they are diffeomorphic via a fiberwise orientation reversing bundle map.

Proof. Since the transition functions of Hn and τn are inverse of each other, Hn is the dual
of τn and the choice of a Hermitian metric gives the real isomorphism between these bundles
conjugating the scalar action of C.

Another way of rephrasing this result (with a little less information) is

Lemma 6.2. There is an orientation preserving diffeomorphism between τn and CPn+1\[1, 0, . . . , 0],
where the bar indicates that we take the orientation opposite to the one induced by the complex
structure on that space.

Projection onto the first factor and τn as blow-up. Projecting τn onto the Cn+1 factor is
a more interesting map. To get a geometric idea of what is going on there we first observe that
there is a copy of CPn inside τn as the zero section of τn → CPn. Explicitly,

ι : CPn → τn, ι(l) = (0, l).
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If we consider the complement of the zero section, τn\ι(CPn), we see that image of projection
onto the first factor misses the origin in Cn+1 and

π1 : τn\ι(CPn)→ Cn+1\{0}, π1(z, l) = z (6.1.1)

is a diffeomorphism since every nonzero point is in a unique line. This is usually phrased by
saying that τn is ‘obtained by removing the origin from Cn+1 and replacing it by CPn.’

To get a more geometric picture of how CPn sits inside τn from this new point of view it
is useful to consider what π1 does to lines. Say we fix a point z ∈ Cn+1\{0} and consider
l = {λz : λ ∈ C} and l∗ = {λz : λ ∈ C∗}. Since π1 is a diffeomorphism outside of the zero section,
the pre-image π−1

1 (l∗1) is a punctured line in τn. When we take the closure of this set, we obtain

π−1
1 (l∗) = {(w, l) : w = λz, λ ∈ C∗} = {(w, l) : w = λz, λ ∈ C}.

That is, the closure of the pre-image of l∗ touches the zero section precisely at the point l ∈ CPn.
This leads to a more complete description of τn in plain English: ‘τn is obtained by removing the
origin from Cn+1 and replacing it by the set of directions one can use to approach the origin’.

Because of this description we call τn the blow-up of Cn+1 at the origin and correspondingly
Cn+1 is the blow-down of τn and π1 : τn → Cn+1 is the blow-down map.

6.2 Blowing-up a point

Change of notation warning: in the previous session it made sense to use n as the dimension of
CPn and hence we called the central object of that session, the tautological bundle over CPn,
τn. Yet the final outcome was a description of the blow-up of Cn+1 at the origin. Now we want
to describe the blow-up of a complex manifold at a point, but it is aesthetically unpleasant to
talk about an (n+ 1)-dimensional manifold, so we will shift n in the previous discussion by one.

To blow-up a point p in a manifold M , what we want to do is to pick a holomorphic chart
centered at p, ψ : U ⊂M → Cn, then replace U by a copy of the tautological bundle:

Definition 6.3. Let Mn be a complex manifold and p ∈ M . Let ψ : U ⊂ M → Cn be a chart
centered at p and let Ũ = π−1

1 ◦ ψ(U) ⊂ τn−1, where π1 : τn−1 → Cn is the blow-down map. The
blow-up of M at p ∈M is the manifold

M̃ = (M\{p}) ∪ψ−1◦π−1
1
Ũ ,

where ∪ψ−1◦π−1
1

denotes the identification of points in U\{p} with points in Ũ\CPn−1 via the

biholomorphism
ψ−1 ◦ π−1

1 : U\{p} → Ũ\CPn−1.

Since both M\{p} and Ũ are complex manifolds and the gluing map is holomorphic, M̃ is

also a complex manifold. Notice that in this process we replaced p with a copy of CPn−1 ⊂ M̃
which represents the set of directions at which one can approach p. We will need to refer to this
copy of CPn−1 so often that it deserves a name:

Definition 6.4. Let M̃ be the blow-up of M at p. The embedded copy of CPn−1 ⊂ M̃ obtained
by the blow-up procedure is called the exceptional divisor.
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Using the blow-down map π1 : τn−1 → Cn, we obtain a map

π : M̃ →M, π(z) =

{
z for z ∈M\{p},
ψ−1 ◦ π1(z) for z ∈ Ũ .

(6.2.1)

In the overlapping region where we glue the spaces M\{p} and Ũ together, these definitions
agree and hence π is well defined. Further both local expressions for π are holomorphic, hence π
is a holomorphic map between M̃ and M .

Exercise 6.1. Show that π is a biholomorphism between M̃\CPn−1 and M\{p}.

The map π defined above is called the blow-down map.

In this whole discussion one nagging point has been silently left hidden. Namely, even though
we call M̃ the blow-up of M at p, the description we used clearly depends on a choice of coordinate
chart, ψ. It would be nice if the resulting complex manifold M̃ and map π : M̃ → M did not
depend on this choice. Of course, a different choice of holomorphic coordinates boils down to
composing ψ with a local biholomophism α : V ⊂ Cn → W ⊂ Cn with α(0) = 0. The relation
between such maps and blow-ups is the content of the next lemma.

Lemma 6.5. Let α : V ⊂ Cn → W ⊂ Cn be a biholomophism with α(0) = 0, then there is a

unique biholomorphism α̃ : Ṽ ⊂ τn−1 → W̃ ⊂ τn−1 such that the following diagram commutes

Ṽ
α̃ //

π1
��

W̃

π1
��

V
α //W

(6.2.2)

Proof. Since the question regards the behaviour of α̃ in a neighbourhood of the exceptional
divisor, we may just as well assume that V is a polydisc, Dr.

Let us first assume that one such lift α̃ exists. In this case it is unique, since in the complement
of the exceptional divisor, where π1 is a diffeomorphism, it must be given by α̃ = π−1

1 ◦ α ◦ π1.
Also, this expresses the lift α̃ as a composition of holomorphic maps, therefore α̃ is holomorphic
in an open and dense set and therefore it is holomorphic (recall that a map is holomorphic if its
derivative commutes with the almost complex structure, and this is a closed condition). Finally,
α̃ is a diffeomorphism. Indeed, if V = W and α = Id|V , then one can readily check that α̃ = IdṼ
is the unique lift described in the lemma. For the general case, we can apply the lemma for α−1,
which is also a diffeomorphism, to obtain a lift α̃−1 and observe that α̃−1 ◦ α̃ is another lift for
Id|V and similarly α̃ ◦ α̃−1 is a lift for Id|W . By uniqueness, these maps are the identity and
therefore α̃ is a diffeomorphism.

So the main difficulty is to prove that α̃ exists. To do so we first expand α around the origin,
using that α(0) = 0:

α(z) = dα|0(z) + h(z),

where h : Dr → Cn is holomorphic, h(0) = 0 and dh(0) = 0. In particular, the function

(λ, z) ∈ D1 ×Dr 7→
h(λz)

λ
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is holomorphic and vanishes for λ = 01, or, written in terms of α,

(λ, z) ∈ D1 ×Dr 7→
α(λz)

λ
− dα|0(z)

is holomorphic and vanishes for λ = 0.

Since α is a biholomorphism dα|0(z) 6= 0 for z 6= 0. Hence, for z 6= 0, the function (λ, z) 7→
α(λz)
λ maps D1×Dr\{0} to Cn\{0} and we can compose it with projection onto CPn−1 to obtain

a holomorphic map:

(λ, z) ∈ D1 ×Dr\{0} 7→
[
α(λz)

λ

]
∈ CPn−1.

To check that α̃ exists, we write its expression in the complement of the exceptional divisor
in the parametrization φi for the domain (note that we do not need to use a parametrization for
the co-domain because τn−1 ⊂ Cn×CPn−1 is an embedding and hence it is enough to check that
α̃ exists as a map to the ambient space Cn × CPn−1):

π−1
1 ◦ α ◦ π1 ◦ φi(λ, z1, . . . , zn−1) = π−1

1 ◦ α ◦ π1(λ(z1, . . . , 1, . . . zn−1), [z1, . . . , 1, . . . zn−1])

= π−1
1 ◦ α(λ(z1, . . . , 1, . . . zn−1))

= (α(λ(z1, . . . , 1, . . . zn−1)), [α(λ(z1, . . . , 1, . . . zn−1))]),

=

(
α(λ(z1, . . . , 1, . . . zn−1)),

[
α(λ(z1, . . . , 1, . . . zn−1))

λ

])
,

and we see that both components of α̃ extend holomorphically to λ = 0.

Exercise 6.2. In the notation of the previous lemma, describe the restriction of α̃ to the excep-
tional divisor.

This lemma allows us to determine how unique the blow-up is.

Proposition 6.6. Let M be a complex manifold p ∈ M and ψ1, ψ2 be two holomorphic charts
centered at p. Denote by M̃i the blow-up of M obtained using the chart ψi. There is a unique
biholomorphic map Ĩd : M̃1 → M̃2 for which the following diagram commutes

M̃1
Ĩd //

π1

��

M̃2

π2

��
M

Id //M,

(6.2.3)

where πi are the respective blow-down maps.

Proof. Let U be the domain of the charts ψ1 and ψ2 (arranged to be the same by taking an
intersection) and let Vi = ψi(U). By Lemma 6.5, the change of coordinate, ψ2 ◦ ψ−1

1 : V1 → V2

1By this we mean that the singularity of (λ, z) 7→ h(z)
λ

at 0 is removable and therefore we can extend this
function to 0 by continuity to obtain a holomorphic function.
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induces a corresponding map ˜ψ2 ◦ ψ−1
1 : Ṽ1 → Ṽ2 to the blow-up of V1 and V2 at the origin. We

define Ĩd : M̃1 → M̃2 by defining what it does in the two parts that make up M̃1:

Ĩd : M̃1\{p} → M̃2\{p} Ĩd(z) = z,

Ĩd : Ṽ1 → Ṽ2 Ĩd(z) = ˜ψ2 ◦ ψ−1
1 (z).

It remains to check that Ĩd is well defined, that is, in the overlapping region between M1 and
Ṽ1 both definitions agree. But by definition a point z in Ṽ1 is in the overlapping region if it is
not in the exceptional divisor, so the fact that Ĩd is well defined follows by observing that, by
construction, the following diagram commutes and all the maps are diffeomorphisms

Ṽ1\CPn−1

π

��

˜ψ2◦ψ−1
1 // Ṽ2\CPn−1

π

��
V1\{0}

ψ2◦ψ−1
1 // V2\{0}

U\{p} Id //

ψ1

OO

U\{p},

ψ2

OO

6.3 The topology of a blow-up

With the blow-up construction at hand, we can produce many new examples of complex manifolds
by blowing up any discrete collection of points in a complex manifold. This process can be
iterated, and we can blow up points in the exceptional divisors introduced by previous blow-ups.
The positioning of the points in most cases will influence the resulting complex manifold, that
is, potentially different choices of points lead to non equivalent complex manifolds. Yet it is also
desirable to take a step back and have a differential-topological understanding of what blowing
up amounts to. Natural questions one can ask include: What is the cohomology of the blow-
up? Can we identify the diffeomorphism type of the blow-up? Notice that since in a connected
manifold thre is always an isotopy that maps a preassigned point to a preassigned image the
answer to these question should be independent of the choice of point.

We will tackle these questions in this section, starting with the diffeomorphism type. To
phrase the answer we need to recall the connected sum operation.

Definition 6.7. Let M1 and M2 be oriented connected n-dimensional smooth manifolds. The
connected sum of M1 and M2 is the manifold

M1#M2 = M1\{p1} ∪ĩnv
M2\p2,

where pi ∈Mi and ĩnv is the map defined with help of orientation preserving coordinates centered
at pi by

ĩnv(x1, . . . , xn) =
1

‖x‖2
(−x1, x2, . . . , xn).
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The differential type of the connected sum does not depend on the points nor the charts
chosen and the resulting manifold has a natural orientation determined by the orientations of
each Mi, since the map used to identify them is orientation preserving.

If we were to use a coordinate chart that is not compatible with the orientation, say, in M2,
then we can produce the connected sum using the simple inversion on the sphere

inv(x) =
x

‖x‖2
.

Theorem 6.8. Let M̃ be the blow-up of a complex manifold M of complex dimension n at a
point p. Then M̃ is diffeomorphic to M#CPn.

Proof.

With this differential geometric description of the blow-up, determining its cohomology is an
exercise with the Mayer–Vietoris sequence:

Exercise 6.3. Let M1 and M2 be oriented, connected n-dimensional manifolds. Show that

H i(M1#M2;Z) =

{
H i(M1;Z)⊕H i(M2;Z), if i 6= 0, n,

Z, if i = 0, n.

Conclude that if M̃ is the blow-up of M at a point, the

H i(M̃ ;Z) =

{
H i(M ;Z)⊕ Z, if 0 < i < n and i is even,

H i(M ;Z), otherwise.

6.4 Blowing-up a submanifold

When dealing with general submanifolds, we blow-up “normal directions”. The argument used
is a parametrised version of the blow-up of a point and the local model we need to develop is the
blow-up of

Cn−k ∼= {0} × Cn−k ⊂ Cn.

That is, we regard Cn−k as the vanishing locus of the first k coordinates.

Similar to the case of a point, we now form the normal tautological bundle:

τ ⊂ Ck × Cn−k × CP k−1, τ = {(z, w, l) ∈ Ck × Cn−k × CP k−1 : z ∈ l} = τk−1 × Cn−k.

Once again we have projections onto different factors, with the more relevant one being the
blow-down map

π1 : τ → Cn, π1(z, w, l) = (z, w).

And just as before π1 is a holomorphic map which is also a diffeomorphism in the complement
of the exceptional divisor:

π1 : τ\(CP k−1 × Cn−k)
∼=−→ Ck\{0} × Cn−k.
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This gives a local model for the blow-up of a complex codimension-k submanifold, at least in a
neighbourhood of a point. For the blow-up of a point the question that arose was how unique it
was and to deal with that question we needed to understand the effect of a change of coordinates.
Now the same question arises but has a deeper meaning. Namely if we try to use this local model
to blow up a neighbourhood of a point, then a neighbourhood of the proposed blow-up will
invariably meet other similar neighbourhoods and whether or not we can systematically glue
these together (and if there are choices involved) will determine if the blow up exists and is
unique. The analogue of Lemma 6.5 that tells us about existence and uniqueness is

Lemma 6.9. Let α : V ⊂ Cn →W ⊂ Cn be a biholomorphism with

α(0, w) ∈ {0} × Cn−k for all w ∈ Cn−k,

then there is a unique biholomorphism α̃ : Ṽ ⊂ τ → W̃ ⊂ τ such that the following diagram
commutes

Ṽ
α̃ //

π1

��

W̃

π1

��
V

α //W,

(6.4.1)

where Ṽ = π−1
1 (V ) and W̃ = π−1

1 (W ).

Proof. The proof is similar to that of Lemma 6.5. Since the question regards the behaviour of α̃
in a neighbourhood of the exceptional divisor, we may just as well assume that V is a polydisc,
Dr.

The same arguments used before can be repeated to show that if α̃ exists then it is unique
and is a biholomorphism. So the main difficulty is to prove that α̃ exists. To prove that we follow
the same route as before and expand α in normal directions around points of the form (0, w),
using that α(0, w) = (0, y):

α(z, w) = d1α|(0,w)(z) + h(z, w),

where d1α denotes the derivative of α with respect to the first k coordinates, where h : Dr → Cn
is holomorphic, h(0, w) = (0, y) and d1h(0, w) = 0. In particular, the function

(λ, z, w) ∈ D1 ×Dr 7→
h(λz,w)

λ

is holomorphic and vanishes for λ = 02, or, written in terms of α,

(λ, z, w) ∈ D1 ×Dr 7→
α(λz)

λ
− d1α|(0,w)(z)

is holomorphic and vanishes for λ = 0.
Since α is a biholomorphism d1α|(0,w)(z) 6= 0 for z 6= 0. Hence, for z 6= 0, the function

(λ, z, w) 7→ α(λz,w)
λ maps D1 × Dr\{0} to Cn\{0} and we can compose it with projection onto

CP k−1 × Cn−k to obtain a holomorphic map:

(λ, z, w) ∈ D1 ×Dr\{0} 7→
[
α(λz,w)

λ

]
∈ CP k−1 × Cn−k.

2By this we mean that the singularity of (λ, z) 7→ h(z)
λ

at 0 is removable and therefore we can extend this
function to 0 by continuity to obtain a holomorphic function.
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As before, to check that α̃ exists, we write its expression in the complement of the exceptional
divisor in the parametrization φi for the domain:

π−1
1 ◦ α ◦ π1 ◦ φi(λ, z1, . . . , zk−1, w) = π−1

1 ◦ α ◦ π1(λ(z1, . . . , 1, . . . zk−1), w, [z1, . . . , 1, . . . zk−1])

= π−1
1 ◦ α(λ(z1, . . . , 1, . . . zk−1), w)

= (α(λ(z1, . . . , 1, . . . zk−1), w), [α(λ(z1, . . . , 1, . . . zk−1), w)]),

=

(
α(λ(z1, . . . , 1, . . . zk−1), w),

[
α(λ(z1, . . . , 1, . . . zk−1), w)

λ

])
,

and we see that both components of α̃ extend holomorphically to λ = 0.

With this result at hand, we can construct the blow-up of a complex manifold M along
a complex codimension k, closed submanifold N . Indeed, for each point p ∈ N , we pick a
holomorphic coordinate chart ψ : U → Cn defined in a neighbourhood of p for which the points
in N correspond to the vanishing locus of the first k coordinates, that is,

ψ(N ∩ U) = {(0, z) ∈ ψ(U) ⊂ Ck × Cn−k}.

We then cover N with a collection of such charts {ψi : Ui → Cn : i ∈ I}, let Ṽi ⊂ τ ⊂ Cn×CP k−1

be the parametrized blow-ups constructed above and we define the blow up of M along N to be

M̃ = M\N ∪ (
⋃̇

i∈I
Ṽi)/ ∼

where a point x ∈M\N is declared to be equivalent to a point y ∈ Ṽi if x ∈ Ui and ψi(x) = π1(y)

and a point x ∈ Vi is equivalent to a point y ∈ Vj if ˜ψj ◦ ψ−1
i (x) = y.

6.5 Resolving singularities

A typical use of blow-ups is to resolve singularities of potential submanifolds. It is useful to
illustrate the idea in a concrete example first.

Example 6.10 (Desingularizing a node). Consider the map f : C2 → C given by f(z, w) = zw
and let Σε = f−1(ε). Notice that f is holomorphic and df = zdw + wdz, which is nonzero as
long as either z or w is not zero. That is (0, 0) is the only critical point of f and 0 is the only
critical value. By the regular value theorem, Σε is a smooth embedded submanifold of C2 for
ε 6= 0, but Σ0 is clearly not an embedded submanifold, as it is made up of two lines intersecting
transversely at the origin. One way to desingularise Σ0 is as follows:

1. blow-up C2 at the origin,

2. take the inverse image of Σ0 minus the singular point via the blow-down map and

3. consider the closure of this pre-image in C̃2.
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In mathematical symbols, we consider:

Σ̃0 = π−1(Σ0\{(0, 0)}).

The picture to have in mind is that the with the blow-up procedure, we replace the origin with
the possible directions one can use to approach it. Since Σ0 is made of two lines approaching
the origin from different directions, in the blow-up these two ‘branches’ of Σ0 should separate
and Σ̃0 should be made of two lines that do not intersect and hence Σ̃0 should be an embedded
submanifold and the blow-down map restricted to Σ̃0, π : Σ̃0 → Σ0 should be a biholomorphism
except for the pre-image of the singular point in Σ0

In the picture we tried to describe above, the reason to remove (0, 0) from Σ before taking
the pre-image is that π−1(0, 0) is the whole exceptional divisor and including it would never yield
a smooth manifold nor something which we would like to describe as a desingularization.

It is useful to perform the operation described above explicitly and see how the mental picture
given manifests itself with equations.

First, we parametrize C̃P 2 and write local expressions for the blow-down map. We need two

charts to parametrize C̃P 2, the first misses the line [0, 1], while the second misses the line [1, 0]:

ψ1 : C2 → τ, ψ1(u1, v1) = (u1, u1v1, [1, v1]),

ψ2 : C2 → τ, ψ1(u2, v2) = (u2v2, v2, [u2, 1]).

The change of parametrization is

(u2, v2) = ψ−1
2 ◦ ψ1(u1, v1) = ψ−1

2 (u1, u1v1, [1, v1]) = (v−1
1 , u1v

−1
1 ).

The blow-down map in each of these parametrizations is

(z, w) = π ◦ ψ1(u1, v1) = (u1, u1v1), (z, w) = π ◦ ψ2(u2, v2) = (u2v2, v2).

Now we turn our attention to Σ0. We compute π−1(Σ0\{(0, 0)}) in each parametrization
while keeping in mind that π ◦ ψ1 misses the vertical line and π ◦ ψ2 misses the horizontal line.

ψ−1
1 ◦ π

−1({(z, w) : zw = 0, z 6= 0}) = ψ−1
1 ◦ π

−1({(z, w) : w = 0, z 6= 0})
= {(u1, v1) : u1v1 = 0, u1 6= 0})
= {(u1, v1) : v1 = 0, u1 6= 0}).

Similarly, in the second coordinate set we obtain

ψ−1
1 ◦ π

−1({(z, w) : zw = 0, w 6= 0}) = {(u2, v2) : u2 = 0, v2 6= 0}.

Taking the closure we see that Σ̃0 is made up of one line in each coordinate chart and these lines
do not overlap. �

To continue with the theory we should define the terms we have been using.

Definition 6.11 (Embedded singular manifold). A singular complex submanifold, P , of a com-
plex manifold M is a subset P ⊂ M for which every point p ∈ P has a neighbouhood U such
that P ∩U is the zero locus of a holomorphic function f : U → Ck. Any such function f is a local
defining function for P .
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Definition 6.12. Given a singular submanifold P ↪→ M a point p ∈ P is smooth or regular if
there is a local defining function for P which has p as a regular point. A point in P is singular
if it is not smooth.

Definition 6.13 (Desingularization within an ambient space). Let P ↪→M be singular subman-
ifold of a complex manifold. A desingularization of P is a triple consisting of a complex manifold
M̃ a complex submanifold P̃ and a holomorphic map π : M̃ →M such that

• M̃ has the same dimension as M ,

• π is surjective, and proper,

• π(P̃ ) = P and

• π : P̃\π−1(∆)→ P\∆ is a biholomorphism, where ∆ is the set of singular points of P .

It is worth pausing and convincing yourself that in Example 6.10 Σ0 was a singular subman-
ifold and the construction provided gives a desingularization of Σ0 according to the definitions
above.

Exercise 6.4. [Cusp singularity] Find a desingularisation of the singular space given by

Σ0 = {(z, w) ∈ C2 : z3 − w2 = 0}

The candidate for desingularisation proposed in Example 6.10 deserves a name.

Definition 6.14. Let N ↪→ M be a complex submanifold of a complex manifold and let M̃ be
the blow-up of M along N . Let P ⊂ M be a singular submanifold. The proper transform of P
in M̃ is the subset

P̃ = π−1(P\N).

Exercise 6.5. Show that the proper transform of a singular submanifold is a singular submani-
fold.

In the context of desingularising submanifolds using proper transforms, the usual situation is
when N is either made up of singular points of P or at least is related to them in some way.

Notice that the proper transform of P may or may not be a smooth submanifold. If it is not,
one may still be able to identify its singularities and try to blow them up again in the hopes that
after repeating this process finitely many times one will arrive at a smooth submanifold which
would then deserve the name ‘desingularization of P ’.

Example 6.15. Consider the map f : C2 → C given by f(z, w) = z5 − w2 and let Σε = f−1(ε).
Once again f is holomorphic and df = 5zdz − 2wdw, which is nonzero as long as either z or w
is not zero. Therefore (0, 0) is the only critical point of f , 0 is the only critical value and Σ0 is a
singular submanifold of C2.

As before we can blow-up C2 at the origin and form the proper transform of Σ0. Notice that
since Σ0 approaches the origin tangent to the z-axis, we expect that the relevant behaviour, as
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far as desingularization goes, will be captured by the parametrisation that contains the point
[1, 0] ∈ CP 1. As in Example 6.10 we compute

ψ−1
1 ◦ π

−1(Σ0\{(0, 0)}) = ψ−1
1 ◦ π

−1{(z, w) : z5 − w2 = 0, z 6= 0}
= {(u1, v1) : u5

1 − (u1v1)2, u1 6= 0}
= {(u1, v1) : u3

1 − v2
1, u1 6= 0}

Therefore we see that the part of the proper transform, Σ̃0 of Σ0, covered by this chart is a cusp

(c.f. Exercise 6.4). In particular it is still a singular submanifold of C̃P 2. Following Exercise 6.4,
we have that after doing one further blow-up of the origin in the (u1, v1)-chart and taking one
further proper transform desingularises Σ0. �

From this example we see that the blow-up procedure seems to reduce the degree of degeneracy
of the defining function around a singularity and one might expect that by blowing-up enough
times a resolution can always be found. While we are dealing with isolated singularities (as in
Examples 6.10, 6.15 and Exercise 6.4) this strategy seems to be rather obvious, but once the
singularities themselves form singular submanifolds it may be unclear how to proceed.

Adding one level of difficulty, one sometimes has spaces that clearly deserve the qualification
‘singular’, but do not appear embedded in a smooth space, so the theory developed so far breaks
down a little.

Definition 6.16 (Abstract singular space). A singular complex manifold is a second countable,
Haudorff topological space for which every point has a neighbourhood which is homeomorphic to
an embedded singular submanifold of Cn, for some n, and the change of coordinates restricted
to the smooth locus are holomorphic maps.

From this definition it is not clear that every singular complex manifold can be realised as a
singular submanifold of some smooth complex manifold. It is not even clear that a neighbourhood
of a connected component of the singular locus can be realised as a singular submanifold, but in
the cases when it can, we can once again try to desingularise it by using repeated blow-ups.

Example 6.17. For n ∈ N, n > 1, let ξ be a primitive nth root of 1 and define an action of
Zn = 〈a : an = 1〉 on C2 by

a · (z1, z2) = (ξz1, ξz2).

The action of Zn on C2\(0, 0) is free and proper, but the origin is a fixed point of this action and
hence the quotient X = C2/Zn is potentially a singular complex manifold. This is indeed the
case and to see it we consider the map3

Φ: C2 → C3, Φ(z1, z2) = (zn1 , z
n−1
1 z2, z

n
2 ).

3Depending on your upbringing, the map we chose may be deeply disturbing, as you might want to write instead
a generating set for the ring of invariant functions, for example,

Φ: C2 → Cn+1, Φ(z1, z2) = (zn1 , z
n−1
1 z2, . . . , z1z

n−1
2 , zn2 ).

This is algebraically much more satisfying, but the effect is that this provides an embedding into an affine space of
very high dimension and one would have to figure out many more relations later to cut out the correct subspace.



6.5. RESOLVING SINGULARITIES 73

It is clear that if two points in C2 lie in the same orbit of the Zn action, they have the same
image under Φ. Further, if two points have the same image, they lie in the same orbit. Indeed,
if Φ(z1, z2) = Φ(w1, w2), then zni = wni and hence zi = ξliwi for some li. Comparing the middle
components, zn−1

1 z2 = wn−1
1 w2 then gives that ξ−l1+l2 = 0, showing that l1 = l2 mod n and

hence (z1, z2) is in the orbit of (w1, w2). That is, Φ induces an injection Φ̂ : X → C3 identifying
X with the image of Φ

Note that we can also describe the image of Φ as

Φ̂(X) = {(w1, w2, w3) ∈ C3 : wn2 = wn−1
1 w3},

which is a singular submanifold of C3 as it is the zero level set of the function f(w1, w2, w3) =
wn−1

1 w3 − wn2 . �

Exercise 6.6. Resolve the singularity of the manifold Φ̂(X) from the previous example.

Every singularity modelled on the quotient of Cn by the action of a finite group acting linearly
is modelled locally by the zeros of polynomials as in Example 6.17 (and I will find a proper citation
for this claim, but this seems to go back to work of Hilbert [2] and Noether [6]). These appear
frequently enough that they deserve a name:

Definition 6.18. An (Abelian) quotient singularity is a singularity locally of the form Cn/G,
where G is a finite (Abelian) group.

For the case of quotients singularities of the form Cn/G which only have the origin as fixed
point it may be easier to find a resolution by first blowing up the origin in Cn enough times so
that the group action is free or at least admits a smooth quotient, and then take the quotient
C̃n/G to obtain a resolution of the singularity.

Example 6.19. Consider the action of Zn = 〈a : an = e〉 on C2 from Example 6.17 and blow up

the origin in C2. Notice that by continuity, the action of Zn induces an action on C̃2 which can
be described in local charts:

a · (u1, w1) = a · (z1, z2/z1) = (ξz1, z2/z1) = (ξu1, u2).

Since the coordinate u1 in this chart for the tautological bundle τ = C̃2 corresponds to the fiber

direction, we see that the action of Zn on C̃2 amounts to rotation on each fiber by 2π/n, which
fixes the zero section. This description allows us to identify the quotient space more easily using
the following lemma. �

Lemma 6.20. Let E → M be a complex line bundle and let Zn act on E by fiberwise rotation
by 2π/n. Then E/Zn is isomorphic to En.

Proof. Let U = {Uα : α ∈ I} be an open cover of M over which E is trivialisable. Pick trivial-
isations Φα : E|Uα → Uα × C and let gαβ : Uαβ → C∗ be the corresponding transition functions.
Then (gαβ )n are the transition functions for En. Since the action preserves E|Uα we can describe
the quotient E/Zn by taking the quotient of each E|Uα and then gluing them back together, but
the action of Zn expressed in the trivialisation Φα is just

(p, z) ∈ Uα × C ai7→ (p, ξiz) ∈ Uα × C,
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and we see that the quotient map in this trivialisation is just

(p, z) ∈ Uα × C→ (p, zn).

For the transition between Uα and Uβ we have

Φβ ◦ (Φα)−1(p, z) = (p, gαβ (p)z),

which yields the relation
(p, zn) ∼= (p, (gαβ (p))nzn),

showing that the quotient E/Zn is obtained from the open sets {Uα × C : α ∈ I} glued together
using the transition functions (gαβ )n, which establishes E/Zn ∼= En.

Example 6.21. Let Mn be a complex manifold and form the space

M2 = (M ×M)/Z2,

where the action of the generator of Z2 is (x, y) 7→ (y, x). We callM2 the space the space of two
unordered points in M .

The fixed points for this action are the diagonal embedding of M in M ×M and in local
coordinates, this action is given by

(z, w) 7→ (w, z),

To describe the quotient process it is useful to take a different parametrization of C2. We use
instead

x = z + w, y = z − w.

Then the Z2 action in these coordinates is

(x, y) 7→ (x,−y).

We recognise that this is nothing but the product of (the diagonal embedding of) Cn with the
trivial action and the previous example (with the cyclic group Z2).

Therefore, combining Example 6.19 with the description of the blow-up along a submanifold
we see that

• Z2 acts on M̃ ×M , the blow-up of M ×M along the diagonal,

• this action has the exceptional divisor as fixed points,

• the quotient M̃2 = (M̃ ×M)/Z2 is a smooth complex manifold.

That is M̃2 is a resolution of the singularities of M2. �

The big result on this topic is Hironaka’s Theorem on resolution of singularities of algebraic
varieties. A version of this theorem for projective varieties can be stated with the language we
have introduced so far.

Theorem 6.22 (Hironaka [3]). Let X ⊂ CPn be a singular complex submanifold. Then X has
has a resolution obtained by a sequence of blow-ups of CPn.



Chapter 7

Sheaves and cohomology

In Chapters 3 and 5 we introduced Dolbeault cohomology, first just for forms and then with
coefficients in a holomorphic vector bundle, which somehow is the complex analogue of flat vector
bundles for smooth manifolds. It turns out that singular cohomology, de Rham cohomology and
Dolbeault cohomology are all examples of the more general theory of sheaf cohomology. Not only
does sheaf theory provides a unified framework for all these cohomology theories, but the presence
of relations between different sets of coefficients induces relations between the corresponding
cohomology theories.

In this chapter we will introduce sheaf theory, sheaf cohomology, Čech cohomology and prove
the Čech-to-de Rham theorem. One particularly nice application of sheaf cohomology is the
proof of the Riemann–Roch theorem for complex curves that we give in the final section of this
chapter.

7.1 Sheaves and presheaves

Coming from differential geometry, it is useful to think of a sheaf over a manifold M as an
abstraction to be used in a similar way as we use local smooth functions. To each open set
U ⊂ M we can assign a ‘space over U ’, namely, the smooth functions on U , C∞(U). There are
three basic properties of this space that we want to axiomatise: one can restrict functions defined
on U to any open subset V ⊂ U , if we have a collection of functions fi ∈ C∞(Ui) which agree of
double overlaps, then there is a function f ∈ C∞(∪iUi) which is equal to fi on each Ui and if two
functions f and g agree on all open subsets of a cover of M , then they agree on M . One final
property of local smooth functions that is not required for the definition but is required for the
development of the theory is that they have the structure of an Abelian group given by pointwise
addition of functions.

Definition 7.1 (Presheaf). A presheaf, F , over a topological space M is

• an assignment of a set Γ(U ;F) to each open set U ⊂M called the set of sections of F over
U ,

• a collection of restriction maps {rUV : Γ(U ;F)→ Γ(V ;F) : V ⊂ U},

The restriction maps are subject to the following conditions

75
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• rUU = Id for all U ,

• For W ⊂ V ⊂ U , rUW = rVW ◦ rUV ,

Definition 7.2 (Sheaf). A sheaf, F , over a topological space M is a presheaf over M for which
whenever an open set U is the union of open sets, U = ∪i∈IUi then

• if a collection of sections, fi ∈ Γ(Ui;F), i ∈ I is such that

rUiUijfi = r
Uj
Uij
fj for all i, j ∈ I,

then there is f ∈ Γ(U ;F) such that rUUif = fi.

• If f, g ∈ Γ(U ;F) satisfy rUUif = rUUig for all i ∈ I then f = g.

In words, the first condition says that we can patch sections that agree on overlaps to produce
a section on the bigger open set and if two sections agree on all open sets of a cover, then they
agree.

We have encountered several sheaves already in this course: smooth functions, holomorphic
functions (on a complex manifold), smooth or holomorphic sections of bundles and in particular
forms. In all these cases, sections of the sheaf over U agree with the usual notion of sections
of over U (or functions defined on U). Other examples include locally constant functions with
values in any fixed set, nonvanishing functions with values on R or C and maps to GL (k;C).

Notation. To avoid confusion, we will denote the sheaf of locally constant functions with
values in a ring R by R, while the sheaf of smooth functions with values in R will be denoted by
C∞(R). The sheaf of holomorphic functions will be denoted by O.

Example 7.3 (Bounded functions). An example of pre-sheaf which is not a sheaf is given by
bounded functions. Indeed, one can easily produce a collection of functions which are bounded on
open sets Ui, agree on overlaps but fail to produce a bounded function in the union. A concrete
example would be the identity function, Id: R→ R, whose restriction to (−n, n) is bounded for
all n ∈ N, but these to not patch to produce a bounded function in R.

One way to think of this example is that a sheaf should be defined by local properties (e.g.,
smoothness, holomorphicity), not global ones (e.g. bounded or specific decay at infinity). �

Example 7.4. Consider M = {0, 1} with the discrete topology and define a presheaf on M as
follows:

Γ({0, 1};F) = {1, 0},
Γ({1};F) = Γ({0};F) = {0},

Γ(∅;F) = {∅},

and the restrictions are the only possible maps. One can check directly that this defines a presheaf
for which the second sheaf condition fails.

One way to phrase the failure of the second condition (for Abelian sheaves, see below) is by
saying that there are sections which restrict to zero for all open sets in a cover, but which are
globally nonzero. �

A recurring example that departs from differential geometry is the skyscraper sheaf.
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Exercise 7.1 (Skyscraper sheaf). Let ι : N →M be an embedded submanifold and let FN be a
sheaf over N . Define a sheaf F over M as follows

• For U ⊂M , Γ(U ;F) = Γ(U ∩N,FN ), in particular Γ(U ;F) = ∅ if U ∩N = ∅.

• For V ⊂ U and s ∈ Γ(U ;F|N ), let rUV s = rU∩NV ∩Ns.

Check that this defines a sheaf.

It is necessary to understand the difference between a presheaf and a sheaf and how to turn
a presheaf into a sheaf. To do that we need the notion of germs and stalks.

Definition 7.5. Let F be a sheaf over M , x ∈M . The stalk of F over x, is the direct limit

Fx := lim
−→
x∈U

Γ(U ;F),

that is, Fx is a quotient space and two sections si ∈ Γ(Ui;F), i = 1, 2, are equivalent if there is
an open neighbourhood U ⊂ U1 ∩ U2 of x such that rU1

U s1 = rU2
U s2.

Another way of phrasing this is that two sections have the same germ at x if they agree on a
neighbourhood of x and the stalk Fx is made of the germs of sections defined on neighbourhoods
of x.

The notion of stalk is what allows one to pass from a presheaf to a sheaf.

Proposition 7.6. Given any presheaf, F , there is a unique sheaf, F , up to isomorphism whose
stalks agree with those of F . If F is a sheaf, then F is naturally isomorphic to F .

We will not provide a formal proof of this proposition, but just observce that roughly the
statement is the proof. Namely, we define F to be the sheaf of sections of the stalks of F . The
effect of forming F is that we at the same time

• add sections to F by patching local sections that agree on overlaps but which might not
be patchable on F

• remove sections from F by identifying sections which are different on F but agree on all
opens sets of a cover.

Moving on, we start putting more structure in our sheaves.

Definition 7.7. A sheaf F is Abelian if for every U , Γ(U ;F) has the structure of an Abelian
group and this is structure is compatible with restrictions, i.e.,

rUV (s1 + s2) = rUV (s1) + rUV (s2).

For example, sections of vector bundles with pointwise addition and nonvanishing R or
C-valued functions with pointwise multiplication are Abelian, while functions with values in
GL (k;R) or GL (k;C) do not form an Abelian sheaf for k > 1.

Similarly to the notion of Abelian sheaf, there is the notion of a sheaf of commutative rings,
R-modules, for a ring R and more, obtained by requiring that Γ(U ;F) are commutative rings,
R-modules for every U , etc. Also given two sheaves F1 and F2 we can form the sheaf F1 ⊕ F2

whose sections are pairs of sections of F1 and F2.
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Definition 7.8. Given two sheaves, F and G over M , a sheaf morphism between F and G,
A : F → G is a collection of maps

A|U : Γ(U ;F)→ Γ(U ;G)

defined for every open set U ⊂M which is compatible with restrictions, that is

rUV ◦ A|U = A|V ◦ rUV .

If the sheaves F and G have further structure (e.g., are Abelian, R-modules, etc) we require A
to be compatible with that structure.

Definition 7.9. Let A : F → G be a sheaf morphism between Abelian sheaves,

• the image of A is the sheaf generated by the images of stalks of F via the map A,

• the kernel of A is the sheaf generated by elements of the stalks that are mapped to 0 via
A.

Definition 7.10. Let H ⊂ F be a subsheaf of an Abelian sheaf. The quotient sheaf Q = F/H
is the sheaf whose stalks are the quotients of the stalks of F by the stalks of H.

Example 7.11. Let M be a manifold together with the sheaf of smooth functions. Let λ ∈
C∞(M) be a smooth function which has 0 as a regular value and define a map of sheaves by

A : f ∈ Γ(U ;C∞) 7→ λf ∈ Γ(U ;C∞).

If we let N = λ−1(0), we see that the image of A consists of functions which vanish along N while
the kernel is trivial because if λf = 0 in U , since λ 6= 0 in the complement of N this relation
only holds if f = 0 in the complement of N and by continuity f = 0.

Notice that even though A is injective, it is not surjective, since its image is made of functions
which vanish on N . We can therefore form the quotient sheaf Q = Γ(U ;C∞)/Im(A). For any
open set U that does not intersect N , Im(A) = Γ(U ;C∞) and therefore the quotient is trivial.
If an open set U intersects N , then the class a section f ∈ Γ(U ;C∞) determines in the quotient
is completely determined by the values f takes on N . That is Q is the skyscraper sheaf on M
obtained from the smooth functions on N . �

Exercise 7.2. Let λ : C2 → C be given by λ(z1, z2) = z1z2 and consider the map of sheaves

A : O → O, A(f) = λf.

Determine the kernel, the image and the quotient O/Im(A).
Consider the morphism

Â : O → O, Â(f) = λ2f,

and determine again the kernel, the image and the quotient O/Im(Â).

Definition 7.12. A sheaf of R-modules, F is free if Γ(U ;F) is isomorphic to Γ(U ;C∞(R)) ⊕
· · · ⊕ Γ(U ;C∞(R)).

A sheaf of R-modules, F is locally free if every point x ∈M has a neighbourhood U in which
Γ(U ;F) is isomorphic to Γ(U ;C∞(R))⊕ · · · ⊕ Γ(U ;C∞(R)).
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An example of a free sheaf is that of smooth functions with values in Rk where R above is
taken to be the sheaf of smooth real valued functions. An example of a locally free sheaf is that of
sections of a given vector bundle E →M , due to the fact that vector bundles are locally trivial.

The notion of locally free sheaf completely encodes the information about vector bundles. Be-
low we let S denote either of the following sheaves: continuous, smooth or holomorphic functions
(the latter, on a complex manifold)

Theorem 7.13. Let M be a connected manifold and let F be a locally free sheaf of S-modules.
Then F is the sheaf of sections of some S-vector bundle over M .

Proof. The map from vector bundles to locally free sheaves is just the one that to each vector
bundle associates the sheaf of sections of E. Conversely, given a locally free sheaf, consider
an open cover of M over which the sheaf is free, U = {Uα : α ∈ A} and fix isomorphisms
Φα : Γ(U ;F) → S ⊕ · · · ⊕ S . For α, β ∈ A with Uαβ 6= ∅ we can compare the corresponding
isomorphisms by considering Φβ ◦ Φ−1

α . Since this must preserve the module structure over S
(which is given by fiberwise vector space structure of S ⊕ · · · ⊕ S), we conclude that there is
gαβ : Uαβ → GL (k) such that Φβ ◦ Φ−1

α (s(x)) = gαβ (x)s(x). By cycling back to the open set Uα
we see that ǧ = {gαβ : Uαβ → GL (k) : α, β ∈ A} is a skew symmetric cocycle which therefore
determines a vector bundle. The regularity of the vector bundle depends on the regularity of the
functions gαβ which in turn agrees with that of the sheaf S we started with.

Before we continue with the meat of the theory, we need to take a step back and introduce a
few basic concepts, such as maps between sheave, kernels and images.

Definition 7.14. Given two sheaves, F and G over M , a sheaf morphism between F and G,
A : F → G is a collection of maps

A|U : Γ(U ;F)→ Γ(U ;G)

defined for every open set U ⊂M which is compatible with restrictions, that is

rUV ◦ A|U = A|V ◦ rUV .

If the sheaves F and G have further structure (e.g., are Abelian, R-modules, etc) we require A
to be compatible with that structure.

The definition of image and kernel of a sheaf morphism requires a little detour via germs of
sections, or, since the name is sheaf theory, stalks of sections ;-)

Definition 7.15. Let F be a sheaf over M , x ∈M . The stalk of F over x, is the direct limit

Fx := lim
−→
x∈U

Γ(U ;F),

that is, Fx is a quotient space and two sections si ∈ Γ(Ui;F), i = 1, 2, are equivalent if there is
an open neighbourhood U ⊂ U1 ∩ U2 of x such that rU1

U s1 = rU2
U s2.

Another way of phrasing this is that two sections have the same germ at x if they agree on a
neighbourhood of x and the stalk Fx is made of the germs of sections defined on neighbourhoods
of x.

One very important property of smooth functions on manifolds is that they admit partitions
of unity. That property is key to so many results that we should have a corresponding notion for
sheaves:
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Definition 7.16. A partition of unit of an Abelian sheaf F subbordinate to a locally finite open
cover U = {Ui : i ∈ I} of M is a collection of sheaf morphisms ηi : F → F , i ∈ I such that

•
∑

i∈I ηi = 1,

• ηi(Fx) = 0 if x has a neighbourhood that does not intersect Ui.

Of all types of Abelian sheaves, those that admit partitions of unity play a special role:

Definition 7.17. An Abelian sheaf F over a manifold M is fine if for every locally finite open
cover U of M there is a partition of unity of F subbordinate to U

For example smooth functions or smooth sections of a vector bundle are fine sheaves because
those are modules over C∞ and smooth functions admit partitions of unity. Locally constant
functions, nonvanishing functions or holomomorphic functions are not fine sheaves (if you multi-
ply a locally constant function by a partition of unity it ceases to be locally constant).

Finally, sometimes sheaves appear in families, in the form of a complex:

Definition 7.18. A complex of sheaves over a manifold M is a collection of Abelian sheaves,
{Fi : i ∈ N} and maps of groups di such that di ◦ di−1 = 0. A complex is exact if ker(di) =
Im(di−1) as sheaves for all i, that is, there is no local cohomology.

Definition 7.19. A resolution of aa Abelian sheaf F over M is an exact complex of sheaves
{(Fi, di) : i ≥ −1} with F−1 = F and Fi fine for i ≥ 0:

0→ F d−1−→ F0
d0−→ F1

d1−→ · · ·

Example 7.20. Consider the sheaf R of locally constant real functions on M . Since each locally
constant function is smooth, we have a natural inclusion of sheaves ι : R→ C∞(R). The exterior
derivative provides a continuation of this inclusion into a complex.

0→ R→ C∞(R)
d→ Ω1 → d→ Ω2 → . . .

By the Poincaré Lemma, this is an exact sequence of sheaves. Since smooth functions and smooth
sections of vector bundles admit partitions of unity, this is a resolution of the sheaf of locally
constant functions on M . �

Example 7.21. Consider the sheaf O of holomorphic functions over a complex manifold M .
Since each holomorphic function constant function is smooth, we have a natural inclusion of
sheaves ι : O → C∞. The ∂ operator provides a continuation of this inclusion into a complex.

0→ O → C∞(C)
∂→ Ω0,1 → ∂→ Ω0,2 → . . .

By the Poincaré holomorphic Lemma, this is an exact sequence of sheaves. Since smooth functions
and smooth sections of vector bundles admit partitions of unity, this is a resolution of the sheaf
of holomorphic functions on M . �

Exercise 7.3. Find a sheaf resolution for the sheaf of sections of a holomorphic vector bundle
E over a complex manifold M .
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Example 7.22. Let F be a fine sheaf over M , then

0→ F Id→ F → 0

is a sheaf resolution of F . �

Definition 7.23. Given an Abelian sheaf F over M we define the cohomology of F to be the
cohomology of the complex

0→ Γ(M ;F0)
d0→ Γ(M ;F1)

d1→ Γ(M ;F2)
d2→ . . . ,

where {(Fi, di) : i ≥ −1} is a sheaf resolution of F .

This definition is very “green” at this stage since we did not establish the existence of reso-
lutions and even if those exist, it is not clear at all that the corresponding cohomology groups
are independent of the chosen resolution. Regarding the first of these problem we will just state
the relevant result:

Theorem 7.24. Every Abelian sheaf admits a canonical sheaf resolution.

This result seems excellent: it has the word “canonical” in it, and the proof is constructive.
It is a big bummer that it turns out to be useless as well, so we will not present the proof here.
Steps towards the proof of the independence of chosen sheaf resolution will be done later, but
for now it is interesting to look back at the examples of resolutions we encountered before and
see what the corresponding sheaf cohomology becomes.

Example 7.25. Returning to Example 7.20, we see that for the resolution presented there we
have that the cohomology of the sheaf of locally constant functions is the cohomology of the
complex

0→ Ω0(M ;R)
d→ Ω1(M ;R)→ d→ Ω2(M ;R)→ . . .

That is, the cohomology of the sheaf of locally constant functions is the de Rham cohomology of
M :

Hk(M ;R) ∼= Hk(M ;R).

�

Exercise 7.4. Show that the sheaf cohomology of the sheaf of holomorphic sections of a holo-
morphic vector bundle E over a complex manifold M is the Dolbeault cohomology of M with
coefficients on E:

Hk(M ; Γ(E)) = Hk(M ;E).

Exercise 7.5. Show that if F is a fine sheaf, then the sheaf cohomology of F is{
H0(M ;F) = Γ(M ;F);

H i(M ;F) = {0}, for i > 0



82 CHAPTER 7. SHEAVES AND COHOMOLOGY

7.2 Čech cohomology

One way to think of Čech cohomology is that it attempts to recover information about the shape
of a manifold from combinatorial data regarding an open cover. The point of view being that if
we knew how many open sets are in a (good) cover as well as how they overlap each other then we
might be able to recover information about the topology of the manifold. Taking a step further,
if we knew information about sections of a specific sheaf over the open sets of a (good) cover,
we might obtain global information about that sheaf. So without further ado, let’s introduce the
main concepts.

Definition 7.26. Let F be a sheaf of Abelian groups over a manifold M and let U = {Uα : α ∈ A}
be a locally finite open cover of M , then a k-Čech cochain on M with coefficients in F with respect
to the cover U is

f̌ = {fα0,...,αk ∈ Γ(Uα0,...,αk) : αi ∈ A, fα0,...,αi,αi+1,...,αk = −fα0,...,αi+1,αi,...,αk},

where, Uα0,...,αk = Uα0 ∩ · · · ∩ Uαk .
The space of k-Čech cochains on M with coefficients in F with respect to the cover U is

Čk(M ;F ,U) = {f̌ : f̌ is a k-Čech cochain on M w.r.t. U}.

To be clear, each Čech cochain is a set, namely a family of sections defined on multiple
overlaps and the space of Čech cochains is the set containing such sets.

Example 7.27. Consider the sheaf of locally constant real valued functions over the circle,
S1 = R/Z and take U to be the open cover of S1 given by open sets

Ua = (0, 2/3), Ub = (1/3, 1), Uc = (2/3, 1/3).

Then an element f̌ ∈ Č0 = Č0(S1;R,U) consists of three locally constant functions, one for each
Ui. Since each Ui is connected, each locally constant function making up f̌ is in fact constant so
f̌ is determined by three real numbers and Č0 ∼= R3.

Similarly, there are three double overlaps of sets in U and an element in Č1 = Č1(S1;R,U)
corresponds to a collection of three locally contant functions defined on these (connected) double
overlaps, so we have also that Č1 ∼= R3.

The triple intersection of the open sets in U is empty and, since U has only three sets and
Čech cocycles are skew-symmetric, the higher degree Čech cochains are trivial.

If replace R by C∞(R) the space of Čech cochains changes drastically. For example, Č0(S1;C∞(R),U)
would correspond all collections of three smooth functions defined on an interval. �

Notice that the space of degree k-Čech cochains also has the structure of a group with
multiplication is given by

(f̌ + ǧ)α0...αk = (f̌)α0...αk + (ǧ)α0...αk .

Definition 7.28. Let F be a sheaf of Abelian groups over a manifold M and let U = {Uα : α ∈ A}
be a locally finite open cover of M . We define the Čech differential as the map

δ : Čk(M ;F ,U)→ Čk+1(M ;F ,U), δ(f̌)α0,...αk+1
= Σk+1

i=0 (−1)if̌α̂i ,

where fα̂i = fα0,...αi−1,αi+1...αk+1
.



7.2. ČECH COHOMOLOGY 83

Exercise 7.6. Check that δf̌ defined above is indeed a Čech cochain and that δ is a group
homomorphism.

Proposition 7.29. δ2 = 0.

Proof. This is a direct computation from the definition

(δ2f̌)α0,...αk+2
= Σi(−1)i(δf̌)α̂i

=
(
Σj<i(−1)j+i(δf̌)α̂j α̂i

)
·
(
Σi<j(−1)j+i−1(δf̌)α̂iα̂j

)
= 0

This allows us to introduce the cohomology language to the Čech world.

Definition 7.30. A Čech cochain, f̌ , is

• a (Čech) cocycle if δf̌ = 0,

• a (Čech) coboundary if f̌ ∈ Im(δ).

Definition 7.31. Let U be an open cover of a manifold M and let F be a sheaf of Abelian
groups over M . The Čech cohomology of M with values in F with respect to the cover U is

Ȟk(M ;F ,U) =
ker(δ : Čk(M ;F ,U)→ Čk+1(M ;F ,U)

Im(δ : Čk−1(M ;F ,U)→ Čk(M ;F ,U)
.

Even at this stage where Čech cohomology seems to depend on the cover we can already see
something interesting happening.

Lemma 7.32. For any cover U ,

Ȟ0(M ;F ,U) = Γ(M ;F).

Proof. Since there are no cochains of degree −1, we only need to describe the the kernel of δ.
This can be done directly:

δf̌ = 0⇔ f̌α = f̌β ∀α, β
⇔ ∃f ∈ Γ(M ;F) such that f |Uα = f̌α, ∀α.

Higher degree Čech cohomology is mysterious, as are all higher degree cohomologies, yet we
have already encountered one of them before.

Theorem 7.33. Complex (resp. real) line bundles over M are in one-to-one correspondence
with Čech cohomology classes in Ȟ1(M ;C∞(C∗),U) (resp. Ȟ1(M ;C∞(R∗),U)) for any cover U
of M by open sets diffeomorphic to discs.
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Proof. Consider the sheaf C∞(C∗), of nonvanishing complex valued functions, on a manifold M
and let U be an open cover of M . Then a 1-Čech cochain for this cover is

ǧ = {(ǧ)αβ : Uαβ → C∗ : (ǧ)αβ = (ǧ)−1
βα, }

where the ·−1 appears because the Abelian group in question is expressed multiplicatively, instead
of additively, as we have been doing so far. Such a cochain is a cocycle if

1 = (δǧ)αβγ = gβγ · (gαγ)−1 · gαβ = gαβ · gβγ · gγα.

That is, Čech cocycles classify complex line bundles over M with trivialisations over the cover U
(c.f. Lemma 5.3).

Further, two cocycles ǧ and ǧ′ are cohomologous if there is a degree zero Čech cochain, f̌ , for
which

(ǧ′)αβ = (ǧ)αβ · (δf̌)αβ = f̌β · (ǧ)αβ · f̌−1
α .

That is, Ȟ1(M ;C∞(C∗),U) classifies complex lines bundles that can be trivialised over the cover
U . (c.f. Theorem 5.4).

The theorem then holds because every vector bundle over a set diffeomorphic to a disc is
trivialisable.

Notice that to extend the result from Theorem 7.33 to holomorphic line bundles over a
complex manifold the only missing ingredient is the proof that such bundles are trivialisable over
specific open covers (those whose open sets are biholomorphic to polydiscs).

Interestingly in the two cases above we cound find conditions on the cover that guaranteed
the Čech cohomology under consideration was in fact independent of the open cover used. This
is not the case in general and a limit must be taken.

So, continuing with Čech cohomology theory we need to take the limit as we refine the cover.
To do so, we observe that if V is a refinement from a cover U , for each Vβ ∈ V we can choose a
Uα ∈ U such that Vβ ⊂ Uα. That is, we can find a map τ : B → A, from the index set of V to
the index set of U , such that Vβ ⊂ Uτ(β) for all β. This map gives rise to a correponding map of

Čech cochains via restrictions:

τ∗ : Čk(M ;F ,U)→ Čk(M ;F ,V), (τ f̌)β0...βk = (f̌)τ(β0)...τ(βk)|Vβ0...βk .

Even though the map at the cochain level clearly depends on the choice of τ , the induced map
in cohomology does not.

Lemma 7.34. For any choice of map between index sets τ : B → A as above, τ∗δ = δτ∗, hence
τ∗ descend to a map in cohomology. Further if τ̃ is another choice of map for which Vβ ⊂ Uτ̃(β)

for all β, then τ∗ and τ̃∗ induce the same map in Čech cohomology.

Proof. The first claim is clear so we only need to check that the map induced in cohomology by
τ and τ̃ agree.

We call the induced map in cohomology the refinement map.

Definition 7.35. The Čech cohomology of M with values in F , Ȟk(M ;F) is the direct limit of
Ȟk(M ;F ,U) under refinement of covers.
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In words, Ȟk(M ;F) is made of cohomology classes in Ȟk(M ;F ,U) for any open cover U and
two classes [ǧi] ∈ Ȟk(M ;F ,Ui), i = 1, 2, are equivalent classes in Ȟk(M ;F) if there is a common
refinement V of U1 and U2 for which the images of [ǧi] under the corresponding refinement maps
agree.

It will be awesome if we can find enough cases for which the process of taking the limit is not
necessary.

Proposition 7.36. Let F be a fine sheaf over M . Then{
Ȟ0(M ;F ,U) = Γ(M ;F);

Ȟ i(M ;F ,U) = {0}, for i > 0.

In particular the Čech cohomology of a fine sheaf does not depend on the cover.

Proof. The computation of Ȟ0 was done in Lemma 7.32, so we only need to do the hard part
now.

Let {ψα : α ∈ A} be a partition of unit subordinate to the cover U and let ǧ ∈ Čk(M ;F ,U)
be a k-cocycle. We can write the cocycle condition as

(ǧ)α1...αk+1
= −

k∑
i=0

(−1)i(ǧ)α0...α̂i...αk+1

on Uα1...αk+1
.

The way the partition of unit comes in is that ψα0gα0...αk can be extended to Γ(Uα1...αk ,F) by
declaring that vanishes outside Uα0 . Since the cover is locally finite we can define a k−1-cochain,
f̌ , by

(f̌)α0,...,αk−1
=
∑
α

ψαgα,α0,...αk−1
.

And, by what can only be described as a miracle, we have that δf̌ = ǧ:

(δf̌)α0...αk =

k∑
i=0

(−1)i
∑
α

ψαǧα,α0,...α̂i...αk

=
∑
α

ψα

k∑
i=0

(−1)iǧα,α0,...α̂i...αk

=
∑
α

ψαǧα0,...αk

= ǧα0,...αk .

Exercise 7.7. Let M be a manifold, p ∈M and let Cp be the skyscraper sheaf on M supported
on p with fiber C over p. Compute the Čech cohomology of M with coefficients in Cp.

Finally, when there are relations between the sheaves under consideration, we get corre-
sponding relations between the Čech cohomologies. Indeed, since the Čech differential is purely
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combinatorial, if A : F → G is a morphism of Abelian sheaves, then it induces a corresponding
map between Čech cochains, A∗ : Čk(M ;F ,U)→ Čk(M ;G,U) which commutes with differentials
and hence induces a map in cohomology,

A∗ : Ȟk(M ;F ,U)→→ Ȟk(M ;G,U).

If A is injective or surjective (and the cover is fine enough) so is the map A∗ at the cochain level.
In particular, if

0→ F → G → H → 0

is a short exact sequence of Abelian sheaves, we obtain a short exact sequence of differential
complexes

0→ Č•(M ;F ,U)→ Č•(M ;G,U)→ Č•(M ;H,U)→ 0.

And any such sequence gives rise to a long exact sequence in cohomology:

· · · Ȟk(M ;F ,U)→ Ȟk(M ;G,U)→ Ȟk(M ;H,U)→ Ȟk+1(M ;F ,U)→ · · ·

We sumarise this discussion in the following theorem:

Theorem 7.37. A short exact sequence of Abelian sheaves

0→ F i−→ G q−→ H → 0

gives rise to a long exact sequence in cohomology

· · · Ȟk(M ;F ,U)
i∗−→ Ȟk(M ;G,U)

q∗−→ Ȟk(M ;H,U) −→ Ȟk+1(M ;F ,U)→ · · ·

Exercise 7.8. Show that the following is an exact sequence of sheaves

0→ Z 2πi−→ C∞(C)
exp−→ C∞(C∗)→ 0.

Conclude that complex line bundles are classified by Ȟ2(M ;Z,U) for any open cover U for which
each element of U is diffeomorphic to a disc and and each double overlap is either empty or
diffeomorphic to a disc.

Definition 7.38. The first Chern class of a complex line bundle L → M , is the class in
Ȟ2(M ;Z,U) corresponding to L.

Exercise 7.9. Let Σ be a Riemann surface, let p ∈ Σ and let Lp → Σ be the holomorphic line
bundle which has a section s which vanishes only at p with a simple zero (c.f. Exercise 5.7). Let
E → Σ be a holomorphic line bundle. Show that we have an exact sequence of sheaves

0→ Γ(E)
⊗s−→ Γ(E ⊗ Lp)

evp−→ Ep → 0,

where evp is the evaluation of a section at p and Ep is the skyscraper sheaf corresponding to the
bundle Ep → {p} together with the inclusion {p} → Σ.
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7.3 Čech-to-de Rham

So far we have introduced two cohomology theories associate to a sheaf F over a manifold
M : sheaf cohomology, which in principle depends on a choice of sheaf resolution, and Čech
cohomology, which, before taking a limit, depends on a choice of cover. In this section we study
a general situation in which these dependencies do not hold.

Definition 7.39. Given a sheaf F over M and a resolution of F ,

0→ F d−→ F0
d−→ F1

d−→ · · ·

a fine cover of M for the resolution of F is a locally finite open cover U = {Uα : α ∈ A} such
that H i(M ;F , Uα0,...αk) = {0} for i > 0.

Remark. The question of course is how to decide, in concrete situations, if a given cover is fine
for a given resolution. As we saw in Examples 7.20 and 7.21, the Poincaré Lemma and the
holomorphic Poincaré Lemma seem to be the tools we need to establish the existence of fine
covers for the sheaves R and O. If we could establish that for any (complex) manifold there is
a cover whose open sets are diffeomorphic to (poly-)discs and whose multiple overlaps are either
diffeomorphic to (poly)-discs or empty, then we would have found our fine open cover for those
resolutions. This is probably wishful, but gives you the correct gist of how to go about finding a
fine cover for those resolutions.

To understand the point that needs attention, let’s first consider the case of smooth manifolds
and the sheaf R. One way to produce a fine cover for the resolution of R given by differential
forms is to take small geodesic balls. One then argues that if these balls are taken small enough
they are geodesically convex, that is, the curve of minimal length connecting points in each ball
lies in that ball. Hence the intersection of two such balls is also geodesically convex and therefore
the multiple intersections are star shaped domains and the Poincaré lemma holds for any such
domain. Notice that by dealing with star shaped domains we dodged the question of whether
these domains are diffeomorphic to balls.

One can similarly argue that if M is a complex manifold, the cover described above is also fine
for the resolution of O given in Example 7.21. Since the intersection of discs (or of polydiscs) may
not be biholomorphic to a disc (or a polydisc), the vanishing of the cohomology of the multiple
intersections for such a cover requires a more refined version of the holomorphic Poincaré Lemma.
Such a version also exists, but must take into account convexity properties of the boundary of
such intersections.

Theorem 7.40 (Čech-to-de Rham). Let F be an Abelian sheaf over M , let

0→ F d−→ F0
d−→ F1

d−→ · · ·

be a sheaf resolution of F and let U be a fine cover of M for the given resolution of F . Then

Hk(M ;F) ∼= Ȟk(M ;F , U).

Proof. To relate these two cohomology theories we create a larger double complex that includes
information about the resolution and Čech cochains. The proof amounts to showing that the
cohomology of this larger complex is isomorphic to the Čech and to the sheaf cohomology.
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We form the spaces

Ep,q0 = Čq(M ;Fp,U), p, q ≥ 0.

There are two differentials we can consider here, the one coming from the resolution of F and
one from Čech cohomology theory. Since the Čech differential is purely combinatorial and the
sheaf differential is a group homomorphism we see that these two differentials commute:

d : Ep,q0 → Ep+1,q, δ : Ep,q0 → Ep,q+1, dδ − δd = 0.

We combine the (p, q)-grading into a total degree by declaring that elements in Ep,q0 have degree
p+ q. Similarly we can combine the two differentials into a single degree-one differential:

D : ⊕p+q=k Ep,q0 → ⊕p+q=k+1E
p,q
0 , D = d+ (−1)pδ.

We compute D2 by applying it to an element ρ ∈ Ep,q0 :

D2ρ = D(dρ+ (−1)pδρ) = d2ρ+ (−1)p+1δdρ+ (−1)pdδρ+ δ2ρ = 0.

This allows to define the cohomology of (E•,•0 , D):

Hk =
ker(D : ⊕p+q=k Ep,q0 → ⊕p+q=k+1E

p,q
0 )

Im(D : ⊕p+q=k−1 E
p,q
0 → ⊕p+q=kEp,q0 )

Notice that we have natural inclusions of differential complexes:

i : (Γ(M ;F•), d) ↪→ (E•,00 , D) ⊂ (E•,•0 , D), j : (Č•(M ;F), δ) ↪→ (E0,•
0 , D) ⊂ (E•,•0 , D),

and therefore we have corresponding maps, i∗ and j∗ in cohomology. The theorem is proved by
showing that i∗ and j∗ are isomorphisms.

The proof relies on the repeated use of two observations

Lemma 7.41. Given an element ρ ∈ ⊕kq=0E
k−q,q
0 , let q0 be such that ρk−q,q = 0 for q > q0. If

q0 > 0 and δρk−q0,q0 = 0, then there is τ ∈ Ek−q0,q0−1 for which the (k − q, q) component of
ρ− (−1)k−q0Dτ vanishes for q ≥ q0.

Lemma 7.42. Given an element ρ ∈ ⊕kq=0E
p,k−p
0 , let p0 be such that ρp,k−p = 0 for p > p0. If

p0 > 0 and dρp0,k−p0 = 0, then there is τ ∈ Ep0−1,k−p0 for which the (p, k − p) component of
ρ−Dτ vanishes for p ≥ p0.

Proof of Lemma 7.41. Since Fk−q0 is a fine sheaf, it has no Čech cohomology in positive degree
by Proposition 7.36, that is, there is τ ∈ Ek−q0,q0−1 such that δτ = ρk−q0,q0 . A direct computation
shows that ρ− (−1)k−q0Dτ has the desired property.

Proof of Lemma 7.42. Since the cover U is fine for the given resolution, Fp0 has no sheaf coho-
mology in positive degree, that is, there is τ ∈ Ep0−1,k−p0 such that dτ = ρp0,k−p0 . A direct
computation shows that ρ−Dτ has the desired property.
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0

0

(−1)k−q0−1δ

OO

d // 0

ρk−q0,q0

(−1)k−q0δ

OO

d // ?

τ

(−1)k−q0δ

OO

d // ρk−q0+1,q0−1

(−1)k−q0δ

OO

d // ?

Figure 7.1: If δρk−q0,q0 = 0, we can ‘kill’ the (k − q0, q0)-component of ρ by adding an exact term
without adding terms whose q-degree is higher than q0.

Continuation of the proof of Theorem 7.40.

i∗ is surjective. To prove that this is the case we must show that every degree-k element
ρ ∈ E•,•0 is cohomologous to one in the image of i. To do this, we write ρ =

∑k
q=0 ρ

k−q,q and let

q0 be the biggest value of q for which ρk−q,q 6= 0. The condition Dρ = 0 implies that δρk−q0,q0 = 0.
If q0 > 0, by Lemma 7.41 we can change ρ by a D-exact element, ρ̃ = ρ − (−1)k−q0Dτ , so that
the biggest value of q for which ρ̃k−q,q 6= 0 at most q0− 1. Repeating this process inductively we
show that ρ is cohomologous to an element ρk,0 and the condition that Dρk,0 = 0 implies that
δρk,0 = 0, that is, ρk,0 is induced by a global section ρk,0 ∈ Γ(M ;Fk) and therefore is in the
image of the map i∗.

i∗ is injective. Say a closed element φ ∈ Γ(M ;Fk) becomes exact in E•,•0 , that is there is an
element ρ ∈ E•,•0 such that Dρ = φ. As in the previous case, let q0 be the biggest value for
which ρk−q0−1,q0 6= 0. If q0 > 0, the equation Dρ = φ gives that δρk−q0−1,q0 = 0 and, by Lemma
7.41, there is τ such that ρ̃ = ρ − (−1)k−q0−1Dτ also has vanishing (k − q0, q0) component and
Dρ̃ = Dρ = φ. By induction, we conclude that φ = Dρk−1,0 which shows that ρk−1,0 is induced
by a global section of Fk−1 and φ is globally exact.

j∗ is surjective. To prove that this is the case we must show that every degree-k element ρ ∈ E•,•0

is cohomologous to one in the image of j. To do this, we once again write ρ =
∑k

p=0 ρ
p,k−p and

let p0 be the biggest value of p for which ρp,k−p 6= 0. The condition Dρ = 0 implies that
dρp0,k−p0 = 0. If p0 > 0, by Lemma 7.42 we can change ρ by a D-exact element, ρ̃ = ρ−Dτ , so
that the biggest value of p for which ρ̃p,k−p 6= 0 at most p0−1. Repeating this process inductively
we show that ρ is cohomologous to an element ρ0,k and the condition that Dρ0,k = 0 implies that
dρk,0 = 0, that is, ρ0,k is induced by an element ρ0,k ∈ Čk(M ;F) and therefore is in the image
of the map j∗.

j∗ is injective. Say a closed element φ ∈ Čk(M ;F) becomes exact in E•,•0 , that is there is an
element ρ ∈ E•,•0 such that Dρ = φ. As in the previous case, let p0 be the biggest value for which
ρp0,k−p0−1 6= 0. If p0 > 0, the equation Dρ = φ gives that dρp0,k−p0−1 = 0 and, by Lemma 7.42,
there is τ such that ρ̃ = ρ −Dτ also has vanishing (p0, k − p0) component and Dρ̃ = Dρ = φ.
By induction, we conclude that φ = Dρ0,k−1 which shows that ρ0,k−1 is induced by an element
ρ0,k−1 ∈ Čk−1(M ;F) and φ is exact in the F-Čech cohomology.
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Remark. One result I would like to include here, but for which I do not have a proof, is

Wishful Theorem. Given any Abelian sheaf F , a resolution of F

0→ F → F0 → F1 → · · · → Fn → 0,

and a locally finite open cover U , there is a locally finite refinement Ũ of U which is fine for the
resolution of F .

If this held we would be able to conclude from the theorem above that sheaf cohomology is
isomorphic to Čech cohomology (in the limit under refinement of covers) and hence independent
of the chosen resolution. And similarly, for any fine cover U for the resolution of F , Čech
cohomology of F with respect to the cover U is isomorphic to the sheaf cohomology which is
isomorphic to the Čech cohomology. That is once we have a fine cover, we already “arrived at
the limit” for Čech cohomology.

7.4 Consequences of the Čech-to-de Rham theorem

Theorem 7.40 has several consequences which we analyse now.
First we observe that there is an agreement of definitions:

Definition 7.43. The Čech dimension of a locally finite open cover U is the largest integer n
for which there is a nonempty intersection Uα0...αn .

Proposition 7.44. Given an Abelian sheaf F , if F admits a finite resolution

0→ F → F0 → F1 → · · · → Fn → 0

then Hk(M ;F) = 0 for k > n.
Further, M admits a fine cover U for F whose Čech dimension is m, then Hk(M ;F) = 0 for

k > m.

Proof. The first claim follows from the definition of sheaf cohomology and the second from the
fact that Ȟk(M ;F ,U) = 0 for k > m plus Theorem 7.40.

Theorem 7.45. A short exact sequence of Abelian sheaves

0→ F i−→ G q−→ H → 0

gives rise to a long exact sequence in cohomology

· · ·Hk(M ;F ,U)
i∗−→ Hk(M ;G,U)

q∗−→ Hk(M ;H,U) −→ Hk+1(M ;F ,U)→ · · ·

Corollary 7.46 (Baby Riemann–Roch). Let E → Σ be a line bundle over a Riemann surface
and let Lp be the line bundle with a section which vanishes transversely at p (and nowhere else).
Let hi(Σ;L) = dim(H i(Σ; Γ(L)) for any holomorphic line bundle L. Then

h0(Σ;E ⊗ Lp)− h1(Σ;E ⊗ Lp) = h0(Σ;E)− h1(Σ;E) + 1. (7.4.1)

In particular if E = Lp1 ⊗ . . .⊗ Lpn ⊗ (Lq1)∗ ⊗ . . .⊗ (Lqm)∗ and we set d = n−m, then

h0(Σ;E)− h1(Σ;E) = h0,0(Σ)− h0,1(Σ) + d.
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Proof. We start with the first claim. From Exercise 7.9, we have a short exact sequence

0→ Γ(E)
⊗s−→ Γ(E ⊗ Lp)

evp−→ Ep → 0, (7.4.2)

which gives rise to a long exact sequence

0→ H0(Σ;E)
⊗s−→ H0(Σ;E ⊗ Lp)

evp−→ H0(Σ; Γ(Ep))→

→ H1(Σ;E)
⊗s−→ H1(Σ;E ⊗ Lp)

evp−→ H1(Σ; Γ(Ep))→ 0.

Notice that because the resolution of the skyscraper sheaf Ep finishes in degree 0 and the reso-
lution of holomorphic sections of L finishes at Ω0,1(M ;L), there are no further terms in the long
exact sequence. Since the sequence above is exact, the alternating sum of the dimensions of the
spaces involved vanishes, and, by Exercise 7.7, dimH0(Σ; Γ(Ep)) = 1, so we have

h0(Σ;E)− h0(Σ;E ⊗ Lp) + 1− h1(Σ;E) + h1(Σ;E ⊗ Lp) = 0,

which can be rearranged to (7.4.1).
The second claim is proved inductively, starting with the trivial bundle. Each time we tensor

with Lp the alternating sum of the cohomologies increases by 1, by the previous part and each
time we tensor with L∗q , it decreases by 1 because of the sequence

0→ Γ(E ⊗ L∗q)
⊗s−→ Γ(E ⊗ L∗q ⊗ Lq)︸ ︷︷ ︸

∼=Γ(E)

evq−→ Eq → 0,
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Chapter 8

Vector bundles – Part II

8.1 Connections and curvature

This section we give a quick review of connections on Hermitian vector bundles. The notion of
a Hermitian metric on a complex vector space was introduced in Chapter 1. The extension to
complex vector bundles is immediate:

Definition 8.1. Given a complex vector bundle E → M , a Hermitian metric on E is a section
h ∈ Γ(E∗ ⊗ E∗) such that

h(v, w) = h(w, v), for v, w ∈ E,

h(v, v) > 0, for v ∈ E\0.

The condition h ∈ Γ(E∗⊗E∗) is often also phrased by saying that h is a symmetric sesquilinear
map from E×E to C, which means it is complex linear in the first entry and complex antilinear
in the second:

h(λ1v1, λ2v2) = λ1λ2h(v1, v2).

One can always decompose a Hermitian metric into its real and imaginary parts: h = g + iω

Exercise 8.1. Let h = g+ iω be a Hermitian metric. Then g is a Riemannian metric compatible
with the complex structure, ω is a nondegenerate 2-form compatible with complex structure and
these two are related by

g(v, Iw) = ω(v, w).

Similarly, given a Riemannian metric, g, compatible with the complex structure, let ω(v, w) =
g(v, Iw), then ω is a nondegenerate 2-form compatible with the complex structure and h = g+iω
is a Hermitian metric.

Finally, given a nondegenerate 2-form ω compatible with the complex structure, let g(v, w) =
−ω(v, Iw), then g is a Riemannian metric compatible with the complex structure and h = g+ iω
is a Hermitian metric.

Given a collection of Hermitian metrics hi on E, any (fiberwise) convex combination of them
is still a Hermitian metric and this is the key fact that goes into the proof of the following lemma:

Lemma 8.2. Every complex vector bundle E →M admits a Hermitian metric.

93
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Proof. Indeed, pick a locally finite open cover of M , U = {Uα}α∈A, such that E is trivialisable
over each Uα and pick local frames {s1

α, . . . , s
k
α}. Define a Hermitian metric hα on EUα by

declaring that the local frame {s1
α, . . . , s

k
α} is orthonormal. Let {ψα}α∈A be a partition of unity

subordinate to the cover U and define h =
∑
ψαhα, where ψαhα is smoothly extended as zero

outside of Uα.

Then h ∈ Γ(E∗ ⊗ E∗), since this is the case for each hα. Also

h(v, w) =
∑

ψαhα(v, w) =
∑

ψαhα(w, v) = h(w, v).

And finally, for v 6= 0

h(v, v) =
∑

ψαhα(v, v) > 0,

because it is a convex sum of positive numbers.

Once we have enough geometric structure on a vector bundle, the next step is to introduce
the notion of derivatives. Here connections replace the exterior derivative of functions.

Definition 8.3. Given a vector bundle E →M , a connection on E is a linear differential operator

∇ : Γ(E)→ Γ(T ∗M ⊗ E),

such that for all f ∈ C∞(M) and s ∈ Γ(E),

∇(fs) = df ⊗ s+ f∇s.

Example 8.4 (The trivial connection). If E = Ck ×M → M is the trivial bundle, then each
section of E is just a collection of k complex valued functions and the exterior derivative is a
connection on E. �

Exercise 8.2. Let be a connection on E →M for i = 1, . . . , l let ∇i. Let {fi}{i=1,...,l} be smooth

functions such that
∑l

i=1 fi = 1. Show that
∑
fi∇i is a connection on E. Using partitions of

unity, conclude that every vector bundle admits a connection.

Exercise 8.3. Let ∇0 and ∇1 be two connections on E →M . Show that

∇0 −∇1 : Γ(E)→ Γ(T ∗M ⊗ E)

is C∞-linear. Conclude that there is A ∈ Γ(T ∗M ⊗ End (E)) such that

∇0 −∇1 = A.

Conversely, given A ∈ Γ(T ∗M ⊗End (E)), ∇0 +A is also a connection on E. Conclude that the
space of connections on E is an affine space modelled on Γ(T ∗M ⊗ End (E)).

Definition 8.5. Given a Hermitian vector bundle (E, h)→M , a connection ∇ on E is compat-
ible with the Hermitian structure if for all v, w ∈ Γ(E),

d(h(v, w)) = h(∇v, w) + h(v,∇w).
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Exercise 8.4. Show that every Hermitian vector bundle admits a connection compatible with the
Hermitian metric. Further, show that if ∇0 is a connection on E compatible with the Hermitian
metric another connection, ∇1, on E is compactible with the Hermitian metric if and only if
∇1 = ∇0 +A, with A ∈ Γ(T ∗M ⊗ End (E)) satisfying A∗ = −A.

These results are useful to give us local expressions for connections. Indeed, if E → M is
trivialisable over an open cover U and we choose trivialisations φα : E|Uα → Uα × Ck (if E is
Hermitian, by Gram–Schmidt we can ensure that the trivialisation is by an orthonormal frame),
then we can compare a connection ∇ on E with the trivial connection on E|Uα :

φα(∇s(x)) := (x, d~f +Aα ~f),

where Aα is a k×k-matrix of 1-forms and ~f is the column vector whose entries are the components
of s in the trivialisation Φα. The 1-form matrices Aα are the local connection 1-forms.

Proposition 8.6. Let (E,∇)→ M be a vector bundle with connection, let U = {Uα}α∈A be an
open cover of M over which E is trivialisable and let {Φα}α∈A be a collection of trivialisations
of E. Let {gαβ}α,β∈A be the transition functions for the trivialisations.

Denoting by {Aα}α∈A the local connection 1-forms of ∇. Then

Aα = gβαAβg
α
β + gβαdg

α
β . (8.1.1)

Conversely, given a collection of 1-forms matrices {Aα}α∈A satisfying 8.1.1, there is a unique
connection ∇ on E which on the trivialisation Φα has connection 1-form Aα.

We can consider the spaces of higher degree forms on E, Ωk(M ;E) = Γ(∧kT ∗M ⊗E) and we
can extend any connection, ∇ to a map

∇ : Ωk(M ;E)→ Ωk+1(M ;E),

by requiring that it satisfies the Leibniz identity:

∇(φs) = dφ⊗ s+ (−1)kφ ∧∇s, ∀φ ∈ Ωk(M ;C), s ∈ Γ(E).

The map above is often also denoted by d∇ since it mimics the exterior derivative. Yet, differently
from the exterior derivative, ∇2 is frequently not zero.

Proposition 8.7. Let (E,∇)→M be a vector bundle with connection over M , let φ ∈ Ωk(M ;C)
and s ∈ Γ(E), then

∇2(φ⊗ s) = φ⊗∇2s,

That is ∇2 : Ω•(M ;E)→ Ω•(M ;E) is given by a section F∇ ∈ Ω2(M ; End (E)).

Definition 8.8. The curvature of a connection ∇ is the tensor F∇ = ∇2 ∈ Ω2(M ; End (E)).

Exercise 8.5. Let ∇ be a connection on E and let A ∈ Ω1(M ; End (E)). Then the curvatures
of ∇ and ∇+A are related by

F∇+A = F∇ +∇A+A ∧A,

where the wedge indicates matrix multiplication and exterior product.
Conclude that given a (local) trivialisation of a bundle E, if A is the local connection 1-form

of the connection ∇, then the curvature of ∇ is given by

F∇ = dA+A ∧A.
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Not only can we extend a connection on E to the differential operator on Ωk(M ;E), but we
can also extend a connection on E to a connection on associated vector bundles, such as E∗ or
End (E), by requiring that the Leibniz rule should hold.

Exercise 8.6 (Dual and endomorphism connections). Let (E,∇)→M be a vector bundle over
M . Define a connection ∇∗ on E∗ by requiring that the Leibniz rule holds

d(s∗(s)) = (∇∗s∗)(s) + s∗(∇s).

Similarly, define a connection ∇ on End (E) by requiring that the Leibniz rule holds

∇(A(s)) = (∇A)(s) +A(∇s).

Theorem 8.9 (Second Bianchi Identity). Let (E,∇) → M be a vector bundle with connection.
Then

∇F∇ = 0.

Proof. To make it easier to follow the computation, it is useful to pick a section s ∈ Γ(E). Then,
by definition of the connection induced on endomorphisms, we have

(∇F∇)s = ∇(F∇s)− F∇(∇s) = ∇(∇2s)−∇2(∇s) = ∇3s−∇3s = 0.

Corollary 8.10. Given a vector bundle with connection (E,∇) → M , d(Tr(F∇)) = 0 and the
cohomology class [Tr(F∇)] is independent of the connection.

Proof. The first claim follows from the Second Bianchi Identity and the invariance of the trace:

dTr(F) = Tr(∇F ), ∀F ∈ Ω•(M ; End (E)).

The second follows from Exercise 8.5, the previous identity and the fact that Tr(A ∧ A) = 0.
1

Definition 8.11. The curvature class of a vector bundle E is the cohomology class 1
2πi [Tr(F∇)]

for any connection ∇ on E.

Notice that for line bundles, E ⊗ E∗ is trivial and the curvature is just a 2-form, which is
closed, by the argument above and represents the curvature class of the line bundle. For higher
rank vector bundles we can recover the curvature class from the corresponding determinant vector
bundle.

Lemma 8.12. If E →M is a rank k vector bundle, then ∇ induces a connection ∇̃ on the line
bundle ∧kE →M and

Tr(F∇) = F∇̃.
1Any other map

Φ: Ω•(M ; End (E))× · · · × Ω•(M ; End (E))→ Ω•(M ;C)

such that
dΦ(A1, . . . , Al) = Φ(∇A1, . . . , Al) + · · ·+ Φ(A1, . . . ,∇Al)

will produce cohomology classes when applied to the curvature. This way we obtain all higher curvature classes.
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Recall that the Čech-to-de Rham isomorphism gives an identification of the sheaf cohomology
H•(M ;R) with the de Rham cohomology.

Theorem 8.13. For a complex vector bundle E →M , the curvature class of E is the image of
the first Chern class of det(E) under the natural inclusion Z→ R:

c1(E) ∈ H2(M ;Z)→ H2(M ;R).

Proof. The proof is a matter of chasing the different arrows that arose in the arguments of
different proofs we have seen so far. By Exercise ?? the curvature class of E and of det(E) are
the same, hence we can assume without loss of generality that E is a complex line bundle.

We start with the description of a representative of the cohomology class c1(E) ∈ H2(M ;Z).
Pick an open cover U = {Uα}α∈A of M together with trivialisations of E over this open cover
to obtain transition functions {gαβ}α,β∈A. Assume further that all the Uα as well as the Uαβ are
contractible. The transition functions, ǧ, are a representative of the classifying class of E in
Č1(M ;C∞(C∗),U). To obtain a representative of the corresponding class in Č2(M ;Z) we use
the connecting homomorphism for the exact sequence of sheaves

0→ Z 2πi→ C∞(C)
exp→ C∞(C)→ 0,

that is, we chose branches for the log and take δ( 1
2πi log ǧ).

Next the inclusion Z ⊂ R corresponds to considering the cocycle of integers δ( 1
2πi log ǧ) as

a cocycle of locally constant real functions and now we follow the Čech-to-de Rham algorithm
to produce a 2-form out of this Čech cocycle. The first step consists of considering δ( 1

2πi log ǧ)
as a collection of smooth functions and finding a Čech primitive among the smooth function
for this cocycle. For this step we are in the luck since 1

2πi log ǧ ∈ Č1(M ;U , C∞(C)) lends itself
immediately to this job. Then taking the exterior derivative of this cochain, we obtain the Čech
cocycle 1

2πid log ǧ ∈ Č1(M ;U ,Ω1) and the next step is to find a Čech primitive for it, that is, we
need to find a collection

Ǎ = {Aα ∈ Ω1(Uα) : − (δǍ)αβ = Aα −Aβ = d log gαβ}.

This corresponds to a choice of connection ∇ on E, where Ǎ corresponds to the connection
1-forms.

Then the real 2-form representing the first Chern class is given locally by 1
2πidAα = 1

2πiF∇.

8.2 Partial connections and the canonical connection

Given complex manifold, M , we can study how connections on a complex vector bundle E over
M possibly interact with the complex structure. Similarly to the exterior derivative, we can split
a connection into its (1, 0) and (0, 1)-components:

∇ = ∇1,0 +∇0,1,

∇1,0 : Γ(E)→ Γ(T ∗1,0M ⊗ E),

∇0,1 : Γ(E)→ Γ(T ∗0,1M ⊗ E).



98 CHAPTER 8. VECTOR BUNDLES – PART II

−δ log(ǧ)

− log(ǧ)
d //

δ

OO

0︷ ︸︸ ︷
−d log(ǧ)− δǍ

Ǎ

−δ

OO

d // dǍ = F∇

Figure 8.1: The element Ǎ−log(ǧ) in the Čech-to-de Rham double complex satisfies D(Ǎ−log(ǧ)) =
−δ log(ǧ) + F∇, showing that the real representative of the first Chern class is cohomologous to the
curvature class.

In a local trivialisation we can explicitly write both components using the decomposition of the
connection 1-form:

∇ = d+A, ∇1,0 = ∂ +A1,0, ∇1,0 = ∂ +A0,1.

Notice however that since A is complex valued, it is not necessarily the case that A1,0 and A0,1

are related and hence ∇0,1 is not obtained from ∇1,0 by using complex conjugation.
The Leibniz rule for the connection translates into Leibniz rules for its components:

∇1,0(fs) = ∂f ⊗ s+ f∇1,0s,

∇0,1(fs) = ∂f ⊗ s+ f∇0,1s.

Since ∂ played an important role for holomorphic functions/sections, the operators that be-
have like ∇0,1 deserve special attention:

Definition 8.14. A partial connection on a complex vector bundle over a complex manifold is
a linear differential operator

∇0,1 : Γ(E)→ Γ(T ∗0,1M ⊗ E),

which satisfies the Leibniz rule

∇0,1(fs) = ∂f ⊗ s+ f∇0,1s.

Up to now we only presented how a complex structure allows us to repackage information
contained in a connection. Things become more interesting once we start imposing compatibility
between these two objects.

Definition 8.15. A (partial) connection ∇ on a holomorphic vector bundle E →M , is compat-
ible with the complex structure if ∇0,1s = 0 for all local holomorphic sections of E.

We see that if ∇0,1 is compatible with the complex structure and we apply it to sections of
a local holomorphic frame {s1, . . . , sk} of E we have

0 = ∇0,1si = A0,1si,
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that is A0,1 = 0 and conversely if the connection matrix of ∇ is of type (1, 0) in a holomorphic
frame, then the connection is compatible with the complex structure.

Putting together a Hermitian structure and the compatibility condition we narrow down the
connections on a holomorphic vector bundle to one:

Theorem 8.16. Let (E, 〈·, ·〉) → M be a holomorphic Hermitian vector bundle over M . Then
there is a unique connection on E compatible with both the Hermitian structure of E and the
complex structure of M .

Proof. This is proved by showing that locally there is a unique local connection which satisfies
the two compatibility conditions.

Let us start with the local uniqueness. Let ∇ be one such connection and let {s1, . . . , sk}
be a local holomorphic frame for E. Let hij = h(sj , si)

2 and let Aij be the entries of the local
connection 1-form in this trivialisation, that is,

∇(
∑
i

fisi) =
∑
i

(dfi +
∑
j

Aijfj)si.

Then compatibility with the metric gives

dhij = 〈∇sj , si〉+ 〈sj ,∇si〉

= 〈
∑
l

Aljsl, si〉+ 〈sj ,
∑
l

Alisl〉

=
∑
l

(Alj〈sl, si〉+Ali〈sj , sl〉)

=
∑
l

(hilAlj +Alihlj).

Since the connection matrix is made of (1, 0)-forms, taking the (1, 0)-component of the equality
above we obtain

∂hij =
∑
l

hilAlj = (hA)ij ,

where in the last equality h is the matrix whose entries are hij , A is the connection matrix and
the product is matrix multiplication. Hence

A = h−1∂h (8.2.1)

showing that after a choice of holomorphic frame the connection matrix is determined by the
Hermitian structure.

To prove existence, we pick an appropriate open cover of M , U = {Uα}α∈I , and a collection
of holomorphic trivialisations {Φα}α∈I of E over this open cover, and define the connection
matrix, Aα, in each local holomorphic frame by the expression 8.2.1. To prove that this defines
a connection, we need to check that it transforms correctly under change of trivialisations, that
is, if

Φβ ◦ Φ−1
α (x, v) = (v, gαβ (x)v),

2The sneaky use of indices in an unexpected order is to make sure the final expression looks good.
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then Aα − gβαAβgαβ = gβαdgαβ .

First we relate the Hermitian matrices on both frames:

(hα)ij = 〈eαj , eαi 〉 =
∑
kl

〈(gαβ )lje
β
l , (g

α
β )kie

β
k〉

=
∑
kl

(gαβ )∗ki(hβ)kl(g
α
β )lj ,

where •? denotes transposition and conjugation. Therefore the corresponding Hermitian matrices
are related by

hα = (gαβ )∗hβg
α
β .

Hence

Aα = h−1
α ∂hα = (gαβ )−1h−1

β (gαβ )∗−1
(
((gαβ )∗(∂hβ)gαβ + (gαβ )∗hβ(∂gαβ )

)
= gβα(h−1

β ∂hβ)gαβ + gβα∂g
α
β

= gβαAβg
α
β + gβα∂g

α
β ,

showing that the proposed local connection 1-forms patch together to define a global connection.

The proof that the connection defined this way is compatible with the metric is essentially
the same argument used to show uniqueness.

Definition 8.17. The unique connection on a holomorphic Hermitian vector bundle compatible
with both the complex and the Hermitian structure is the canonical connection.

Corollary 8.18. The curvature of the canonical connection is of type (1,1) and is given by

F∇ = ∂(h−1∂h).

Proof. Since in a local trivialisation ∇ = ∂ + ∂ + h−1∂h, we see that the (0, 2)-component of the
curvature vanishes and the (2, 0)-component is given by

F 2,0
∇ = ∂(h−1∂h) + h−1∂h ∧ h−1∂h

= −h−1(∂h)h−1 ∧ ∂h+ h−1(∂h) ∧ h−1∂h = 0,

where we used that ∂h−1 = −h−1(∂h)h−1.

Finally, one readily sees that the (1, 1)-component has the stated form.

Corollary 8.19. Let (L, 〈·, ·〉) → M be a holomorphic Hermitian line bundle over M and let s
be a nontrivial meromorphic section of L. Then the curvature of the canonical connection of L
is

F∇ = −∂∂ log ‖s‖2,

where the singularities of the 2-form in the right hand side are all removable.
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Proof. We compute the right hand side of the expression above in a local trivialisation. If σ is a
local nonvanishing section of L, then s = fσ for some meromorphic function f . Hence, wherever
f is defined and nonzero

−∂∂ log ‖s‖2 = −∂∂ log |f |2‖σ‖2 = −∂∂ log ff̄‖σ‖2

= −∂∂(log f + log f̄ + log ‖σ‖2)

= −∂∂ log ‖σ‖2

= ∂

(
∂‖σ‖2

‖σ‖2

)
= F∇.

So far, given a complex vector bundle over a complex manifold, the only way to make it into
a holomorphic vector bundle is by choosing wisely local sections so that the transition functions
are holomorphic. While this is a clear condition, it is not the easiest to work with since transition
functions are tied to a number of choices of trivialisations. We finish this session with an easier
description of holomorphic vector bundles.

Theorem 8.20. Let M be a complex manifold and let E →M be a complex vector bundle. Let
∇0,1 be a partial connection on E. If (∇0,1)2 = 0 then E admits the structure of a holomorphic
vector bundle for which ∇0,1 is a partial connection compatible with the complex structure.

8.3 Line bundles and divisors

While isomorphism classes of general vector bundles can be described in terms of transition
functions, as in Theorem 5.4, for line bundles a more geometric picture quickly emerges: a line
bundle is roughly determined by the vanishing locus of a generic section. The underlying concept
is that of a divisor.

Definition 8.21. A divisor on a manifold M is an ideal sheaf ID ⊂ C∞ which is locally generated
by a single function and whose vanishing locus, D, is nowhere dense on M .

In the life of a differential geometer the ideal defining a divisor may be defined by a real or
a complex function. In these notes, we will focus on complex line bundles and hence our ideals
will be defined by complex functions.

Notice that the divisor contains more information than its vanishing locus.

Exercise 8.7. Consider the following divisors on C: I1 = 〈z〉 and I2 = 〈z + z2〉. Show that I1

and I2 have the same vanishing locus but I1 6= I2. That is, the vanishing locus does not define
the divisor.

Proposition 8.22. Let L→M be a line bundle and let s : M → L be a section whose zero locus
is nowhere dense, then

Is = {τ(s) : τ ∈ Γ(L∗)}

is a divisor on M .
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Proof. Pick a local frame σ : U → L, so that s = fσ for some function f : U → C. Any section
of the dual bundle over U is of the form τ = gσ∗, where σ∗ the section dual to σ and hence the
local functions we obtain by evaluating sections of L∗ with s are of the form

gσ∗(s) = gσ∗(fσ) = fg ∈ If ,

showing that f is a local generator for Is.

Therefore, we have a map

{(L, s) : s is sufficiently generic} → {Divisors},
(L, s) 7→ Is.

The converse to Proposition 8.22 also holds.

Proposition 8.23. Let ID ⊂ C∞(C) be a divisor on M , then there is a line bundle L→M and
a section s : M → L such that ID = Is. Further, if (L′, s′) is another pair of line bundle and
section Is′ = ID, then L′ is isomorphic to L via an isomorphism which sends s′ to s.

Proof. Let {Uα}α∈A be a locally finite open cover of M such that for each α ∈ A there is
fα ∈ C∞(Uα;C) such that ID = 〈fα〉 on Uα. On the overlap Uαβ we can compare fα with fβ.
Since fα generates ID and fβ ∈ ID, there is a smooth function such that fβ = gαβfα. Reversing
the roles of α and β we conclude that gαβ is nonvanishing. Further, in the locus where fα 6= 0,

gγαg
β
γ g

α
β =

fα
fγ

fγ
fβ

fβ
fα

= 1.

Since this holds in a dense locus, this holds on the whole triple overlap and the collection ǧ =
{gαβ}α,β∈A determines a line bundle obtained by gluing together {Uα×C}α∈A using the functions
in ǧ. Further, we can define a global section s be declaring that on the trivialization Uα × C,
s = fα. We see immediately that the section s generates the ideal ID.

Finally, if (L′, s′) are such that Is′ = ID = Is, then for a cover fine enough, we can find local
trivializations in which s′ = f ′ασ

′
α and s = fασα. Since both fα and f ′α are generators of ID there

is a nonvanishing function hα such that f ′α = hαfα, therefore, we can compare the transition
functions for these bundles to obtain

g′αβ =
f ′β
f ′α

=
hβ
hα

fβ
fα

=
hβ
hα
gαβ ,

which shows that L and L′ are isomorphic bundles. One can readily check that the isomorphism
provided by the collection {hα}α∈A puts s and s′ in correspondence.

Summarising, we have a correspondence

{(L, s) : s is sufficiently generic}
isomorphisms

↔ {Divisors},

[(L, s)]↔ Is.

A typical type of section to consider to produce divisors are those transverse to the zero
section. This notion belongs to the more general notion of transversality.
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Definition 8.24. Let E be a smooth manifold and let ιi : Mi → E, i = 0, 1, be two immersed
submanifolds. Let pi ∈ Mi be such that ι0(p0) = ι1(p1) = p. We say that the immersions
are transverse at p0 and p1 if ι0∗(Tp0M0) + ι1∗(Tp1M1) = TpE. The immersions ι0 and ι1 are
transverse if they are transverse at all pairs p0 and p1 for which ι0(p0) = ι1(p1).

Exercise 8.8. Show that if ιi : Mi → E are transverse embeddings, then ι0(M0) ∩ ι1(M1) is an
embedded submanifold of codimension codim(M0) + codim(M1).

Definition 8.25. Let E → M be a vector bundle over M and let si : M → E, i = 0, 1, be two
sections. We say that the sections s0 and s1 are transverse or s0 is transverse to s1 if they are
transverse as embeddings si : M → E.

A very common condition to consider is that of a section s : M → E transverse to the zero
section. When this happens, the zero locus of s, say D, is an embedded submanifold of M whose
codimension in M is the rank of E, by Exercise 8.8.

Exercise 8.9. Show that both divisors in Exercise 8.7 are induced by sections transverse to the
zero section.

Further, there is a relation between E and the normal bundle of M

Proposition 8.26. Let s : M → E be a section transverse to the zero section and let D ⊂M be
the zero locus of s, then

dνs = πE ◦ ds : TM → E|D
has kernel TD and induces an isomorphism between ND, the normal bundle of D, and E|D.

For p a zero of s, the composition of dsp : TpM → T0E ∼= TpM ⊕Ep with the projection onto
Ep, d

νs = πE ◦ ds, is known as the vertical derivative of s.

Proof. It follows directly from the definition of transversality that s is transverse to the zero
section if and only if the vertical derivative of s is surjective at every point p ∈ Z (since the
tangent space of the zero section already takes up all the “horizontal” directions). Further, since
s vanishes over Z, we have that for all X ∈ TZ, dνs(X) = 0, so the vertical derivative descends
to a surjective bundle map, which we still denote by dνs

dνs : NZ = TM/TZ → E|Z .

Since these bundles have the same rank, this map is a bundle isomorphism.

Returning to divisors, if s : M → L is a section of a line bundle transverse to the zero section
and p ∈ M is in the zero locus of s, write s = fσ where σ is a local frame for L defined on a
neighbourhood of p. Since, at p, df : TpM → C is surjective, f can be extended to a coordinate
chart for M in a neighbourhood of p: (f = x1 + iy1, x2, . . . , xn−1). So, in this chart, the ideal
defined by s is generated by x1 + iy1.

It follows from a general position argument that every smooth vector bundle admits a section
transverse to the zero section and in particular we can describe any complex line bundle via
divisors locally generated by a coordinate function z = x + iy. When we pass to holomorphic
line bundles, this ceases to be the case since, for example, those may have no global sections.
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8.4 Holomorphic line bundles and divisors

The key that will allow us to treat holomorphic line bundles using the language of divisors is
that we will allow for meromorphic sections.

Definition 8.27. Let M be a complex manifold. A (holomorphic) divisor on M is a sheaf
ID ⊂M inside the sheaf of meromorphic functions which closed under multiplication by elements
of O, the sheaf of holomorphic functions and is locally generated by a single function and whose
vanishing locus, D, is nowhere dense on M .

Similarly to the smooth case, all holomorphic divisors arise from meromorphic sections of
line bundles, but differently from the smooth case, because of the meromorphic condition, every
nonzero section automatically has support M

Proposition 8.28. There is a correspondence

{(L, s) : s meromorphic, s 6= 0}
isomorphisms

↔ {Holomorphic divisors}

[(L, s)]↔ Is,

where
Is = {τ(s) : τ ∈ Γ(L∗)}.

One advantage of the holomorphic case, is that now the vanishing and singular locus of s
together nearly determines the ideal Is. Part of the game we play now is to add information to
(singular) submanifolds so that we can recover the generators of the ideal and hence the divisor.
Notice that this is different from the smooth case, in which the vanishing locus of s did not
determine the ideal Is (c.f. Exercise 8.7)

We start our tour on how to recover Is from the zero locus of s considering the case when
s is transverse to zero and has simple poles. We make this precise now. Given a meromorphic
section s of a line bundle L, there is a meromorphic section s∗ of L∗ defined by the condition
s∗(s) ≡ 1. The section s∗ has zero and poles that cancel the poles and zeros of s. This allows us
to define the relevant notion of transversality in this context.

Definition 8.29. A section s is transverse to the section at infinity if the dual section s∗ is
transverse to the zero section.

If a holomorphic section s is transverse to the zero section and, say, the zero locus of s is
D ⊂M , then, since s is holomorphic, D is an embedded complex submanifold and hence we can
find local holomorphic coordinates for which D is the locus [z1 = 0] and there is a corresponding
trivialization of L for which s(z) = z1. In particular, in contrast to Exercise 8.7, there are no
local invariants of a divisor associated to a holomorphic section transverse to zero.

Given a meromorphic section s ∈ Γ(M ;L) transverse to zero and infinity, let Z0 denote the
zero locus of s and Z∞ the poles of s. Then, Z0 and Z∞ together determine the divisor induced
by s which in turn determines L. We denote this divisor by Z0−Z∞. This allows us to describe
holomorphic line bundles using (complex) codimension-1 submanifolds of M . Notice that if for
i = 0, 1, Li has a section si transverse to zero and infinity then s0 ⊗ s1 ∈ Γ(M ;L0 ⊗ L1) is
a meromorphic section whose zero locus/poles is the union of the zero loci/poles of s0 and s1
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except for cancelations of zeros and poles. If a submanifold D ⊂M is in the zero locus for both
s0 and s1, then D is a zero of order 2 for s0 ⊗ s1, which in this case is not transverse to the
zero section. Yet we can keep track of the order of vanishing if we allow integer coefficients in
our divisors. So, for example the submanifold 2D0, corresponds to the divisor determined by a
holomorphic section that vanishes to order 2 along D0.

Blurring the distinction between submanifolds and divisors, up to now we have a map that
associates to a line bundle with meromorphic section (L, σ) a formal sum of submanifolds corre-
sponding to the zeros and poles of s with their respective orders as coefficients:

Div(L, s) :=
∑

miZi.

Tensor product of sections corresponds to doing a formal sum of divisors:

Div(s0) =
∑

miZi, Div(s1) =
∑

niWi ⇒ Div(s0 ⊗ s1) =
∑

miZi +
∑

niWi,

where one just adds the coefficients if Zi = Wj .

Conversely, given a collection of submanifolds and integer coefficients, we can associate to it
a line bundle (with a meromorphic section):

Z 7→ LZ .

Observe that even the condition that Z is made of embedded submanifolds is not necessary,
as long as it is locally defined as the vanishing locus of a single meromorphic function.

Finally one must address the question: When are two divisors associated to the same line
bundle? From our previous argument, to each divisor there corresponds a meromorphic section
s ∈ Γ(M ;L). Given two divisors that come from the same line bundle, we obtain two sections
s0, s1 ∈ Γ(M ;L) which away from their zeros and poles are related by a function s0 = fs1.
By comparing s0 and s1 in local coordinates, we see that f is a meromorphic function on f (in
particular, a meromorphic section of the trivial bundle) and

Div(s0)−Div(s1) = Div(f).

Definition 8.30. A principal divisor is a divisor associated to a meromorphic function.

Definition 8.31. Two divisors are equivalent if their difference is a principal divisor.

Finally, even if a line bundle admits a global holomorphic section it may also admit meromor-
phic sections with poles. Divisors that manifestly express the existence of holomorphic sections
do not have negative coefficients. Since that seems to be an important property, these also have
a name:

Definition 8.32. An effective divisor is one of the form
∑
miDi with mi ≥ 0.

Exercise 8.10. Let D =
∑
miDi be a divisor on M and let Σ ⊂M be a Riemann surface that

only intersects Z in smooth points of Di and does so transversally. Compute∫
Σ
c1([Z]).
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Exercise 8.11. Let D be an effective divisor. Show that the following is an exacr sequence of
sheaves

0→ Γ(L⊗ [−D])→ Γ(L)→ Γ(L|D)→ 0,

One nagging point about the correspondence given in Proposition 8.28 between line bundles
and divisors is the dependence on the section s. This dependence was partially addressed above
with the notions of principal divisor and equivalence of divisors. But that discussion still leaves
one point missing: the existence of a meromorphic section. If a line bundle has no meromorphic
section, there is no associated divisor and the whole theory breaks down at the start.

The quest of finding meromorphic sections leads us to a geometric interpretation of H1(Σ;L)
for a Riemann surface Σ and a holomorphic line bundle L. We start with the following question:
given a point p ∈ Σ is there a section of L with a simple pole at p (and holomorphic elsewhere)?
One can try to answer this question constructively. First we pick a frame σ for L in a neighbour-
hood U of p and coordinate charts for U centered at p at let s(z) = z−1σ be a section of L|U .
This section has the desired pole, but may not extend holomorphiclly to Σ. To try and do that,
we pick a function ψ which is equal to 1 in a neighbourhood of p and has support in U and form
ψs, which now extends to Σ, has the desired pole, but is not holomorphic in the annulus where
ψ interpolates between 1 and 0. So to find the global section we are looking for, we need to find
a smooth section τ ∈ Γ(Σ;L) such that

∂(τ + ψs) = 0. (8.4.1)

This section would be holomorphic by virtue of being in the kernel of ∂, global and have a simple
pole at p, because τ is smooth and ψs has a simple pole at p. Notice that even though ψs has
a simple pole at p, it is holomorphic in a neighbouhoor of p (as we mentioned, it fails to be
holomorphic in an annulus around p), so ∂ψs ∈ Ω1(Σ;L) is a global, smooth, ∂-closed form, that
is, it represents a class in H1(Σ;L). Our quest from Equation (8.4.1) is to determine if ∂ψs is
∂-exact. If that is the case, we can find a global section with a single pole at p and if not, well...
not.

Going a step further, given a collection of points {p1, . . . , pn} ∈ Σ we can repeat the local
construction from the previous paragraph to produce a collection of local sections ψisi supported
in a neighbourhood of p, with a simple pole at pi and which fail to be holomorphic in an annulus
around pi. The question of whether it is possible to find a meromorphic section of L with poles
only at the points pi then turns into the question of whether we can find a smooth section τ and
a collection of residues λi such that

∂(τ +
∑

λiψisi) = 0⇒ ∂τ = −
∑

λi∂(ψisi).

Each summand on the right hand side is a class in H1(Σ;L) and we are looking for a linear
relation between those classes. If there is one, we can find a meromorphic section with the
prescribed poles.

Therefore we arrive at the following description of H1(Σ;L):

H1(Σ;L) is the space of obstructions to finding meromorphic sections with prescribed poles.

Notice that if H1(Σ;L) is finite dimensional, say, dim(H1(Σ;L)) = n, then after allowing for
n+ 1 poles the elements [∂(ψisi)], i = 1, . . . , n+ 1 will necessarily form a linear dependent set in
H1(Σ;L). Therefore, if H1(Σ;L) is finite dimensional, L admits meromorphic sections.
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As we will see next chapter, if M is compact, Hq(M ;E) is finite dimensional for any holomor-
phic bundle E. Therefore, for Riemann surfaces we have a correspondence between line bundles
and divisors.

In higher dimensions, the construction of the Dolbeault cohomology classes ∂(ψs) fails since
we have use partitions of unit to patch local sections over the divisor D. Not only that, but
there are examples of complex manifolds and holomorphic line bundles which do not admit
meromorphic sections. Those line bundles can not be dealt with the framework of divisors.
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Chapter 9

Elliptic operators and Hodge’s
theorem

9.1 Recap of Sobolev spaces

9.2 Differential operators and their symbol

A differential operator of order k between vector bundles E,F →M is a mapD : Γ(E)→ Γ(F ) for
which the value of (Ds)(p) only depends on the values of the first k derivatives of the section s at
p. Of course the concept “the values” of the first k derivatives of the section s at p requires further
explanation because any specific values one can obtain will depend on choices of coordinates and
trivializations. Yet, the notion of two sections agreeing to order k (or a section vanishing to order
k) is intrinsic and is all we need to make this definition precise:

Definition 9.1. A differential operator of order k between vector bundles E,F → M is a map
D : Γ(E)→ Γ(F ) such that if s1 and s2 agree to order k at p, then (Ds1)(p) = (Ds2)(p).

A differential operator between vector bundles E,F → M is a map D : Γ(E) → Γ(F ) which
is locally a differential operator of order k for some k.

If we pick coordinates for M and trivializations of the bundles involved, sections can be
identified with functions and two functions agree to order k only if their first k-derivatives agree,
hence a differential operator acquires the form

(Ds)(p) = D̃

(
sα(p),

∂

∂xi
sα

∣∣∣∣
p

, . . . ,
∂I

∂xI
sα

∣∣∣∣
p

)
, |I| ≤ k (9.2.1)

for some function D̃ where sα are the functions corresponding to the local expression for s in the
given trivialization. Often we need to concretely handle differential operators and the expression
(9.2.1) allows us to do precisely that.

Notice that in Definition 9.1, we allowed for the order of a differential operator to vary from
point to point, which opens the door for “pathological” cases in which an operator does not have
a global order.

109
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Example 9.2. Let {ψi : R → R}i∈N be collection of smooth functions such that the support of
ψi is in the interval (i, i+ 1) and let

D : C∞(R)→ C∞(R), D(f) =
∑
i>0

ψi
∂i

∂xi
.

Then D is a differential operator between two copies of the trivial bundle over R. In each interval
[i, i+ 1], D has order i, but D is not an operator for order k for any k ∈ N. �

Among all differential operators, there is a class that is easier to deal with, appears with
frequency in real situations and often gives us a good guidance on what to expect from general
differential operators:

Definition 9.3. A linear differential operator is a differential operator D : Γ(E)→ Γ(F ) which
is also a linear map.

Exercise 9.1. A linear differential operator of order zero D : Γ(E)→ Γ(F ) is a tensor.

Most of the differential operators we encountered so far were either outright tensors, such as
the curvature of a connection, or first order linear differential operators, such as d, ∂, ∂, ∇. Yet,
one can construct higher order differential operators by composing lower order ones.

Exercise 9.2. Let D1 : Γ(E1) → Γ(E2) and D2 : Γ(E2) → Γ(E3) be differential operators of
order k1 and k2 respectively, then D2 ◦ D1 is a differential operator of order k1 + k2. Observe
that this also holds if we declare that the zero operator has order −∞.

For example, in a complex manifold ∂∂ is an operator of order two. Other operators that are

candidates to being order two operators include d2, ∂
2

and ∇2, but in all these cases, the actual
order of the operator is lower than expected.

What determines the order of a differential operator are the terms with the highest derivatives
and it is a good idea to get a conceptual grip into that part. Bear in mind that to get an expression
such as (9.2.1), we need to pick coordinates around the point in question and trivializations of
the bundles, so the term with the highest derivatives in that expression is hardly an invariant
of the differential operator, but there are couple of considerations that lead us to the invariant
object.

Firstly, we notice that if we change coordinates the derivatives in the expression for D will
transform accordingly and each derivative can either act on the section itself or on the functions
that pop up because of the change of coordinates. This way, an order i derivative present in D̃
will yield an order i derivative in the expression for D in the new coordinates which changes as
an element in SymiTM plus a bunch of lower order terms. A concrete example may make this
point clearer.

Example 9.4. Consider the Laplacian in R2, 4 = ∂2

∂x2
+ ∂2

∂y2
and let us try to write it in polar

coordinates.
We have

x = r cos θ ⇒ dx = cos θdr − sin θrdθ,

y = r sin θ ⇒ dy = sin θdr + cos θrdθ,
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hence
∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
,

∂

∂y
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ
.

Therefore, as tensors we have

∂

∂x
� ∂

∂x
+

∂

∂y
� ∂

∂y
= (cos θ

∂

∂r
− sin θ

r

∂

∂θ
)2 + (sin θ

∂

∂r
+

cos θ

r

∂

∂θ
)2

= cos2 θ
∂

∂r
� ∂

∂r
− 2 cos θ

sin θ

r

∂

∂r
� ∂

∂θ
+

sin2 θ

r2

∂

∂θ
� ∂

∂θ
+

+ sin2 θ
∂

∂r
� ∂

∂r
+ 2 sin θ

cos θ

r

∂

∂r
� ∂

∂θ
+

cos2 θ

r2

∂

∂θ
� ∂

∂θ

=
∂

∂r
� ∂

∂r
+

1

r2

∂

∂θ
� ∂

∂θ
.

While the change of coordinate for the Laplacian is

4 =
∂2

∂x2
+

∂2

∂y2

=

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
◦
(

cos θ
∂

∂r
− sin θ

r

∂

∂θ

)
+

(
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

)
◦
(

sin θ
∂

∂r
+

cos θ

r

∂

∂θ

)
= cos2 θ

∂2

∂r2
− 2 cos θ sin θ

r

∂

∂r

∂

∂θ
+

sin2 θ

r2

∂2

∂θ2
+ 2

cos θ sin θ

r2

∂

∂θ
+

sin2 θ

r

∂

∂r

+ sin2 θ
∂2

∂r2
+

2 cos θ sin θ

r

∂

∂r

∂

∂θ
+

cos2 θ

r2

∂2

∂θ2
− 2

cos θ sin θ

r2

∂

∂θ
+

cos2 θ

r

∂

∂r

=
∂2

∂r2
+

1

r2

∂2

∂θ2
+

1

r

∂

∂r
.

Here we see concretely that the degree two component corresponds to the change of ∂2

∂x2
+ ∂2

∂y2

thought of as an element in Sym2TR2 but lower degree operators appear because of derivative
terms acting on the change the functions for change of coordinates. �

Secondly, D maps Γ(E) to Γ(F ) so if anything, the domain and codomain of the highest degree
part should be related to Ep and Fp. Once again, the highest degree derivative must act of the
section itself so the functions for change of trivialization just relate the different identifications
of Ep and Fp with the reference vector space.

With all of this we hope to have argued that the term that takes the kth derivatives in an
operator of order k is an element

σ ∈ SymkTM ⊗ End (E;F )

Definition 9.5 (Principal symbol – moral definition). Given a linear differential operator of
order k, D : Γ(E)→ Γ(F ), the principal symbol of D is the associated tensor

σ(D) ∈ SymkTM ⊗ End (E;F )

We can concretely get our hands on σ(D). First, we observe that TM is the dual to T ∗M
and hence we can regard σ(D) as a symmetric map

σ(D) : SymkT ∗M → End (E;F ).



112 CHAPTER 9. ELLIPTIC OPERATORS AND HODGE’S THEOREM

Further, we observe that a symmetric map is fully determined by the values it takes in the small
diagonal, that is, on elements of the form (ξ, . . . , ξ), hence we can regard σ(D) as

σ(D) : T ∗M → End (E;F ), σ(D)(λξ) = λkσ(D)(ξ).

And finally we can concretely compute the expression above as follows. Given ξ ∈ T ∗pM , let
f be a function such that f(p) = 0 and df |p = ξ. For v ∈ Ep, let s ∈ Γ(E) be a section such
that s(p) = v, then fks vanishes to order k − 1 at p, hence when computing D(fks), only the
kth order derivatives of D will contribute to the result (at the point p) and this contribution will
only come about if all the derivatives are applied to the coefficient fk, one derivative per copy of
f , that is, only the value of s(p) and df |p contribute to the result, and the outcome is precisely
σ(D)(ξ)(v).

All of this should be the justification for the following definition

Definition 9.6 (Principal symbol – practical definition). Given a linear differential operator of
order k, D : Γ(E)→ Γ(F ), the principal symbol of D is the map

σ(D) : T ∗M × E → F,

defined by

σ(D)|p(ξ; v) = D(fks)|p,

where f is any function satisfying f(p) = 0 and df |p = ξ and s is any section of E such that
s(p) = v.

The principal symbol satisfies several properties

Exercise 9.3. Let D1 : E1 → E2 be a linear differential operator of order k1 and D2 : E2 → E3

be a linear differential operator of order k2. Then

• σ(D1)(λξ; v) = λk1σ(D1)(ξ; v),

• σ(D1)(ξ;λ1v1 + λ2v2) = λ1σ(D1)(ξ; v1) + λ2σ(D1)(ξ; v2),

• σ(D2 ◦D1)(ξ; v) = σ(D2)(ξ, σ(D1)(ξ, v)),

• If σ(D1) = 0, then D1 is an operator of order k1 − 1.

Now it is time to get our hands dirty and compute the symbols of a few operators we have
encountered so far.

Example 9.7. Consider d : Ωk(M) → Ωk+1(M). This an order 1 operator, so to following the
recipe above, to compute its symbol we pick ξ ∈ T ∗pM , ρ ∈ Ωk(M) and f such that f(p) = 0 and
df |p = ξ. Then

σ(d)(ξ; ρ(p)) = (d(fρ))|p = (df ∧ ρ+ fdρ)|+ p = ξ ∧ ρ(p),

That is, σ(d)(ξ, •) = ξ ∧ •. �
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Example 9.8. Let E →M be a vector bundle and ∇ be any connection on E. As in the previous
example, ∇ is an order 1 operator, so to compute its symbol we pick ξ ∈ T ∗pM , s ∈ Γ(E) and f
such that f(p) = 0 and df |p = ξ and compute

σ(∇)(ξ; s(p)) = (∇(fs))|p = (dfs+ f∇s)|+ p = ξs(p),

That is, σ(d)(ξ, •) = ξ ∧ •.
This should not be a surprise since locally ∇ = d+A, or, said another way, locally ∇−d = A

is an operator of order zero, hence the symbols of ∇ and d agree. �

Exercise 9.4. Compute the symbols of ∂, ∂ and ∂∂.

The class of operators we will focus on are called elliptic.

Definition 9.9. A linear differential operator of order k, D : Γ(E)→ Γ(F ) is elliptic if for all p
and all ξ ∈ T ∗pM\{0}

σ(D)(ξ, •) : Ep → Fp

is an isomorphism.

9.3 Formal adjoints

Given a vector bundle over a compact orientable manifold, E → M , if we fix a volume form, σ,
on M and a fiberwise inner product 〈·, ·〉 on E we obtain an inner product on Γ(E) by declaring

〈〈s1, s2〉〉E =

∫
M
〈s1, s2〉σ.

Given a linear differential operator D : Γ(E) → Γ(F ), if we fix a volume form, σ on M and
fiberwise inner products on E and F we can try to find a formal adjoint of D, that is a map
D∗ : Γ(F )→ Γ(E) such that

〈〈Ds, t〉〉F = 〈〈s,D∗t〉〉E , ∀s ∈ Γ(E), t ∈ Γ(F ).

Such a map D∗ always exists and is again a differential operator.

Proposition 9.10. The formal adjoint of a differential operator of order k exists, is unique and
is a differential operator of order k.

Proof. Uniqueness follows from non degeneracy of the inner product. If D∗ and D̃∗ are formal
adjoints of D, then for all s ∈ Γ(E) and t ∈ Γ(F ),

〈〈s, (D∗ − D̃∗)t〉〉E = 〈〈(D −D)s, t〉〉F = 0.

Since this is true for all s, (D∗ − D̃∗)t = 0 for all t and hence D∗ = D̃∗.
The strategy to prove that D∗ exists and is a differential operator of the same order as D is

quite simple: use a partition of unity to write explicit expressions for the differential operator,
integrate by parts and then use nondegeneracy of the fiberwise metric on E to re-write the result
as an inner product. As it is, there is no conceptual difference between the proofs for a first order
operator and a higher order operator, so we will deal only with the former case.
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Let U = {Uα}α∈A be an open cover of M over which we can find trivializations of E and F and
charts Uα → Rn. Let {ψα}α∈A be a partition of unit subordinate to the cover U and let gijα and
hijα be the functions that make up the inner products of E and F in the trivializations over Uα.
Denote by Dα the expression of D in the coordinate chart defined on Uα and let sα =

∑
sαi e

i
α,

tα =
∑
tαi f

i
α be sections of E and F respectively expressed in terms of the local frame over Uα.

Then

Dαsα =
∑
i,j,l

(a0,i
j s

α
i + a1,l,i

j

∂sαi
∂xl

)f jα.

And we can compute

〈〈Ds, t〉〉F = 〈〈Ds,
∑
α

ψαt〉〉F =
∑
α

〈〈Ds,ψαt〉〉F =
∑
α

〈〈Dαsα, ψαtα〉〉F

=
∑

i,j,k,ι,α

〈〈(a0,i
j s

α
i + a1,l,i

j

∂sαi
∂xl

)f jα, ψαt
α
ι f

ι
α〉〉F

=
∑
i,j,k,ια

hιj(a0,i
j s

α
i + a1,l,i

j

∂sαi
∂xl

)ψαt
α
ι

=
∑
i,j,k,ια

sαi (a0,i
j − a

1,l,i
j

∂

∂xl
)hιjψαt

α
ι

=
∑

i,j,k,ι,κ,γ,α

giκgκγs
α
i (a0,i

j − a
1,l,i
j

∂

∂xl
)hιjψαt

α
ι

=
∑

i,j,k,ι,κ,γ,α

〈〈sαi eiα, gκγ(a0,i
j − a

1,l,i
j

∂

∂xl
)hιjψαt

α
ι e
ι
α〉〉E ,

where in the second line we used the local expression for D, in the third line we wrote the inner
product on Γ(F ) explicitly, in the fourth line we integrated by parts and in the fifth line we
induced the appearance of the inner product on Γ(E).

This shows that D∗ exists and has the unpleasant shape

D∗t =
∑

i,j,k,ι,κ,γ,α

gκγ(a0,i
j − a

1,l,i
j

∂

∂xl
)hιjψαt

α
ι e
ι
α

which expresses it as a sum of local linear differential operators of order 1.

For specific bundles, operators and inner products we can find expressions for the adjoint that
are easier on the eye. For example, given a metric and orientation on a manifold, the space of
forms obtains a fiberwise inner product as determined by the Hodge star operator (see Definition
3.16):

〈φ, ψ〉 = ?(φ ∧ ?ψ).

Also M inherits a natural volume form, ?1, hence we have an inner product on forms:

〈〈φ, ψ〉〉 =

∫
M
?(φ ∧ ?ψ)(?1) =

∫
M
φ ∧ ?ψ,

where in the last equality we used that for forms of complimentary degree, ?α ∧ ?β = α ∧ β.
With this inner product we can readily determine an expression for the adjoint of the exterior

derivative without passing through local coordinates:
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Lemma 9.11. Let M be an n-dimensional, compact, oriented manifold. With the inner product
on forms described, when acting on k-forms d∗ = (−1)k ?−1 d?

Proof. As in Proposition 9.10, the proof is just integration by parts. For φ ∈ Ωk−1(M) and
ψ ∈ Ωk(M) we have

〈〈dφ, ψ〉〉 =

∫
M

(dφ)∧?ψ =

∫
M

(−1)kφ∧d(?ψ) =

∫
M

(−1)kφ∧??−1d(?ψ) = 〈〈φ, (−1)k ?−1d(?ψ)〉〉

Exercise 9.5. Following the steps below, compute the formal adjoint of ∂.

• Show that for complex valued forms, if we extend the Hodge star operator to be complex
linear, the following is a fiberwise Hermitian inner product

〈φ, ψ〉 = ?
(
φ ∧ ?ψ

)
.

For a shorthand we introduce the operator ?̄ which acts on complex forms by ?̄ψ = ?ψ̄.

• Using integration by parts, show that ∂
∗

= (−1)k+1 ?−1 ∂?

Exercise 9.6. Let E → M be a vector bundle with inner product and oriented fibers over a
compact oriented manifold and let ∇ : Ω•(M ;E)→ Ω•+1(M ;E) be a connection on E. Find an
expression for ∇∗.

Exercise 9.7. Let E → M be a holomorphic vector bundle with Hermitian inner product over
a compact complex manifold. Find an expression for ∂

∗
: Ωq(M ;E)→ Ωq−1(M ;E).

Exercise 9.8. Let D : Γ(E) → Γ(E)E be a self-adjoint elliptic operator. Show that ker(D) is
orthogonal to Im(D).

9.4 Elliptic complexes and their Laplacians

In definition 9.9, we introduced the class of elliptic operators and claimed that they would be our
object of study. Yet, strangely enough, according to Examples 9.7 to Exercise 9.4, none of the
operators we have been considering up to now is elliptic. In this section we see how to produce
elliptic operators from the familiar operators we have considered so far.

Definition 9.12. A sequence linear differential operators, Di : Γ(Ei) → Γ(Ei+1) of order k, for
i ∈ Z is elliptic at Ei if for all p and all ξ ∈ T ∗pM\{0} the symbol sequence

Ei−1|p
σ(Di−1)(ξ,•)−→ Ei|p)

σ(Di)(ξ,•)−→ Ei+1|p

is exact at the middle space.
An elliptic complex is a complex of linear differential operators

· · · −→ Γ(Ei−1)
Di−1−→ Γ(Ei)

Di−→ Γ(Ei+1) −→ . . . ,

that is Di ◦Di−1 = 0, which is elliptic at all Ei.
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It follow from Examples 9.7 to Exercise 9.4 that d, ∂, ∂ give rise to elliptic complexes while
a connection ∇ gives rise to an elliptic sequence.

The relation between elliptic sequences and elliptic operators comes from two simple compu-
tations.

Lemma 9.13. Let Ai : Vi → Vi+1, i ∈ Z be a collection of linear maps between finite dimensional
vector spaces with inner product and let A∗i be their duals. Then if

Vi−1
Ai−1→ Vi

Ai→ Vi+1

is exact at Vi then A∗iAi +Ai−1A
∗
i−1 : Vi → Vi is an isomorphism.

Proof. Assume that v ∈ ker(A∗iAi +Ai−1A
∗
i−1), then

0 = 〈(A∗iAi +Ai−1A
∗
i−1)v, v〉 = 〈Aiv,Aiv〉+ 〈A∗i−1v,A

∗
i−1v〉 = ‖Aiv‖2 + ‖A∗i−1v‖2,

hence Aiv = 0 and v ∈ kerAi = Im(Ai−1). But since ‖A∗i−1v‖2 = 0, we conclude that v ∈
kerA∗i−1 = Im(Ai−1)⊥, showing that v = 0.

Lemma 9.14. Let D : Γ(E)→ Γ(F ) be a linear differential operator between vector bundles with
inner product. Then σD∗(ξ, •) = (σD(ξ, •))∗.

Proof. Unfortunately I do not see a better way to prove this than chasing down the symbol from
the operator obtained in Proposition 9.10.

Putting these two together we have the following relation between elliptic sequences and
elliptic operators:

Proposition 9.15. Let Di : Γ(Ei) → Γ(Ei+1), i ∈ Z, be a sequence linear differential operators
between vector bundles with a fiberwise inner product. If the sequence is elliptic at Ei then

4D = D∗iDi +Di−1D
∗
i−1 : Γ(Ei)→ Γ(Ei)

is a self adjoint elliptic operator.
Furthermore if the sequence is finite and is elliptic at every Ei, then

/Dev =
∑
i

D2i +D∗2i−1 : Eev → Eod

/Dod =
∑
i

D2i−1 +D∗2i : Eod → Eev

are also elliptic.

Proof. The symbol of 4D can be computed by composing the symbols of the operators that
make it up:

σ4D(ξ) = σD∗i (ξ) ◦ σDi(ξ) + σDi−1(ξ) ◦ σD∗i−1
(ξ) = σ∗Di(ξ) ◦ σDi(ξ) + σDi−1(ξ) ◦ σ∗Di−1

(ξ),

which is invertible by Lemma 9.13.
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Next we consider /Dev and /Dod. The operator /Dod ◦ /Dev applied to an element in E2i has
three components: Two move the index by ±2, but have zero symbol by the elliptic condition
and one preserves the index and is equal to the Laplacian, as indicated below

/Dev

��

E2i

D2i

##

D∗2i−1

{{
4D

��
/Dod

��

E2i−1

D2i−1

##

D∗2i−2

zz

E2i+1

D2i+1

$$

D∗2i

||
E2i−2 E2i E2i+2

Similarly for /Dev ◦ /Dod, therefore, σ /Dev(ξ) ◦ σ /Dod(ξ) and σ /Dod(ξ) ◦ σ /Dev(ξ) agree with the symbol
of 4D at the appropriate spaces, and since σ4D(ξ) is invertible for ξ 6= 0, so are the other two
symbols.

For an elliptic complex, one often denotes all the differential operators Di by the same symbol,
say D, with the understanding that the argument determines which Di one should use. This is
completely analogous to how we denote all exterior derivatives by d, instead of dk : Ωk(M) →
Ωk+1(M).

Proposition 9.16. Let

· · · → Γ(Ei−1)
D−→ Γ(Ei)

D−→ Γ(Ei+1)→ . . .

be an elliptic complex between Hermitian vector bundles and let D∗ be the formal adjoint. Denote
H = ker(4D), then

1. A section s ∈ H if and only if Ds = 0 and D∗s = 0

2. The spaces H, Im(D) and Im(D∗) are pairwise orthogonal,

3. ker(D) is orthogonal to Im(D∗),

4. ker(D∗) is orthogonal to Im(D),

Proof. 1. If Ds = 0 and D∗s = 0, then 4Ds = (DD∗ + D∗D)s = 0. Conversely, if 4Ds = 0,
then

0 = 〈〈4Ds, s〉〉 = 〈〈(DD∗ +D∗D)s, s〉〉 = 〈〈D∗s,D∗s〉〉+ 〈〈Ds,Ds〉〉 = ‖D∗s‖2 + ‖Ds‖2,

showing that both Ds = 0 and D∗s = 0.
2. All the orthogonality relations are proved similarly, for example, to show that H, Im(D)

are orthogonal, we simply compute the inner product of two elements in those spaces, say, pick
s ∈ ker(4) and Dt ∈ Im(D), then

〈〈s,Dt〉〉 = 〈〈D∗s, t〉〉 = 0,

where we used 1. to conclude that D∗s = 0.
3 & 4. Follow from the definition of adjoint.
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The main result about elliptic operators is the following

Theorem 9.17. Let E → M be a vector bundle with fiberwise inner product over M and let
4 : Γ(E)→ Γ(E) be a self adjoint elliptic operator on E, then

1. we have an orthogonal decomposition Γ(E) = Im(4)⊕H,

2. there is a self adjoint pseudo-differential operator G : Γ(E)→ Γ(E) such that kerG = ker4,
G ◦ 4 = 4 ◦G and

4 ◦G+ ΠH,

where ΠH denotes the orthogonal projection onto H, the kernel of 4.

3. H is finite dimensional.

This result has many implications for elliptic complexes as we see next.

Corollary 9.18. Let

. . .
D→ Γ(Ei−1)

D→ Γ(Ei)
D→ Γ(Ei+1)

D→ . . .

be an elliptic complex, then

1. D and D∗ commute with G,

2. We have an orthogonal decomposition

Γ(Ei) = Im(D)⊕ Im(D∗)⊕H. (9.4.1)

3. ker(D) = Im(D) ⊕ ker4D and the natural projection ker(D) → HD gives rise to an iso-
morphism

Hk ∼= Hk
D =

ker(D : Γ(Ek)→ Γ(Ek+1))

Im(D : Γ(Ek−1)→ Γ(Ek))
.

In particular Hk
D is finite dimensional.

Proof. 1. For a section s we have

GDs = GD(4DG+ ΠH)s = GD4Gs,

where we have used that D ◦ΠH = 0. Similarly

DGs = (G4D + ΠH)DGs = G4DDGs = GD4DGs,

where we have used that ΠH ◦D = 0 and D4D = 4D = DD∗D. A similar proof hold for D∗.
2. We already established that the three spaces in (9.4.1) are mutually orthogonal. We only

need to show that together they generate all sections, but for s ∈ Γ(Ei) we have

s = (4G+ ΠH)s = DD∗Gs+D∗DGs+ ΠHs ∈ Im(D)⊕ Im(D∗)⊕H.

3. We already have that kerD is orthogonal to Im(D∗) and hence lies in the sum Im(D)⊕H,
which is the orthogonal complement of Im(D∗), according to 2. Conversely any element in
Im(D) ⊕ H is in the kernel of D because D2 = 0 and H is made of elements that are closed
and co-closed. Hence kerD = Im(D) ⊕ H. From this, it follows directly that the degree k
D-cohomology is isomorphic to the space of degree k harmonic sections, Hk.
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Exercise 9.9. Let (M, g) be a compact oriented Riemannian manifold, let (Ei, D)i∈N be an
elliptic complex of Hermitian vector bundles and let s ∈ Hk

D be a cohomology class. Show that
ΠHs can be characterised by the following two properties:

1. [ΠHs] = [s],

2. ‖ΠHs‖2 ≤ ‖s̃‖2 for all s̃ cohomologous to s.

That is, the harmonic representative is the section or least norm within the cohomology class.

9.5 Dualities

The isomorphism Hk ∼= Hk
D has several consequences which derive from the observation that

any linear map A : H → H gives rise to a linear map on HD. To describe linear maps with this
property we need a more concrete grip on the operator D

Lemma 9.19. Let M be a compact, orientend manifold and let g be a Riemannian metric on
M . Then α ∈ Ωk(M) is closed/exact if and only if ?α is co-closed/co-exact.

Proof. The claim follows directly from the identity

d∗α = (−1)k ?−1 d ? α.

Theorem 9.20 (Poincaré duality). Let Mn be a compact oriented manifold, then there is a
nondegenerate pairing

Hk(M)×Hn−k(M)→ R, ([α], [β]) 7→
∫
M
α ∧ β.

In particular bk(M) = bn−k(M).

Proof. Pick a Riemannian metric on M , then ? : H → H since it maps closed/co-closed forms
to co-closed/closed forms. For a ∈ Hk(M) a nonzero class, let α ∈ Hk be the unique harmonic
representative of a, then ?α ∈ Hn−k is also harmonic and∫

M
α ∧ ?α = ‖α‖2 6= 0,

showing that the pairing is nondegenerate.

A completely analogous result holds for ∂:

Theorem 9.21 (Serre duality I). Let M2n be a compact complex manifold, then there is a
nondegenerate pairing

Hp,q

∂
(M)×Hn−p,n−q

∂
(M)→ C, ([α], [β]) 7→

∫
M
α ∧ β.

In particular hp,q(M) = hn−p,n−q(M).
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Proof. The proof is identical to the proof of Poincaré duality with two changes. Firstly, the
real inner product on forms has to be extended to a Hermitian inner product and for that we
introduce the operator ?̄:

?̄α = ?ᾱ.

This way the Hermitian inner product on forms is

〈〈α, β〉〉 =

∫
M
α ∧ ?̄β.

Then it follows that acting of k forms, ∂
∗

= (−1)k?̄−1∂?̄−1.
Also, it is a direct computation that ?̄ : ∧p,q T ∗M → ∧n−p,n−qT ∗M . Therefore ?̄ : Hp,q

∂
→

Hn−p,n−q
∂

gives rise to the pairing alluded to in the statement of the theorem.

Exercise 9.10 (Serre Duality II). Let E →M be a holomorphic vector bundle over a compact
complex manifold. Then there is a nondegenerate pairing

Hq(M ;∧p,0T ∗M ⊗ E)×Hn−q(M ;∧n−p,0T ∗M ⊗ E∗)→ C, ([α], [β]) 7→
∫
M
〈α, β〉,

where 〈•, •〉 denotes the natural pairing between E and E∗ together with the exterior product of
forms.

In particular, we have a nondegenerate pairing

Hq(M ;E)×Hn−q(M ;∧n,0T ∗M ⊗ E∗)→ C

9.6 Pseudo-differential operators

9.7 A parametrix for elliptic differential operators

9.8 The index, Gauss–Bonnet



Chapter 10

Hodge theory

10.1 Kähler manifolds

Among complex manifolds, there is a special class for which magic things happen

Definition 10.1. A Kähler manifold is a Hermitian manifold (M, I, g) for which the associated
2-form ω = g(•, I, •) is closed.

Since the symplectic structure in turn also determines the metric, one can alternatively define
a Kähler manifold to be a manifold with a pair of compatible complex and symplectic structures.

Example 10.2. Euclidean space, Cn with the standard symplectic form

ω =
1

2i

∑
dzi ∧ dz̄i =

1

2i

∑
∂∂(ziz̄i) =

1

2i

∑
∂∂r2.

is a Kähler manifold, where r2 is the square distance to the origin. �

Example 10.3 (Riemann surfaces). Let Σ be any oriented surface and let g be a Riemannian
metric on Σ. The orientation together with the metric give rise to a complex structure on Σ
given by counterclockwise rotation by π/2 (see Theorem 3.15). Notice that by construction the
complex structure is compatible with the metric and the associated symplectic form is a volume
form and hence is closed, therefore an arbitrary choice of metric and orientation yields a Kähler
structure on Σ.

The same holds if we approach Riemann surfaces from the complex point of view. Let (Σ, I)
be a Riemann surface and let g be an arbitrary Riemannian metric on Σ. Then g̃ defined by

g̃(X,Y ) =
1

2
(g(X,Y ) + g(IX, IY ))

is compatible with I and the corresponding symplectic form, being a volume form on Σ is closed,
hence (Σ, I, g̃) is a Kähler manifold. That is, not only are all orientable surfaces Kähler, they
are Kähler for any choice of complex structure on Σ. �

Example 10.4 (CPn). The projective space is a Kähler manifold. We start with Cn+1\{0}. In
the affine coordinate patch corresponding to the jth coordinate, let r2 =

∑
i 6=j ziz̄i be the square

distance to the origin and let

ωj =
1

2i

∑
∂∂ log(1 + r2).

121
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The change from the affine coordinates corresponding to the jth patch to the kth patch are given
by wk = 1

zk
and wi = zi

zk
, hence

ωj =
1

2i

∑
∂∂ log(1 +

∑
i 6=j

ziz̄i)

=
1

2i

∑
∂∂ log(

1

zkz̄k
(1 +

∑
i 6=j

ziz̄i))

=
1

2i

∑
∂∂ log(

1

zkz̄k
+
∑
i 6=j,k

zi
zk

z̄i
z̄k

+ 1)

=
1

2i

∑
∂∂ log(1 +

∑
wiw̄i)

= ωk,

so these forms patch together to give rise to a global 2-form on CPn.
Next we show that this form together with the complex structure gives rise to a metric...

[compute, compute, compute]. �

With this example at hand, we can produce many more examples of Kähler manifolds by
fiding complex submanifolds

Proposition 10.5. Let (M, I, g) be a Kähler manifold and let ι : N →M be a complex subman-
ifold. Then the restriction of the metric of M to N makes N into a Kähler manifold.

Proof. The complex structure on N is just the restriction of the complex structure on M to
TN , which is invariant under I. Since I and g are compatible on TpM for every p ∈ M , their
restriction to TpN is also compatible. Further, ωN = (ι∗g)(•, I•) = ι∗ωM is therefore closed.

Notice that a Kähler manifold is in particular symplectic, hence known obstructions to the
existence of symplectic structures are also obstructions to the existence of Kähler structures. We
give one example.

Proposition 10.6. Let M2n be a compact manifold. If M admits a symplectic structure, there
is a cohomology class a ∈ H2(M) such that an 6= 0 ∈ H2n(M). In particular H2i(M) 6= 0 for
0 ≤ i ≤ n.

Proof. Indeed, by nondegeneracy ωn is pointwise a volume form, hence it is a volume form on
M and ∫

M
ωn 6= 0.

Therefore the class a = [ω] has the stated properties.

Example 10.7. The Hopf manifold from Example 3.9 is diffeomorphic to S1 × S2n−1 has no
degree 2 cohomology for n > 1 (by the Kunneth formula) and hence is not Kähler.

Similarly, compact connected Lie groups have the same cohomology ring as a product of odd
dimensional spheres, with the torus corresponding to the product of circles [4]. That means that
for any compact Lie group different from a torus, there is no class an ∈ H2(G) whose top power
is nonzero and the only compact connected Lie groups that admit symplectic structures are tori
(which are in fact Kähler) �
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10.2 A bit of symplectic geometry

Prove that symplectic reduction of Kähler manifolds at central elements gives Kähler manifolds.
Revisit CPn.

10.3 Statement of the Hodge theorem and simple consequences

As we have seen a complex manifold comes equipped with a few cohomology operators, namely d,
∂ and ∂. While the de Rham cohomology is reasonably easy to compute because it is topological
(it is the same as singular cohomology with real coefficients), we have been struggling to compute
∂ cohomology since its introduction in Chapter 3. The closest things we have to a tool are the
holomorphic Poincaré lemma and spectral sequence arguments. For Kähler manifolds, however a
miracle happens and we can relate Dolbeault cohomology more readily with de Rham cohomology.

This is the content of Hodge”s theorem:

Theorem 10.8 (Hodge). Let (M, I, g) be a Kähler manifold. Then

4d = 24∂ = 24∂ .

Due to the theory of elliptic operators developed last chapter this has deep consequences.

Corollary 10.9. Let φ ∈ Ωk(M ;C) be a harmonic form in a Kähler manifold and let φp,q ∈
Ωp,q(M) be its (p, q)-components. Then each φp,q is harmonic. In particular

Hk(M ;C) = Hkd = ⊕p+q=kHp,q∂ = ⊕p+q=kHp,q

∂
.

Proof. Since 4∂ preserves the (p, q)-decomposition of forms, we have that

0 = 4dφ = 2
∑
p+q=k

4∂φ
p,q

where in the last sum each term is in a different space so they all must vanish independently.

Corollary 10.10. In a compact Kähler manifold hp,q = hq,p.

Proof. Indeed, since complex conjugation swaps ∂ and ∂ as well as ∂∗ and ∂
∗

it maps ∂-harmonics
to ∂-harmonics, but since the Laplacians agree these two spaces are the same and we have

hp,q = dimHp,q

∂
= dimHp,q

∂
= dimHq,p∂ = dimHq,p

∂
= hq,p.

Corollary 10.11. Let (Σ, I) be a compact Riemann surface of genus g. Then

h0,0(Σ) = h1,1(Σ) = C, h1,0(Σ) = h0,1(Σ) = Cg.

Proof. We have that h0,0(Σ) = C since h0,0(Σ) is the space of global holomorphic functions and
Σ is compact. By Serre dualtiy we have h1,1(Σ) = h0,0(Σ) = C. Finally, since Σ is Kähler,
h1,0 = h0,1 and 2g = b2 = h1,0 + h0,1 = 2h1,0.
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Corollary 10.12 (Riemann–Roch Theorem). Let L→ Σ be a holomorphic line bundle of degree
d over a Riemann surface of genus g, then

h0(Σ;L)− h1(Σ;L) = d− g + 1.

Proof. Since ∂ is an elliptic operator, H1(Σ;L) = H0,1(Σ;L) is finite dimensional. By the
discussion in page 106, L admits meromorphic sections and therefore is determined by a divisor.
Then due to Corollary 7.46 we have

h0(Σ;L)− h1(Σ;L) = d+ h0,0(Σ)− h0,1(Σ) = d+ 1− g.

Corollary 10.13. In a compact Kähler manifold the odd indexed Betti numbers are even.

Proof. Indeed, we have

b2k+1 =
∑
p+q=k

hp,q =
∑

p+q=k,p<q

hp,q+
∑

p+q=k,p>q

hp,q =
∑

p+q=k,p<q

hp,q+
∑

p+q=k,p<q

hq,p = 2

 ∑
p+q=k,p<q

hp,q

 .

Corollary 10.14. In a Kähler manifold

∂
∗
∂ + ∂∂

∗
= ∂∗∂ + ∂∂∗ = 0

Proof. We compute the difference of the Laplacians

0 = 4d −4∂ −4∂

= (∂ + ∂)(∂∗ + ∂
∗
) + (∂∗ + ∂

∗
)(∂ + ∂)− ∂∂∗ − ∂∗∂ − ∂∂∗ − ∂∗∂

= ∂∂
∗

+ ∂
∗
∂ + ∂∂∗ + ∂∗∂.

Since ∂∂
∗

+ ∂
∗
∂ maps Ωp,q(M) to Ωp+1,q−1 while ∂∂∗+ ∂∗∂ maps Ωp,q(M) to Ωp+1,q−1(M) these

two terms must vanish independently.

Corollary 10.15 (∂∂-Lemma). In a compact Kähler manifold, the following holds

ker(∂) ∩ Im(∂) = ker(∂) ∩ Im(∂) = Im(∂∂).

Proof. We will only prove the inclusion ker(∂) ∩ Im(∂) ⊂ Im(∂∂) as the converse is automatic
and the other equality follows from this by taking complex conjugates. Assume that a form β
is ∂-exact and ∂-closed, that is β = ∂α for some α and ∂β = ∂∂α = 0. We need to show that
β = ∂∂γ for some γ. Decomponsing α into ∂-exact, ∂

∗
-exact and harmonic components, we have

β = ∂(∂α̃+ ∂
∗
α̃+ αH) = ∂(∂

∗
α̃+ αH),

so we may assume that ∂
∗
α = 0. The we compute

∂α = ∂((4∂G+ ΠH)α) = ∂((∂∂∗G+G∂∗∂)α) = ∂∂∂∗Gα+G∂∗∂∂α = −∂∂(∂∗Gα).
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Exercise 10.1. Let M be a Kähler manifold and let dc = i(∂ − ∂). Show that 4dc = 4d.

Exercise 10.2. Let (M, I, g) be a compact Kähler manifold.

1. Consider (Ω•c(M), d) = ker dc ⊂ (Ω•(M ;C), d). Show that (Ω•c(M), d) is a subcomplex
closed under wedge product of forms.

2. Let (H•c (M), d) be the dc-cohomology. Show that the exterior derivative, d, induces a linear
operator on H•dc(M) whose square is zero and for which the graded Leibniz rule holds.

3. Show that the natural inclusion ι : (Ω•c(M), d) → (Ω•(M ;C), d) preserves products and
induces an isomorphism in cohomology.

4. Show that the projection (Ω•c(M), d) → (H•dc(M ;C), d) induces an isomorphism in coho-
mology.

5. Show that the differential in (H•c (M), d) vanishes.

6. Conclude that the sequence of maps

((Hd(M), 0) H•dc(M ;C), 0)
I∗oo (Ω•c(M), d)

πoo ι∗ // (Ω•(M ;C), d)

give a quasi-isomorphism between the de Rham cohomology of M and the space of differ-
ential forms on M .

10.4 Weird linear algebra

10.5 Hodge identities

10.6 Topological consequences

10.7 Hodge theorem for the ball and Newlander–Niremberg (sketch)
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Chapter 11

Kodaira’s embedding theorem

11.1 Hodge manifolds

11.2 Kodaira’s vanishing theorem

11.3 Quadratic transformations

11.4 Kodaira’s embedding theorem
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