Complex Geometry - Mock Exam 1

Notes:

1. Write your name and student number ${ }^{* *}$ clearly** on each page of written solutions you hand in.

2. You can give solutions in English or Dutch.
3. You are expected to explain your answers.
4. You are allowed to consult text books and class notes.
5. You are not allowed to consult colleagues, calculators, computers etc.
6. Advice: read all questions first, then start solving the ones you already know how to solve or have good idea on the steps to find a solution. After you have finished the ones you found easier, tackle the harder ones.

Questions

Exercise $1(1.0 \mathrm{pt})$. Let $n>1$ and let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$ be holomorphic. Show that for every $w \in \operatorname{Im}(f)$ there is $z \in f^{-1}(w)$ with $\|z\|>0$.

Proof. Assume by contradiction that there is $w_{0} \in \mathbb{C} f^{-1}\left(w_{0}\right)=\{0\}$ and consider the auxiliary function $\tilde{f}: \mathbb{C}^{n} \rightarrow \mathbb{C}, \tilde{f}(z)=\frac{1}{f(z)-w_{0}}$. Since \tilde{f} is a quotient of holomorphic functions for which the numerator is nonzero at 0 but the denominator vanishes at 0 we conclude that \tilde{f} has a non removable singularity at 0 .

Then \tilde{f} is a holomorphic function defined on $\mathbb{C}^{n} \backslash\{0\}$. By Hartog's theorem \tilde{f} can be extended to 0 by continuity, which gives us a contradition.

Exercise $2(2.0 \mathrm{pt})$. Let $f: M^{n} \rightarrow N^{n}$ be a map between compact connected oriented manifolds of the same dimension. The degree of f is defined by

$$
\operatorname{deg}(f)=\frac{\int_{M} f^{*} \rho}{\int_{N} \rho},
$$

where ρ is any top degree form on N with $\int_{N} \rho \neq 0$.

- Show that $\operatorname{deg}(f)$ does not depend on the form ρ (hint observe that the computation defining the degree takes place in cohomology and use that for compact, connected, orientable manifolds $\left.H^{\text {top }}(M ; \mathbb{R})=\mathbb{R}\right)$.
- Let $p \in N$ be a regular value of f, so that p has a neighbourhood U for which $f^{-1}(U)=\cup_{i=1}^{k} U_{i}$ and $f: U_{i} \rightarrow U$ is a diffeomorphism for all i. Pick $\rho \in \Omega^{n}(N)$ a top degree form supported in U and show that

$$
\operatorname{deg}(f)=\sum_{i=1}^{k} \epsilon\left(p_{i}\right),
$$

where $\epsilon\left(p_{i}\right)=1$ if $d f_{p_{i}}: T p_{i} M \rightarrow T_{p} N$ is orientation preserving and $\epsilon\left(p_{i}\right)=-1$ otherwise.

- Show that if M and N are complex manifolds and f is holomorphic, then $\operatorname{deg}(f)$ is non-negative and if f has invertible derivative at a point, then $\operatorname{deg}(f)>0$ and equals the number of points in the pre-image of a regular value.

Proof. 1) For the first part we use that the top degree cohomology of a compact connected orientable manifold is isomorphic to \mathbb{R}. Since N is orientable, it has a volume form, say, ρ for which $\int_{N} \rho \neq 0$, in particular, we see that ρ is not exact because by Stokes theorem for and exact form we have

$$
\int_{N} d \tau=\int_{\partial N} \tau=0
$$

since N does not have boundary. In particular $[\rho]$ generates the top degree cohomology of N.
Given another top degree form, $\tilde{\rho}$, which represents a nonzero class, we have that $[\tilde{\rho}]=\lambda[\rho]$ for a nonzero λ, hence we can compare the degree of f computed with respect these two top degree forms:

$$
\operatorname{deg}_{\tilde{\rho}}(f)=\frac{\int_{M} f^{*} \tilde{\rho}}{\int_{N} \tilde{\rho}}=\frac{\int_{M} f^{*}(\lambda \rho+d \tau)}{\int_{N} \lambda \rho+d \tau}=\frac{\int_{M} f^{*}(\lambda \rho)}{\int_{N} \lambda \rho}=\frac{\int_{M} f^{*}(\rho)}{\int_{N} \rho}=\operatorname{deg}_{\rho}(f)
$$

2) Picking U as in the statement of the exercise (also connected), let ρ be a top degree form with support in U and for which $\int_{U} \rho=1$. We can construct one such form using a non-vanishing function on U, a bump function and normalization (so the integral is 1). Since for each $U_{i}, f: U_{i} \rightarrow U$ is a diffeomorphism,

$$
\int_{U_{i}} f^{*} \rho= \pm 1
$$

where the sign depends on whether $f: U_{i} \rightarrow U$ is orientation preserving or orientation reversing. Since to determine if a diffeomorphism is orietation preserving or reversing can be done by checking its derivative at a point, we conclude that the sign above is +1 if $d f_{p_{i}}: T_{p_{i}} M \rightarrow T_{p} N$ is orientation preserving and -1 otherwise.

Finally, since $\sup f^{*} \rho \subset \cup U_{i}$, we have that

$$
\operatorname{deg}(f)=\frac{\int_{M} f^{*} \rho}{\int_{N} \rho}=\sum_{i=1}^{k} \int_{U_{i}} f^{*} \rho=\sum_{i=1}^{k} \epsilon\left(p_{i}\right)
$$

3) If M and N are complex and f is holomorphic, the derivative of f is orientation preserving hence for every regular point $p_{i}, \epsilon\left(p_{i}\right)=1$. Therefore

$$
\operatorname{deg}(f)=\left|f^{-1}(p)\right|
$$

for any regular value p.
Finally, if f has invertible derivative at a point, say p_{0} and $f\left(p_{0}\right)=p$, then by the inverse function theorem f is invertible in a neighbouhood of p_{0}, say $f: U \subset M \rightarrow V \subset N$.By Sard's theorem there is a regular value in $q \in V$ and hence $\operatorname{deg}(f)=\left|f^{-1}(q)\right|>0$, since q has at least one inverse image in U.

Remark 1: This was not part of the exercise, but it is worth pointing out. If $p \in N$ is not in the image of f, then p is a regular value and hence $\operatorname{deg}(f)=\left|f^{-1}(p)\right|=0$. In particular we conclude that if the derivative of f is an isomorphism at some point, then f is surjective.

Remark 2: If M and N are complex curves, for each $p \in M$ either $d f_{p}=0$ or $d f_{p}$ is an isomorphism. That is either f has positive degree (and hence is surjective) or it has degree zero and is constant.

Exercise 3 (2.0 pt). Let Σ be a compact Riemann surface and let $p \in \Sigma$. Consider the complex line bundle $\pi: L_{p} \rightarrow \Sigma$ which has two trivializations, one over $\Sigma \backslash\{p\}$ and one over a disc, D, centered at p,

$$
\Phi_{0}:\left.L_{p}\right|_{\Sigma \backslash\{p\}} \rightarrow \Sigma \backslash\{p\} \times \mathbb{C}, \quad \Phi_{1}:\left.L_{p}\right|_{D} \rightarrow D \times \mathbb{C}
$$

with transition function

$$
\Phi_{1} \circ \Phi_{0}^{-1}: D \backslash\{0\} \times \mathbb{C} \rightarrow D \backslash\{0\} \times \mathbb{C}, \quad \Phi_{1} \circ \Phi_{0}^{-1}(z, v)=(z, z v)
$$

where z denotes the coordinate on the disc.

- Show that L_{p} has a section which vanishes at p.
- Show that L_{p} is not isomorphic to the trivial bundle.
- Let $p_{1} \neq p_{2}$. Show that $L_{p_{1}} \otimes L_{p_{2}}^{-1}$ has a section with a zero at p_{1} and a simple pole at p_{2}.
- Let $p_{1} \neq p_{2}$. Show that if $L_{p_{1}} \otimes L_{p_{2}}^{-1}$ is isomorphic to the trivial bundle then $\Sigma=\mathbb{C} P^{1}$.

Proof. 1) Define a section s of L_{p} be declaring that on the trivialization Φ_{0} the section is constant and equal to one and in the trivialization Φ_{1} it is the disc coordinate, that is, s is defined by

$$
\Phi_{0}(p, s(p))=(p, 1)=: s_{0}, \quad \Phi_{1}(z, s(z))=(z, z):=s_{1}
$$

To conclude the exercise we just need to show that these two local expressions agree when we compare trivializations.

$$
\Phi_{1} \circ \Phi_{0}^{-1}\left(s_{0}(z)\right)=\Phi_{1} \circ \Phi_{0}^{-1}(z, 1)=(z, z \cdot 1)=s_{1}(z)
$$

2) If L_{p} was isomorphic to the trivial bundle it would also admit a nowhere vanishing holomorphic section, σ. Hence we can compare the section from part 1 with sigma to obtain $s=f \sigma$. Since both s and σ are holomorphic, f is also holomorphic (in a compact manifold), hence f is constant. Since $s(p)=0$ and $\sigma(p) \neq 0$ we have $f(p)=0$. But for $q \neq p, s(q) \neq 0$, hence $f(q) \neq 0$ which is a contradiction.
3) Similar to the first part, define a section constant and equal to 1 on the trivialization Φ_{0}, equal to z on Φ_{1} and $\frac{1}{z}$ on the trivialization Φ_{2} in a neighbourhood of p_{2} and the same computation from before yields a holomorphic 'section' with the desired properties (notice that since it has a pole at p_{2} it is not really a section.
4) If $L_{p_{1}} \otimes L_{p_{2}}$ is isomorphic to the trivial bundle, it has a nowhere vanishing section σ and we can compare s from part 3 to σ s to obtain $s=f \sigma$, where f is a meromorphic function with a simple zero at p_{1} that is $f: \Sigma \rightarrow \mathbb{C} \cup\{\infty\}=\mathbb{C} P^{1}$ is holomorphic, has 0 as a regular value and has degree 1 , hence f is a holomorphic bijection (see exercise 2). If $d f$ vanished at some point we would have, in appropriate coordinates that $f(z)=z^{k}$ where k is the order of the first nonvanishing derivative of f. In particular we would have that $\operatorname{deg}(f) \geq k$, which is a contradiction to the fact that f has degree 1 , hence $d f$ never vanishes and f is a biholomorphism.

Exercise $4(2.0 \mathrm{pt})$. Let $\left(M^{2 n}, I, g\right)$ be an almost complex manifold with compatible Riemannian metric.

- Show that the two form defined by $\omega(X, Y)=g(X, I Y)$ is of type $(1,1)$.
- Let $\Omega \in \Omega^{n, 0}(M)$ be a nonvanishing local section of the canonical bundle of M. Show that if $d \omega \wedge \Omega \neq 0$ then I is not integrable.
- Show that the almost complex structure on S^{6} determined by octonionic multiplication is compatible with the Euclidean metric of \mathbb{R}^{7} restricted to the sphere.
- Show that the almost complex structure of S^{6} is not integrable.

Proof. 1) We can read off the decomposition of 2 -forms into $\Omega^{1,1}$ and $\Omega^{2,0} \oplus \Omega^{0,2}$ from how I^{*} acts on these spaces. Namely, on 2-forms

$$
I^{*} \alpha=\alpha \text { iff } \alpha \in \Omega^{1,1}, \quad I^{*} \alpha=-\alpha \text { iff } \alpha \in \Omega^{2,0} \oplus \Omega^{0,2}
$$

therefore, to show that ω is of type $(1,1)$ we need to show that $I^{*} \omega=\omega$, but this follows directly from compatibility with the metric:

$$
I^{*} \omega(X, Y)=\omega(I X, I Y)=g(I X, I I Y)=g(X, I Y)=\omega(X, Y), \quad \forall X, Y
$$

2) If I is integrable, then $d \omega \in \Omega^{2,1} \oplus \Omega^{1,2}$ and hence $d \omega \wedge \Omega=0$ as the holomorphic degree of its components is greater than the complex dimension of the manifold.
3) Is a direct check using octonionic multiplication.
4) I still have to do.

Exercise $5(2.0 \mathrm{pt})$. Let $\mathbb{Z}_{2}=\left\langle a: a^{2}=e\right\rangle$ act on \mathbb{C}^{2} by $a \cdot\left(z_{1}, z_{2}\right)=-\left(z_{1}, z_{2}\right)$.

- Resolve the singularity of $\mathbb{C}^{2} / \mathbb{Z}_{2}$,
- Let $\Omega=d z_{1} \wedge d z_{2} \in \Omega^{2}\left(\mathbb{C}^{2}\right)$. Show that Ω extends as a nonvanishing section of the canonical bundle of most natural resolution $\widetilde{\mathbb{C}^{2}}$ of \mathbb{C}^{2}.

Let \mathbb{Z}^{2} act on \mathbb{C}^{2} by $(m, n) \cdot\left(z_{1}, z_{2}\right)=\left(z_{1}+m, z_{2}+n\right)$.

- Show that $\Omega=d z_{1} \wedge d z_{2} \in \Omega^{2}\left(\mathbb{C}^{2}\right)$ gives rise to a nonvanishing section of the canonical bundle of the torus $T^{4}=\mathbb{C}^{2} / \mathbb{Z}^{2}$,
- Show that the \mathbb{Z}_{2} action of the first part of this exercise gives rise to a \mathbb{Z}_{2} action on T^{4} and compute its fixed points.
- Show that the canonical bundle of the natural resolution of the singularities of T^{4} / \mathbb{Z}_{2} has a nowhere vanishing holomorphic section.

Proof. 1) Following the corresponding example from the notes we blow up the origin on \mathbb{C}^{2} and see that the \mathbb{Z}_{2} action induces an action on $\tilde{\mathbb{C}}^{2}$ which has the exceptional divisor as fixed point set and rotates each fiber of the tautological bundle by π. We will need the concrete formulas here.

On $\tilde{\mathbb{C}}^{2}$ we have

$$
\begin{aligned}
& u_{1}=z_{1}, v_{1}=z_{2} / z_{1}, \Rightarrow z_{1}=u_{1}, z_{2}=u_{1} v_{1} \\
& u_{2}=z_{1} / z_{2}, v_{2}=z_{2}, \Rightarrow z_{1}=u_{2} v_{2}, z_{2}=v_{2}
\end{aligned}
$$

The $\mathbb{Z}_{2}=\left\langle a: a^{2}=e\right\rangle$ action in these charts is

$$
a \cdot\left(u_{1}, v_{1}\right)=\left(-u_{1}, v_{1}\right) \quad a \cdot\left(u_{2}, v_{2}\right)=\left(u_{2},-v_{2}\right)
$$

And the quotient space is covered by two charts, say $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ related to the (u, v) coordinates via the quotient map:

$$
\left(x_{1}, y_{1}\right)=\left(u_{1}^{2}, v_{1}\right), \quad\left(x_{2}, y_{2}\right)=\left(u_{2}, v_{2}^{2}\right)
$$

The transition of coordinates between $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ gives the transition of coordinates between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$:

$$
\left(x_{1}, y_{1}\right)=\left(u_{1}^{2}, v_{1}\right)=\left(\left(u_{2} v_{2}\right)^{2}, 1 / u_{2}\right)=\left(y_{2} x_{2}^{2}, x_{2}^{-1}\right)
$$

2) The pull back of $d z_{1} \wedge d z_{2}$ to the (u, v)-coordinates is

$$
d z_{1} \wedge d z_{2}=d u_{1} \wedge d\left(u_{1} v_{1}\right)=u_{1} d u_{1} \wedge d v_{1}=\frac{1}{2} d u_{1}^{2} \wedge d v_{1}
$$

which can be pushed forward to the $\left(x_{1}, y_{1}\right)$-coordinates as

$$
\frac{1}{2} d u_{1}^{2} \wedge d v_{1}=\frac{1}{2} d x_{1} \wedge d y_{1}
$$

A similar computation holds for the $\left(x_{2}, y_{2}\right)$-coordinates and using the change of coordinates between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ we can check we didn't mess anything up

$$
d x_{1} \wedge d y_{1}=d\left(y_{2} x_{2}^{2}\right) \wedge d\left(x_{2}^{-1}\right)=x_{2}^{2} d y_{2} \wedge\left(\frac{-1}{x_{2}^{2}} d x_{2}\right)=d x_{2} \wedge d y_{2} .
$$

3) Ω is a nonvanishing (2,0)-form on \mathbb{C}^{2} invariant under the \mathbb{Z}^{2} action, hence it descends to a nonvanishing $(2,0)$-form on T^{4}.
4) Using a cube as the fundamental domain of the \mathbb{Z}_{2} action, the fixed points are those of the form $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ where $x_{i} \in\{0,1 / 2\}$. Therefore there are 16 fixed points.
5) At each fixed point the action is isomorphic to the one of part 1 , hence according to part 2 if we resolve each of the 16 the singularities as in part 2 the 2 -form $d z_{1} \wedge d z_{2}$ from \mathbb{C}^{2} descended to T^{4} induces a nowhere vanishing closed $(2,0)$-form on the resolution.
