Complex Geometry - Exam 2

Questions

Exercise $1\left(D^{4} \neq D^{2} \times D^{2}\right)$. In this exercise we will prove that the unit open ball $B \subset \mathbb{C}^{2}$ is not biholomorphic to the product of two unit discs. For this exercise you can use without proof that any biholomorphism of the disc is of the form

$$
\phi: D_{1} \subset \mathbb{C} \rightarrow D_{1}, \quad \phi(z)=e^{i \theta} \frac{\alpha-z}{1-\bar{\alpha} z}
$$

for some real constant θ and a complex number α with $|\alpha|<1$.

1. Show that the restriction of any element of $U(2)$ to B gives a biholomorphism of B. Conclude that the group of biholomorphisms of B is not Abelian.
2. Show that for every $z \in D_{(1,1)}$ there is a biholomorphism $f: D_{(1,1)} \rightarrow D_{(1,1)}$ with $f(z)=0$.
3. Show that a biholomorphism of $D_{(1,1)}$ which fixes the origin is made of two biholomorphisms of D_{1} acting independently on each D_{1} factor by rotations.
4. Conclude that the group of biholomorphisms of $D_{(1,1)}$ is different from the group of biholomorphisms of B.

Exercise 2.

1. Let V be a vector space and $\sigma \in \wedge^{2} V$ be a 2-form. Show that if $\sigma^{2}=0$ then σ is decomposable, that is, there are $\alpha, \beta \in V$ such that $\sigma=\alpha \wedge \beta$.
2. Let M be a real four-dimensional manifold and let $\sigma \subset \Omega^{2}(M ; \mathbb{C})$ be 2-form such that $\sigma \wedge \sigma=0$ and $\sigma \wedge \bar{\sigma}$ is everywhere non-zero. Show that there exists a unique almost complex structure I on M such that $\sigma \in \Omega^{2,0}(M)$.
3. In the same situation of the previous exercise, show that if σ is closed, then the complex structure is integrable and σ is a holomorphic two-form on (M, I)

Exercise 3.

1. Show that for a polydisc $B \subset \mathbb{C}^{n}$ the sequence

$$
\Omega^{p-1, q-1}(B) \xrightarrow{\partial \bar{\partial}} \Omega^{p, q}(B) \xrightarrow{d} \Omega^{p+q+1}(B)
$$

is exact.
2. Let X be a complex manifold and consider the sequence of differential operators:

$$
\Omega^{p-1, q-1}(X) \xrightarrow{\partial \bar{\partial}} \Omega^{p, q}(X) \xrightarrow{\partial+\bar{\partial}} \Omega^{p+1, q}(M) \oplus \Omega^{p, q+1}(X) .
$$

Show that this is a complex of differential operators and that the corresponding symbol sequence is exact.
3. Let X be a complex manifold. Verify that the following definition of the Bott-Chern cohomology

$$
H_{B C}^{p, q}(X):=\frac{\operatorname{ker}\left\{d: \Omega^{p, q}(X) \rightarrow \Omega^{p+q+1}(X)\right\}}{\operatorname{Im}\left(\partial \bar{\partial}: \Omega^{p-1, q-1}(X) \rightarrow \Omega^{p, q}(X)\right)}
$$

makes sense. Deduce that $H_{B C}^{p, q}(B)=0$ for a polydisc $B \in \mathbb{C}^{n}$ and $p, q \geq 1$. Show that there are natural maps

$$
H_{B C}^{p, q}(X) \longrightarrow H^{p, q}(X) \quad H_{B C}^{p, q}(X) \longrightarrow H^{p+q}(X)
$$

Exercise 4. In a complex manifold we define the Bott-Chern cohomology by

$$
H_{B C}^{p, q}=\frac{\operatorname{ker}\left(d: \Omega^{p, q}(M) \rightarrow \Omega^{p+1, q}(M) \oplus \Omega^{p, q+1}(M)\right)}{\operatorname{Im}\left(\partial \bar{\partial}: \Omega^{p-1, q-1}(M) \rightarrow \Omega^{p, q}(M)\right)}
$$

1. Show that is a compact Kähler manifold the Bott-Chern cohomology $H_{B C}^{p, q}(M)$ is isomorphic to the Dolbeault cohomology $H_{\bar{\partial}}^{p, q}(M)$
2. Let X be a compact Kähler manifold. Show that for two cohomologous Kähler forms ω and ω^{\prime}, i.e. $[\omega]=\left[\omega^{\prime}\right] \in H^{2}(X, \mathbb{R})$, there exists a real function f such that

$$
\omega=\omega^{\prime}+i \partial \bar{\partial} f
$$

You can use without proof the results from Exercise 3 above.
Exercise 5. Show that a complex submanifold of a Kähler manifold is Kähler. By considering linear subspaces of \mathbb{C}^{n} or otherwise give an example of a symplectic submanifold of a Kähler manifold which is not a complex submanifold.

Exercise 6 (Calibrations). A k-calibration in a Riemannian manifold (M, g) is a closed k-form ρ such that for all $p \in M$ and all k-dimensional oriented subspaces $V \subset T_{p} M$ we have $\rho \leq \sigma_{V}$, where σ_{V} denotes volume form induce by the metric g on V and the inequality makes sense because the orientation of V determines a positive direction on the real line $\wedge^{k} V$.

A k-dimensional oriented submanifold, N, of a manifold with calibration, (M, g, ρ), is calibrated if for every $\left.p \in N \rho\right|_{T_{p} N}$ agrees with the volume form determined by the restriction of the metric to N.

1. Show that if $N \hookrightarrow(M, g, \rho)$ is a calibrated submanifold, then the k-volume of any deformation of N is bigger than or equal to the volume of N.
2. Let (M, I, g) be a Kähler manifold and let $\omega=g(\cdot, I \cdot)$ be the associated symplectic form. Show that for all $i \omega^{i}$ is a calibration in (M, g).
3. Show that if $N \hookrightarrow(M, g, I)$ is a complex manifold of a Kähler manifold, then N is calibrated with respect to the appropriate power of ω.
4. Show that if $N \hookrightarrow(M, g, I)$ is calibrated with respect to ω^{i}, then N is a complex submanifold.

Exercise 7.

1. Let L be a holomorphic line bundle on a compact complex manifold X. Show that L is trivial if and only if L and its dual L^{*} admit non-trivial global sections. (Hint: Use the non-trivial sections to construct a non trivial section of $\mathcal{O} L \otimes L^{*}$.)
2. Let L_{1} and L_{2} be two holomorphic line bundles on a complex manifold X. Suppose that $Y \subset X$ is a submanifold of codimension at least two such that L_{1} and L_{2} are isomorphic on $X \backslash Y$. Prove that $L_{1} \cong L_{2}$.

Exercise 8. Show that any holomorphic map from $\mathbb{C} P^{1}$ into a Riemann surface of genus $g>0$ is constant. What about maps from $\mathbb{C} P^{n}$ into Σ_{g} ?

Exercise 9 (Blow-up of Kähler manifolds). Let (M, I, g, ω) be a Kähler manifold and $p \in M$. Following the steps below or otherwise, show that the blow-up of M at p admits a Kähler metric.

1. Let $r^{2}=\sum_{i} z_{i} \bar{z}_{i}$ be the square distance to the origin in \mathbb{C}^{n+1}, let $\pi: \widetilde{\mathbb{C}^{n+1}} \rightarrow \mathbb{C}^{n+1}$ be the blow-down map and let $\sigma=-\frac{1}{2 i} \partial \bar{\partial} \log \left(\pi^{*} r^{2}\right)$. Show that
a) for all $X \in T \widetilde{\mathbb{C}^{n+1}}, \sigma(X, I X) \geq 0$ and
b) for $X \neq 0, X$ tangent to E, the exceptional divisor, $\sigma(X, I X)>0$.
2. Show that there is a closed 2-form $\tilde{\sigma}$ which is equal to σ in an arbitrary neighbourhood U of E and has support in a slightly bigger neighbourhood $V \supset U$ of E.
3. On \widetilde{M}, the blow-up of M at p, with projection $\pi_{M}: \widetilde{M} \rightarrow M$, show that the form

$$
\tilde{\omega}=\pi_{M}^{*} \omega+\epsilon \tilde{\sigma}
$$

is symplectic and compatible with the complex structure for ε small. Conclude that \widetilde{M} is Kähler
Exercise 10 (From sections of line bundles to maps). Let $L \rightarrow M$ be a holomorphic line bundle over M, let $s_{1}, \cdots, s_{k+1}: M \rightarrow L$ be holomorphic sections and let B be the base locus of the sections s_{1}, \cdots, s_{k+1}, that is,

$$
B=\left\{p \in M: s_{i}(p)=0 \quad \forall i\right\}
$$

1. For $U_{\alpha} \subset M \backslash B$ an open set over which L is trivial, pick a trivialization and let s_{i}^{α} be the function corresponding to the section s_{i}. Show that the map

$$
f: U_{\alpha} \rightarrow \mathbb{C} P^{k}, f(p)=\left[s_{1}^{\alpha}(z), \ldots, s_{k+1}^{\alpha}\right]
$$

is independent of the chosen trivialization. Conclude that the sections s_{1}, \cdots, s_{k+1} give rise to a map

$$
f: M \backslash B \rightarrow \mathbb{C} P^{k}
$$

given in locally be the expression above.
2. Assume that the sections s_{1}, \cdots, s_{k+1} have transverse zeros, that is, in a neighbourhood of each point $p \in B$ and for any trivializations of L in that neighbourhood, the functions $\left\{s_{i}^{\alpha}\right\}_{i=1, \ldots, k+1}$ can be complemented to a coordinate chart:

$$
\left(z_{1}=s_{1}^{\alpha}, \ldots, z_{k+1}=s_{k+1}^{\alpha}, z_{k+2}, \ldots, z_{n}\right)
$$

Show that B is a complex submanifold of M.
3. Letting \widetilde{M} be the blow-up of M along B, show that f from the first step extends as a holomorphic map

$$
\tilde{f}: \widetilde{M} \rightarrow \mathbb{C} P^{k}
$$

Side remark: this exercise is typically used in one of two ways. We can either take only two sections, blow up the base locus and obtain something that resembles a fibration $f: M \rightarrow \mathbb{C} P^{1}$ or pick so many independent sections that M embeds on $\mathbb{C} P^{k}$.

Exercise 11. Let $g>0$ and let Σ_{g} be the Riemann surface of genus g.

1. Show that Σ_{g} is not biholomorphic to $\mathbb{C} P^{1}$ for $g>0$.
2. For $p, q \in \Sigma_{g}, p \neq q$, using the previous exercise or otherwise, show that the holomorphic line bundle $L_{p} \otimes L_{q}^{*}$ over Σ_{g} is nontrivial (as a holomorphic vector bundle)
3. Show that $L_{p} \otimes L_{q}^{*}$ has zero first Chern class and hence is trivial as a complex vector bundle.

Exercise 12. Let Σ_{g} be a Riemann surface of genus g.

1. For $g>0$, compute $h^{0}(L)$ and $h^{1}(L)$ for L a line bundle with negative degree (that is the integral of the first Chern class over Σ_{g} is negative).
2. For $g=0$, Compute $h^{0}(L)$ and $h^{1}(L)$ for L a line bundle with negative degree.
3. Show that if the degree of L is big enough, then $h^{0}(L) \neq 0$, that is, L has holomorphic sections.
4. Compute $h^{0}\left(T \Sigma_{g}\right)$ and $h^{1}\left(T \Sigma_{g}\right)$. Note that you may need to consider separately the cases $g=0$, $g=1$ and $g>1$.
Exercise 13. Let : $L \rightarrow M$ be a Hermitian line bundle over M and let $S_{L} \rightarrow M$ be the sphere bundle of L, that is,

$$
S_{L}=\left\{v \in L:\|v\|^{2}=1\right\}
$$

where the norm of v is computed using the fiberwise Hermitian metric. Pick a cover \mathcal{U} for M and unitary trivializations of L over the elements of \mathcal{U} (that is, the local frames are length one sections).

1. Let $\left\{g_{\beta}^{\alpha}: U_{\alpha \beta} \rightarrow \mathbb{C}\right\}_{\alpha, \beta \in A}$ be the transition functions for the chosen trivializations. Show that $\left\|g_{\beta}^{\alpha}\right\|=1$ and conclude that if $U_{\alpha \beta}$ are simply connected there are functions $\theta_{\beta}^{\alpha}: U_{\alpha \beta} \rightarrow \mathbb{R}$ such that $g_{\beta}^{\alpha}=e^{i \theta_{\beta}^{\alpha}}$.
2. Let ∇ be a metric connection on L. In the local trivializations above, $\nabla=d+i A_{\alpha}$. Show that $A_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}$ and $A_{\alpha}-A_{\beta}=d \theta_{\beta}^{\alpha}$.
3. Using the trivialization of L over U_{α} parametrize $\left.S L\right|_{U_{\alpha}}=U_{\alpha} \times S^{1}$ and define a 1-form on $\left.S L\right|_{U_{\alpha}}$ by $\phi_{\alpha}=d \theta+A_{\alpha}$, where θ is the 'coordinate' on the circle. Show that on the overlap $\phi_{\alpha}=\phi_{\beta}$ and hence there is a global 1-form ϕ on $S L$ which equals ϕ_{α} on $\left.S L\right|_{U_{\alpha}}$.
4. Show that the form ϕ above satisfies

$$
\int_{S^{1}} \phi=2 \pi ; \quad d \phi=F_{\nabla}
$$

5. For $i=1,2$, let $\pi_{i}: L_{i} \rightarrow M_{i}$ be Hermitian line bundles with connection over complex manifolds. Let ϕ_{i} be the form in L_{i} constructed in the previous part. Define an almost complex structure on $S L_{1} \times S L_{2}$ by declaring that its canonical bundle is

$$
K=\left(\phi_{1}+i \phi_{2}\right) \wedge \pi_{1}^{*} K_{M_{1}} \wedge \pi_{2}^{*} K_{M_{2}}
$$

Show that this indeed defines an almost complex structure. Show that this structure is integrable.
6. Conclude that $S^{2 k+1} \times S^{2 l+1}$ is a complex manifold for $k, l \in \mathbb{N}$.
7. For which values of k and l are these manifolds Kähler?

Exercise 14. Let $M^{2 n}$ be a compact complex manifold of complex dimension n and $E \rightarrow M$ be a holomorphic vector bundle over M. Show that there is a nondegenerate pairing

$$
H^{q}\left(M ; E \otimes \wedge^{p, 0} T^{*} M\right) \times H^{n-q}\left(M ; E^{*} \otimes \wedge^{n-p, 0} T^{*} M\right) \rightarrow \mathbb{C}
$$

Conclude that these spaces have the same dimension.
Exercise 15. Show that holomorphic forms, i.e., elements of $H^{0}\left(X, \Omega^{p}\right)$, on a compact Kähler manifold X are harmonic with respect to any Kähler metric.

