HOMEWORK 4 (FOR OCTOBER 11, 2021)

This week we have defined:

- the (abstract) tangent space T_pM of any (smooth) manifold M at any point $p \in M$ (Def. 3.4).
- for any (smooth) curve $\gamma \in \text{Curves}_p(M)$ (hence $\gamma(0) = p$) the induced tangent vector

$$\frac{d\gamma}{dt}(0) \in T_p M.$$

• for any (smooth) chart χ of M around p, the induced tangent vectors

$$\left(\frac{\partial}{\partial\chi_1}\right)_p, \dots, \left(\frac{\partial}{\partial\chi_m}\right)_p \in T_pM$$
 (3.2.3)

as the unique (abstract) tangent vectors which, via the isomorphism $T_pM \rightarrow \mathbb{R}^m$ induced by χ (Lemma 3.5), correspond to the canonical vectors

$$e_1,\ldots,e_m\in\mathbb{R}^m.$$

Exercise 1. Let be given an arbitrary (smooth) manifold M of dimension m, $p \in M$ and χ a (smooth) chart of M around p. Define the following curves in M:

$$\gamma_1, \dots, \gamma_m : (-\epsilon, \epsilon) \to M, \quad \gamma_i(t) = \chi^{-1} \left(\chi(p) + t \cdot e_i \right),$$

- (a) for ϵ small enough, all these curves are well-defined and belong to $\operatorname{Curves}_p(M)$.
- (b) the induced tangent vectors

$$\frac{d \gamma_1}{dt}(0), \dots \frac{d \gamma_m}{dt}(0) \in T_p M$$

are precisely the tangent vectors (3.2.3).

(c) exhibit a curve $\gamma \in \operatorname{Curves}_p(M)$ with the property that

$$\frac{d}{dt}\gamma(0) = \left(\frac{\partial}{\partial\chi_1}\right)_p + \ldots + \left(\frac{\partial}{\partial\chi_m}\right)_p$$

(d) if $M_0 \subset M$ is an embedded submanifold of dimension m_0 and $p \in M_0$, can one find a chart χ as above such that, furthermore, the first m_0 tangent vectors in (3.2.3) are tangent to M_0 (recall that $T_p M_0 \subset T_p M$).