
Complex Geometry – Mock Exam 1

Notes:

1. Write your name and student number **clearly** on each page of written solutions you
hand in.

2. You can give solutions in English or Dutch.

3. You are expected to explain your answers.

4. You are allowed to consult text books and class notes.

5. You are not allowed to consult colleagues, calculators, computers etc.

6. Advice: read all questions first, then start solving the ones you already know how to solve or have
good idea on the steps to find a solution. After you have finished the ones you found easier, tackle
the harder ones.

Questions

Exercise 1 (1.0 pt). Let n > 1 and let f : Cn → C be holomorphic. Show that for every w ∈ Im(f) there
is z ∈ f−1(w) with ‖z‖ > 0.

Proof. Assume by contradiction that there is w0 ∈ C f−1(w0) = {0} and consider the auxiliary function
f̃ : Cn → C, f̃(z) = 1

f(z)−w0
. Since f̃ is a quotient of holomorphic functions for which the numerator is

nonzero at 0 but the denominator vanishes at 0 we conclude that f̃ has a non removable singularity at 0.
Then f̃ is a holomorphic function defined on Cn\{0}. By Hartog’s theorem f̃ can be extended to 0 by

continuity, which gives us a contradition.

Exercise 2 (2.0 pt). Let f : Mn → Nn be a map between compact connected oriented manifolds of the
same dimension. The degree of f is defined by

deg(f) =

∫
M
f∗ρ∫
N
ρ
,

where ρ is any top degree form on N with
∫
N
ρ 6= 0.

• Show that deg(f) does not depend on the form ρ (hint observe that the computation defining
the degree takes place in cohomology and use that for compact, connected, orientable manifolds
Htop(M ;R) = R).

• Let p ∈ N be a regular value of f , so that p has a neighbourhood U for which f−1(U) = ∪ki=1Ui
and f : Ui → U is a diffeomorphism for all i. Pick ρ ∈ Ωn(N) a top degree form supported in U and
show that

deg(f) =

k∑
i=1

ε(pi),

where ε(pi) = 1 if dfpi : TpiM → TpN is orientation preserving and ε(pi) = −1 otherwise.



• Show that if M and N are complex manifolds and f is holomorphic, then deg(f) is non-negative
and if f has invertible derivative at a point, then deg(f) > 0 and equals the number of points in the
pre-image of a regular value.

Proof. 1) For the first part we use that the top degree cohomology of a compact connected orientable
manifold is isomorphic to R. Since N is orientable, it has a volume form, say, ρ for which

∫
N
ρ 6= 0, in

particular, we see that ρ is not exact because by Stokes theorem for and exact form we have∫
N

dτ =

∫
∂N

τ = 0,

since N does not have boundary. In particular [ρ] generates the top degree cohomology of N .
Given another top degree form, ρ̃, which represents a nonzero class, we have that [ρ̃] = λ[ρ] for a

nonzero λ, hence we can compare the degree of f computed with respect these two top degree forms:

degρ̃(f) =

∫
M
f∗ρ̃∫
N
ρ̃

=

∫
M
f∗(λρ+ dτ)∫
N
λρ+ dτ

=

∫
M
f∗(λρ)∫
N
λρ

=

∫
M
f∗(ρ)∫
N
ρ

= degρ(f).

2) Picking U as in the statement of the exercise (also connected), let ρ be a top degree form with
support in U and for which

∫
U
ρ = 1. We can construct one such form using a non-vanishing function

on U , a bump function and normalization (so the integral is 1). Since for each Ui, f : Ui → U is a
diffeomorphism, ∫

Ui

f∗ρ = ±1,

where the sign depends on whether f : Ui → U is orientation preserving or orientation reversing. Since to
determine if a diffeomorphism is orietation preserving or reversing can be done by checking its derivative
at a point, we conclude that the sign above is +1 if dfpi : TpiM → TpN is orientation preserving and −1
otherwise.

Finally, since supf∗ρ ⊂ ∪Ui, we have that

deg(f) =

∫
M
f∗ρ∫
N
ρ

=

k∑
i=1

∫
Ui

f∗ρ =

k∑
i=1

ε(pi).

3) If M and N are complex and f is holomorphic, the derivative of f is orientation preserving hence
for every regular point pi, ε(pi) = 1. Therefore

deg(f) = |f−1(p)|

for any regular value p.
Finally, if f has invertible derivative at a point, say p0 and f(p0) = p, then by the inverse function

theorem f is invertible in a neighbouhood of p0, say f : U ⊂ M → V ⊂ N .By Sard’s theorem there is a
regular value in q ∈ V and hence deg(f) = |f−1(q)| > 0, since q has at least one inverse image in U .

Remark 1: This was not part of the exercise, but it is worth pointing out. If p ∈ N is not in the image
of f , then p is a regular value and hence deg(f) = |f−1(p)| = 0. In particular we conclude that if the
derivative of f is an isomorphism at some point, then f is surjective.

Remark 2: If M and N are complex curves, for each p ∈ M either dfp = 0 or dfp is an isomorphism.
That is either f has positive degree (and hence is surjective) or it has degree zero and is constant.

Exercise 3 (2.0 pt). Let Σ be a compact Riemann surface and let p ∈ Σ. Consider the complex line
bundle π : Lp → Σ which has two trivializations, one over Σ\{p} and one over a disc, D, centered at p,

Φ0 : Lp|Σ\{p} → Σ\{p} × C, Φ1 : Lp|D → D × C,



with transition function

Φ1 ◦ Φ−1
0 : D\{0} × C→ D\{0} × C, Φ1 ◦ Φ−1

0 (z, v) = (z, zv),

where z denotes the coordinate on the disc.

• Show that Lp has a section which vanishes at p.

• Show that Lp is not isomorphic to the trivial bundle.

• Let p1 6= p2. Show that Lp1 ⊗ L−1
p2 has a section with a zero at p1 and a simple pole at p2.

• Let p1 6= p2. Show that if Lp1 ⊗ L−1
p2 is isomorphic to the trivial bundle then Σ = CP 1.

Proof. 1) Define a section s of Lp be declaring that on the trivialization Φ0 the section is constant and
equal to one and in the trivialization Φ1 it is the disc coordinate, that is, s is defined by

Φ0(p, s(p)) = (p, 1) =: s0, Φ1(z, s(z)) = (z, z) := s1.

To conclude the exercise we just need to show that these two local expressions agree when we compare
trivializations.

Φ1 ◦ Φ−1
0 (s0(z)) = Φ1 ◦ Φ−1

0 (z, 1) = (z, z · 1) = s1(z).

2) If Lp was isomorphic to the trivial bundle it would also admit a nowhere vanishing holomorphic
section, σ. Hence we can compare the section from part 1 with sigma to obtain s = fσ. Since both s and
σ are holomorphic, f is also holomorphic (in a compact manifold), hence f is constant. Since s(p) = 0
and σ(p) 6= 0 we have f(p) = 0. But for q 6= p, s(q) 6= 0, hence f(q) 6= 0 which is a contradiction.

3) Similar to the first part, define a section constant and equal to 1 on the trivialization Φ0, equal to
z on Φ1 and 1

z on the trivialization Φ2 in a neighbourhood of p2 and the same computation from before
yields a holomorphic ‘section’ with the desired properties (notice that since it has a pole at p2 it is not
really a section.

4) If Lp1 ⊗ Lp2 is isomorphic to the trivial bundle, it has a nowhere vanishing section σ and we can
compare s from part 3 to σs to obtain s = fσ, where f is a meromorphic function with a simple zero at
p1 that is f : Σ → C ∪ {∞} = CP 1 is holomorphic, has 0 as a regular value and has degree 1, hence f
is a holomorphic bijection (see exercise 2). If df vanished at some point we would have, in appropriate
coordinates that f(z) = zk where k is the order of the first nonvanishing derivative of f . In particular
we would have that deg(f) ≥ k, which is a contradiction to the fact that f has degree 1, hence df never
vanishes and f is a biholomorphism.

Exercise 4 (2.0 pt). Let (M2n, I, g) be an almost complex manifold with compatible Riemannian metric.

• Show that the two form defined by ω(X,Y ) = g(X, IY ) is of type (1,1).

• Let Ω ∈ Ωn,0(M) be a nonvanishing local section of the canonical bundle of M . Show that if
dω ∧ Ω 6= 0 then I is not integrable.

• Show that the almost complex structure on S6 determined by octonionic multiplication is compatible
with the Euclidean metric of R7 restricted to the sphere.

• Show that the almost complex structure of S6 is not integrable.

Proof. 1) We can read off the decomposition of 2-forms into Ω1,1 and Ω2,0 ⊕ Ω0,2 from how I∗ acts on
these spaces. Namely, on 2-forms

I∗α = α iff α ∈ Ω1,1, I∗α = −α iff α ∈ Ω2,0 ⊕ Ω0,2,



therefore, to show that ω is of type (1, 1) we need to show that I∗ω = ω, but this follows directly from
compatibility with the metric:

I∗ω(X,Y ) = ω(IX, IY ) = g(IX, IIY ) = g(X, IY ) = ω(X,Y ), ∀X,Y.

2) If I is integrable, then dω ∈ Ω2,1 ⊕ Ω1,2 and hence dω ∧ Ω = 0 as the holomorphic degree of its
components is greater than the complex dimension of the manifold.

3) Is a direct check using octonionic multiplication.
4) I still have to do.

Exercise 5 (2.0 pt). Let Z2 = 〈a : a2 = e〉 act on C2 by a · (z1, z2) = −(z1, z2).

• Resolve the singularity of C2/Z2,

• Let Ω = dz1∧dz2 ∈ Ω2(C2). Show that Ω extends as a nonvanishing section of the canonical bundle

of most natural resolution C̃2 of C2.

Let Z2 act on C2 by (m,n) · (z1, z2) = (z1 +m, z2 + n).

• Show that Ω = dz1 ∧ dz2 ∈ Ω2(C2) gives rise to a nonvanishing section of the canonical bundle of
the torus T 4 = C2/Z2,

• Show that the Z2 action of the first part of this exercise gives rise to a Z2 action on T 4 and compute
its fixed points.

• Show that the canonical bundle of the natural resolution of the singularities of T 4/Z2 has a nowhere
vanishing holomorphic section.

Proof. 1) Following the corresponding example from the notes we blow up the origin on C2 and see that

the Z2 action induces an action on C̃2 which has the exceptional divisor as fixed point set and rotates
each fiber of the tautological bundle by π. We will need the concrete formulas here.

On C̃2 we have
u1 = z1, v1 = z2/z1,⇒ z1 = u1, z2 = u1v1,

u2 = z1/z2, v2 = z2,⇒ z1 = u2v2, z2 = v2.

The Z2 = 〈a : a2 = e〉 action in these charts is

a · (u1, v1) = (−u1, v1) a · (u2, v2) = (u2,−v2)

And the quotient space is covered by two charts, say (x1, y1) and (x2, y2) related to the (u, v)-
coordinates via the quotient map:

(x1, y1) = (u2
1, v1), (x2, y2) = (u2, v

2
2).

The transition of coordinates between (u1, v1) and (u2, v2) gives the transition of coordinates between
(x1, y1) and (x2, y2):

(x1, y1) = (u2
1, v1) = ((u2v2)2, 1/u2) = (y2x

2
2, x
−1
2 ).

2) The pull back of dz1 ∧ dz2 to the (u, v)-coordinates is

dz1 ∧ dz2 = du1 ∧ d(u1v1) = u1du1 ∧ dv1 =
1

2
du2

1 ∧ dv1,

which can be pushed forward to the (x1, y1)-coordinates as

1

2
du2

1 ∧ dv1 =
1

2
dx1 ∧ dy1.



A similar computation holds for the (x2, y2)-coordinates and using the change of coordinates between
(x1, y1) and (x2, y2) we can check we didn’t mess anything up

dx1 ∧ dy1 = d(y2x
2
2) ∧ d(x−1

2 ) = x2
2dy2 ∧

(
−1

x2
2

dx2

)
= dx2 ∧ dy2.

3) Ω is a nonvanishing (2, 0)-form on C2 invariant under the Z2 action, hence it descends to a nonva-
nishing (2, 0)-form on T 4.

4) Using a cube as the fundamental domain of the Z2 action, the fixed points are those of the form
(x1, x2, x3, x4) where xi ∈ {0, 1/2}. Therefore there are 16 fixed points.

5) At each fixed point the action is isomorphic to the one of part 1, hence according to part 2 if we
resolve each of the 16 the singularities as in part 2 the 2-form dz1 ∧ dz2 from C2 descended to T 4 induces
a nowhere vanishing closed (2, 0)-form on the resolution.


