Complex Geometry – Exam 2

Questions

Exercise 1 $(D^4 \neq D^2 \times D^2)$. In this exercise we will prove that the unit open ball $B \subset \mathbb{C}^2$ is not biholomorphic to the product of two unit discs. For this exercise you can use without proof that any biholomorphism of the disc is of the form

$$\phi \colon D_1 \subset \mathbb{C} \to D_1, \qquad \phi(z) = e^{i\theta} \frac{\alpha - z}{1 - \bar{\alpha} z},$$

for some real constant θ and a complex number α with $|\alpha| < 1$.

- 1. Show that the restriction of any element of U(2) to B gives a biholomorphism of B. Conclude that the group of biholomorphisms of B is not Abelian.
- 2. Show that for every $z \in D_{(1,1)}$ there is a biholomorphism $f: D_{(1,1)} \to D_{(1,1)}$ with f(z) = 0.
- 3. Show that a biholomorphism of $D_{(1,1)}$ which fixes the origin is made of two biholomorphisms of D_1 acting independently on each D_1 factor by rotations.
- 4. Conclude that the group of biholomorphisms of $D_{(1,1)}$ is different from the group of biholomorphisms of B.

Exercise 2.

- 1. Let V be a vector space and $\sigma \in \wedge^2 V$ be a 2-form. Show that if $\sigma^2 = 0$ then σ is decomposable, that is, there are $\alpha, \beta \in V$ such that $\sigma = \alpha \wedge \beta$.
- 2. Let M be a real four-dimensional manifold and let $\sigma \subset \Omega^2(M; \mathbb{C})$ be 2-form such that $\sigma \wedge \sigma = 0$ and $\sigma \wedge \overline{\sigma}$ is everywhere non-zero. Show that there exists a unique almost complex structure I on M such that $\sigma \in \Omega^{2,0}(M)$.
- 3. In the same situation of the previous exercise, show that if σ is closed, then the complex structure is integrable and σ is a holomorphic two-form on (M, I)

Exercise 3.

1. Show that for a polydisc $B \subset \mathbb{C}^n$ the sequence

$$\Omega^{p-1,q-1}(B) \xrightarrow{\partial \partial} \Omega^{p,q}(B) \xrightarrow{d} \Omega^{p+q+1}(B)$$

is exact.

2. Let X be a complex manifold and consider the sequence of differential operators:

$$\Omega^{p-1,q-1}(X) \xrightarrow{\partial \partial} \Omega^{p,q}(X) \xrightarrow{\partial+\partial} \Omega^{p+1,q}(M) \oplus \Omega^{p,q+1}(X).$$

Show that this is a complex of differential operators and that the corresponding symbol sequence is exact.

3. Let X be a complex manifold. Verify that the following definition of the Bott-Chern cohomology

$$H^{p,q}_{BC}(X) := \frac{\ker\{d: \Omega^{p,q}(X) \to \Omega^{p+q+1}(X)\}}{\operatorname{Im}\left(\partial\overline{\partial}: \Omega^{p-1,q-1}(X) \to \Omega^{p,q}(X)\right)}$$

makes sense. Deduce that $H^{p,q}_{BC}(B) = 0$ for a polydisc $B \in \mathbb{C}^n$ and $p,q \ge 1$. Show that there are natural maps

$$H^{p,q}_{BC}(X) \longrightarrow H^{p,q}(X) \qquad H^{p,q}_{BC}(X) \longrightarrow H^{p+q}(X)$$

Exercise 4. In a complex manifold we define the Bott–Chern cohomology by

$$H^{p,q}_{BC} = \frac{\ker(d:\Omega^{p,q}(M) \to \Omega^{p+1,q}(M) \oplus \Omega^{p,q+1}(M))}{\operatorname{Im}\left(\partial\overline{\partial}:\Omega^{p-1,q-1}(M) \to \Omega^{p,q}(M)\right)}$$

- 1. Show that is a compact Kähler manifold the Bott–Chern cohomology $H^{p,q}_{BC}(M)$ is isomorphic to the Dolbeault cohomology $H^{p,q}_{\overline{\partial}}(M)$
- 2. Let X be a compact Kähler manifold. Show that for two cohomologous Kähler forms ω and ω' , i.e. $[\omega] = [\omega'] \in H^2(X, \mathbb{R})$, there exists a real function f such that

$$\omega = \omega' + i\partial\overline{\partial}f.$$

You can use without proof the results from Exercise 3 above.

Exercise 5. Show that a complex submanifold of a Kähler manifold is Kähler. By considering linear subspaces of \mathbb{C}^n or otherwise give an example of a symplectic submanifold of a Kähler manifold which is not a complex submanifold.

Exercise 6 (Calibrations). A *k*-calibration in a Riemannian manifold (M, g) is a closed *k*-form ρ such that for all $p \in M$ and all *k*-dimensional oriented subspaces $V \subset T_p M$ we have $\rho \leq \sigma_V$, where σ_V denotes volume form induce by the metric g on V and the inequality makes sense because the orientation of V determines a positive direction on the real line $\wedge^k V$.

A k-dimensional oriented submanifold, N, of a manifold with calibration, (M, g, ρ) , is *calibrated* if for every $p \in N \rho|_{T_pN}$ agrees with the volume form determined by the restriction of the metric to N.

- 1. Show that if $N \hookrightarrow (M, g, \rho)$ is a calibrated submanifold, then the k-volume of any deformation of N is bigger than or equal to the volume of N.
- 2. Let (M, I, g) be a Kähler manifold and let $\omega = g(\cdot, I \cdot)$ be the associated symplectic form. Show that for all $i \omega^i$ is a calibration in (M, g).
- 3. Show that if $N \hookrightarrow (M, g, I)$ is a complex manifold of a Kähler manifold, then N is calibrated with respect to the appropriate power of ω .
- 4. Show that if $N \hookrightarrow (M, g, I)$ is calibrated with respect to ω^i , then N is a complex submanifold.

Exercise 7.

- 1. Let L be a holomorphic line bundle on a compact complex manifold X. Show that L is trivial if and only if L and its dual L^* admit non-trivial global sections. (Hint: Use the non-trivial sections to construct a non trivial section of $\mathcal{O} \ L \otimes L^*$.)
- 2. Let L_1 and L_2 be two holomorphic line bundles on a complex manifold X. Suppose that $Y \subset X$ is a submanifold of codimension at least two such that L_1 and L_2 are isomorphic on $X \setminus Y$. Prove that $L_1 \cong L_2$.

Exercise 8. Show that any holomorphic map from $\mathbb{C}P^1$ into a Riemann surface of genus g > 0 is constant. What about maps from $\mathbb{C}P^n$ into Σ_q ?

Exercise 9 (Blow-up of Kähler manifolds). Let (M, I, g, ω) be a Kähler manifold and $p \in M$. Following the steps below or otherwise, show that the blow-up of M at p admits a Kähler metric.

- 1. Let $r^2 = \sum_i z_i \overline{z_i}$ be the square distance to the origin in \mathbb{C}^{n+1} , let $\pi \colon \widetilde{\mathbb{C}^{n+1}} \to \mathbb{C}^{n+1}$ be the blow-down map and let $\sigma = -\frac{1}{2i}\partial\overline{\partial}\log(\pi^*r^2)$. Show that
- a) for all $X \in T\widetilde{\mathbb{C}^{n+1}}$, $\sigma(X, IX) \ge 0$ and
- b) for $X \neq 0$, X tangent to E, the exceptional divisor, $\sigma(X, IX) > 0$.
- 2. Show that there is a closed 2-form $\tilde{\sigma}$ which is equal to σ in an arbitrary neighbourhood U of E and has support in a slightly bigger neighbourhood $V \supset U$ of E.
- 3. On \widetilde{M} , the blow-up of M at p, with projection $\pi_M \colon \widetilde{M} \to M$, show that the form

$$\tilde{\omega} = \pi_M^* \omega + \epsilon \tilde{\sigma}$$

is symplectic and compatible with the complex structure for ε small. Conclude that \widetilde{M} is Kähler

Exercise 10 (From sections of line bundles to maps). Let $L \to M$ be a holomorphic line bundle over M, let $s_1, \dots, s_{k+1} \colon M \to L$ be holomorphic sections and let B be the *base locus* of the sections s_1, \dots, s_{k+1} , that is,

$$B = \{ p \in M \colon s_i(p) = 0 \quad \forall i \}.$$

1. For $U_{\alpha} \subset M \setminus B$ an open set over which L is trivial, pick a trivialization and let s_i^{α} be the function corresponding to the section s_i . Show that the map

$$f: U_{\alpha} \to \mathbb{C}P^k, f(p) = [s_1^{\alpha}(z), \dots, s_{k+1}^{\alpha}]$$

is independent of the chosen trivialization. Conclude that the sections s_1, \dots, s_{k+1} give rise to a map

$$f: M \backslash B \to \mathbb{C}P'$$

given in locally be the expression above.

2. Assume that the sections s_1, \dots, s_{k+1} have transverse zeros, that is, in a neighbourhood of each point $p \in B$ and for any trivializations of L in that neighbourhood, the functions $\{s_i^{\alpha}\}_{i=1,\dots,k+1}$ can be complemented to a coordinate chart:

$$(z_1 = s_1^{\alpha}, \dots, z_{k+1} = s_{k+1}^{\alpha}, z_{k+2}, \dots, z_n)$$

Show that B is a complex submanifold of M.

3. Letting \widetilde{M} be the blow-up of M along B, show that f from the first step extends as a holomorphic map

$$\tilde{f}: M \to \mathbb{C}P^k.$$

Side remark: this exercise is typically used in one of two ways. We can either take only two sections, blow up the base locus and obtain something that resembles a fibration $f: M \to \mathbb{C}P^1$ or pick so many independent sections that M embeds on $\mathbb{C}P^k$.

Exercise 11. Let g > 0 and let Σ_g be the Riemann surface of genus g.

1. Show that Σ_q is not biholomorphic to $\mathbb{C}P^1$ for q > 0.

- 2. For $p, q \in \Sigma_g$, $p \neq q$, using the previous exercise or otherwise, show that the holomorphic line bundle $L_p \otimes L_q^*$ over Σ_g is nontrivial (as a holomorphic vector bundle)
- 3. Show that $L_p \otimes L_q^*$ has zero first Chern class and hence is trivial as a complex vector bundle.

Exercise 12. Let Σ_g be a Riemann surface of genus g.

- 1. For g > 0, compute $h^0(L)$ and $h^1(L)$ for L a line bundle with negative degree (that is the integral of the first Chern class over Σ_q is negative).
- 2. For g = 0, Compute $h^0(L)$ and $h^1(L)$ for L a line bundle with negative degree.
- 3. Show that if the degree of L is big enough, then $h^0(L) \neq 0$, that is, L has holomorphic sections.
- 4. Compute $h^0(T\Sigma_g)$ and $h^1(T\Sigma_g)$. Note that you may need to consider separately the cases g = 0, g = 1 and g > 1.

Exercise 13. Let $: L \to M$ be a Hermitian line bundle over M and let $S_L \to M$ be the sphere bundle of L, that is,

$$S_L = \{ v \in L \colon \|v\|^2 = 1 \}$$

where the norm of v is computed using the fiberwise Hermitian metric. Pick a cover \mathcal{U} for M and unitary trivializations of L over the elements of \mathcal{U} (that is, the local frames are length one sections).

- 1. Let $\{g_{\beta}^{\alpha}: U_{\alpha\beta} \to \mathbb{C}\}_{\alpha,\beta\in A}$ be the transition functions for the chosen trivializations. Show that $\|g_{\beta}^{\alpha}\| = 1$ and conclude that if $U_{\alpha\beta}$ are simply connected there are functions $\theta_{\beta}^{\alpha}: U_{\alpha\beta} \to \mathbb{R}$ such that $g_{\beta}^{\alpha} = e^{i\theta_{\beta}^{\alpha}}$.
- 2. Let ∇ be a metric connection on L. In the local trivializations above, $\nabla = d + iA_{\alpha}$. Show that $A_{\alpha}: U_{\alpha} \to \mathbb{R}$ and $A_{\alpha} A_{\beta} = d\theta_{\beta}^{\alpha}$.
- 3. Using the trivialization of L over U_{α} parametrize $SL|_{U_{\alpha}} = U_{\alpha} \times S^1$ and define a 1-form on $SL|_{U_{\alpha}}$ by $\phi_{\alpha} = d\theta + A_{\alpha}$, where θ is the 'coordinate' on the circle. Show that on the overlap $\phi_{\alpha} = \phi_{\beta}$ and hence there is a global 1-form ϕ on SL which equals ϕ_{α} on $SL|_{U_{\alpha}}$.
- 4. Show that the form ϕ above satisfies

$$\int_{S^1} \phi = 2\pi; \quad d\phi = F_{\nabla}.$$

5. For i = 1, 2, let $\pi_i: L_i \to M_i$ be Hermitian line bundles with connection over complex manifolds. Let ϕ_i be the form in L_i constructed in the previous part. Define an almost complex structure on $SL_1 \times SL_2$ by declaring that its canonical bundle is

$$K = (\phi_1 + i\phi_2) \wedge \pi_1^* K_{M_1} \wedge \pi_2^* K_{M_2}.$$

Show that this indeed defines an almost complex structure. Show that this structure is integrable.

- 6. Conclude that $S^{2k+1} \times S^{2l+1}$ is a complex manifold for $k, l \in \mathbb{N}$.
- 7. For which values of k and l are these manifolds Kähler?

Exercise 14. Let M^{2n} be a compact complex manifold of complex dimension n and $E \to M$ be a holomorphic vector bundle over M. Show that there is a nondegenerate pairing

$$H^{q}(M; E \otimes \wedge^{p,0}T^{*}M) \times H^{n-q}(M; E^{*} \otimes \wedge^{n-p,0}T^{*}M) \to \mathbb{C}$$

Conclude that these spaces have the same dimension.

Exercise 15. Show that holomorphic forms, i.e., elements of $H^0(X, \Omega^p)$, on a compact Kähler manifold X are harmonic with respect to any Kähler metric.