HOMEWORK 4 (FOR OCTOBER 11, 2021)

This week we have defined:

- the (abstract) tangent space $T_{p} M$ of any (smooth) manifold M at any point $p \in M$ (Def. 3.4).
- for any (smooth) curve $\gamma \in \operatorname{Curves}_{p}(M)$ (hence $\gamma(0)=p$) the induced tangent vector

$$
\frac{d \gamma}{d t}(0) \in T_{p} M
$$

- for any (smooth) chart χ of M around p, the induced tangent vectors

$$
\begin{equation*}
\left(\frac{\partial}{\partial \chi_{1}}\right)_{p}, \ldots,\left(\frac{\partial}{\partial \chi_{m}}\right)_{p} \in T_{p} M \tag{3.2.3}
\end{equation*}
$$

as the unique (abstract) tangent vectors which, via the isomorphism $T_{p} M \rightarrow$ \mathbb{R}^{m} induced by χ (Lemma 3.5), correspond to the canonical vectors

$$
e_{1}, \ldots, e_{m} \in \mathbb{R}^{m}
$$

Exercise 1. Let be given an arbitrary (smooth) manifold M of dimension m, $p \in M$ and χ a (smooth) chart of M around p. Define the following curves in M :

$$
\gamma_{1}, \ldots, \gamma_{m}:(-\epsilon, \epsilon) \rightarrow M, \quad \gamma_{i}(t)=\chi^{-1}\left(\chi(p)+t \cdot e_{i}\right)
$$

(a) for ϵ small enough, all these curves are well-defined and belong to $\operatorname{Curves}_{p}(M)$.
(b) the induced tangent vectors

$$
\frac{d \gamma_{1}}{d t}(0), \ldots \frac{d \gamma_{m}}{d t}(0) \in T_{p} M
$$

are precisely the tangent vectors (3.2.3).
(c) exhibit a curve $\gamma \in \operatorname{Curves}_{p}(M)$ with the property that

$$
\frac{d \gamma}{d t}(0)=\left(\frac{\partial}{\partial \chi_{1}}\right)_{p}+\ldots+\left(\frac{\partial}{\partial \chi_{m}}\right)_{p}
$$

(d) if $M_{0} \subset M$ is an embedded submanifold of dimension m_{0} and $p \in M_{0}$, can one find a chart χ as above such that, furthermore, the first m_{0} tangent vectors in (3.2.3) are tangent to M_{0} (recall that $\left.T_{p} M_{0} \subset T_{p} M\right)$.

