HOMEWORK 3 (FOR OCTOBER 6, 2021)

Similar to what was discussed in the class in the case of matrices with real entries:

- also the collection $\mathcal{M}_{n}(\mathbb{C})$ of $n \times n$ matrices with complex entries can be seen as an Euclidean space, namely $\mathbb{C}^{n^{2}} \cong \mathbb{R}^{2 n^{2}}$.
- inside it, the space of invertible matrices

$$
\operatorname{GL}_{n}(\mathbb{C})=\left\{A \in \mathcal{M}_{n}(\mathbb{C}): \operatorname{det}(A) \neq 0\right\}
$$

is an open inside $\mathcal{M}_{n}(\mathbb{C})$.

- inside it one has the so-called unitary group

$$
\mathrm{U}(n):=\left\{A \in \mathrm{GL}_{n}(\mathbb{C}): A \cdot A^{*}=\mathrm{Id}\right\}
$$

where A^{*} is the conjugate transpose and, inside it, the special unitary one:

$$
\mathrm{SU}(n):=\{A \in \mathrm{U}(n): \operatorname{det}(A)=1\} .
$$

Exercise 1. Please do the following:
(a) (50%) Using the regular value theorem, prove that $U(n)$ is a (smooth) embedded submanifold of $\mathcal{M}_{n}(\mathbb{C})$. What is its dimension? What is $\mathrm{U}(1)$?
(b) (10%) Then prove that also $S U(n)$ is an embedded submanifold of $\mathcal{M}_{n}(\mathbb{C})$.
(c) (40%) Then prove that

$$
F: S^{3} \rightarrow \mathrm{GL}_{2}(\mathbb{C}), \quad F(\alpha, \beta)=\left(\begin{array}{cc}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right)
$$

is an embedding whose image is precisely $S U(2)$, where we interpret S^{3} as $\left\{(\alpha, \beta) \in \mathbb{C}^{2}:|\alpha|^{2}+|\beta|^{2}=1\right\}$.

