DIFFERENTIAL GEOMETRY MASTERMATH EXAM, JANUARY 11, 2024

Exercise 1 (2pt). Please provide a brief overview on the pull-back operations

$$
f^{*}: \operatorname{Vect}(N) \rightarrow \operatorname{Vect}(M)
$$

along smooth maps $f: M \rightarrow N$ and explain how different types of "notions" that live/make sense on vector bundles $E \rightarrow N$ give rise to similar ones on $f^{*} E$. As "notions" think e.g. of "sections" of E, "local frames", "connections", connection and curvature matrices, maybe some "geometric structures", or maybe "differential forms with coefficients" (try to collect 3-4-5 different ones). Please also point out 2-3 properties of the pull-back operation that you find most remarkable (and maybe say why). However, please try to keep everything in under 2 pages (one page would be ok too).

Exercise $2(2 \mathrm{pt})$. Show that $\mathbb{C P}^{4}$ cannot be embedded in \mathbb{R}^{11}.

Exercise 3. Consider $P=S O(3)$ endowed with the projection $\pi: S O(3) \rightarrow S^{2}$ which associates to a matrix $A \in S O(3)$ its first column, and with the right action \bullet of S^{1} given by

$$
A \bullet \lambda:=A\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\alpha) & \sin (\alpha) \\
0 & -\sin (\alpha) & \cos (\alpha)
\end{array}\right) \quad \text { for } A \in S O(3), \lambda=\cos (\alpha)+i \sin (\alpha) \in S^{1} .
$$

(a) Prove that $\pi: S O(3) \rightarrow S^{2}$ becomes a principal S^{1}-bundle.
(b) Consider the vector bundle $E=E\left(S O(3), \mathbb{R}^{2}, r\right)$ obtained by fiber attachment using the representation of S^{1} on \mathbb{R}^{2} given by

$$
r: S^{1} \rightarrow G L_{2}(\mathbb{R})=G L\left(\mathbb{R}^{2}\right), \cos (\alpha)+i \sin (\alpha) \mapsto\left(\begin{array}{cc}
\cos (\alpha) & \sin (\alpha) \\
-\sin (\alpha) & \cos (\alpha)
\end{array}\right)
$$

Prove that E is isomorphic to $T S^{2}$.
(d) Can $S O(3)$ be seen as a subbundle of $\operatorname{Fr}\left(S^{2}\right)$ defining a G-structure for some $G \subseteq G L_{2}(R)$? If so, what geometric interpretation (eg: complex structure, orientation, etc) does this structure have?

Exercise 4. Let $(\widetilde{M}, \widetilde{g})$ be a Riemannian manifold, denote by $\widetilde{\nabla}$ the corresponding Levi-Civita connection and by $\frac{\widetilde{\nabla}}{d t}$ the corresponding derivatives of paths in $T \widetilde{M}$. Assume now that $M \subset \widetilde{M}$ is a compact submanifold, we endow M with the Riemannian structure g obtained by restricting \widetilde{g} to (the tangent spaces of) M and we consider the corresponding Levi-Civita connection ∇ on $T M$, and the operation $\frac{\nabla}{d t}$.
(a) show that ∇ coincides with the projection onto $T M$, via the orthogonal projection $\mathfrak{p r}:\left.T \widetilde{M}\right|_{M} \rightarrow$ $T M$ induced by g, of the restriction of $\widetilde{\nabla}$ to M (a connection on $\left.T \widetilde{M}\right|_{M}$).
(b) show that for any path $u: I \rightarrow T M$, one has

$$
\frac{\nabla u}{d t}=\mathfrak{p r}\left(\frac{\widetilde{\nabla} u}{d t}\right)
$$

Assuming now that $\widetilde{M}=\mathbb{R}^{3}$ with the standard Riemannian structure and $M=S^{2}$,
(c) deduce that a path $u(t)=f(t) \frac{\partial}{\partial x}+g(t) \frac{\partial}{\partial y}+h(t) \frac{\partial}{\partial z}$ in $T S^{2}$ sitting above a path $\gamma=(x(t), y(t), z(t))$ in S^{2} is horizontal w.r.t. ∇ if and only of

$$
\dot{f}=-x(\dot{x} f+\dot{y} g+\dot{z} h), \quad \dot{g}=-y(\dot{x} f+\dot{y} g+\dot{z} h), \quad \dot{h}=-z(\dot{x} f+\dot{y} g+\dot{z} h) .
$$

(d) describe by explicit formulas all the geodesics of $\left(S^{2}, g\right)$ that start at the point $(1,0,0) \in S^{2}$.

NOTES:

- The order of the exercises is completely unrelated to their difficulty.
- Each of the subquestions inside Exercises 3 and 4 are worth one point. The mark for the exam is the minimum between 10 and the total number of points you collect.
- PLEASE MOTIVATE ALL YOUR ANSWERS!!!! Especially in Exercise 4, where I would like to see all the careful details. Similarly if you do a computation (e.g. in part (4) of the same exercise) please do not just write down the final result (that may not count at all!) but explain how you got it/provide the details.
- In particular, please do not give "solutions" of the type: "the fact that $\mathbb{C P}^{4}$ cannot be embedded in \mathbb{R}^{11} is something that I proved in the last question of the last homework" (if that is the case, just repeat the argument aiming at giving as much detail as possible).

