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Chapter 1
Reminders on Topology and Analysis

1.1 Reminder 1: Topology; topological manifolds

Here is a very brief reminder on the basic notions from Topology. For those which are not so familiar with these
basics, one may skip the later parts of this section (most notably the part on partitions of unity) and return to it later
on, when necessary.

1.1.1 The objects of Topology

First of all, the main objects of Topology: a topological space is a set X endowed with a topology, i.e. a collection
T of subsets of X (called the opens of the topological space, or simply opens in X) such that /0 and X are open
in X , arbitrary unions of opens are open and finite intersections of opens are open. We usually omit T from the
notations, and we simply say that X is a topological space; hence that means that X is a set and we can talk about
the subsets of X that are open (in X).

A topology on X allows us to make sense of the central phenomena of Topology: ”two points being close to each
other”. First of all we can make sense of neighborhoods in a topological space X : given x ∈ X , a neighborhood
(in X) of x is any subset V ⊂ X that contains at least an open neighborhood of x, i.e. an open U with x ∈U . In turn,
this allows us to talk about convergence: a sequence (xn)n≥1 of elements of X converges (in the topological space
X) to x ∈ X if for any neighborhood V of x there exists an integer nV such that xn ∈V for all n≥ nV .

The notion of neighborhoods also allows to talk also about an important property one requires on topological
spaces in order to exclude pathological examples- Hausdorffness: a topological space X called Hausdorff if for
any x,y ∈ X distinct, there are neighborhoods U of x and V of y such that U ∩V = /0. Hence, intuitively, this means
that ”if two are distinct, then they cannot be too close to each other” (yes, not having this sounds pathological but,
since this condition is not automatic, it is often imposed precisely to avoid ”strange/pathological spaces).

1.1.2 The morphisms/isomomorphisms of Topology

The relevant maps (the only ones that really matter) in Topology are the continuous ones: a map f : X→Y between
topological spaces is called continuous if for any U-open in Y , its pre-image f−1(U) is open in X . ”Isomorphism”
between topological spaces are known under the name of homeomorphisms: they are the bijections f : X → Y
with the property that both f as well as f−1 are continuous.

In the language of ”Category Theory”, Topology is the category whose objects are topological spaces, and whose
morphisms (between objects) are the continuous maps.

Remark 1.1. Note that, while proving that two topological spaces are homeomorphic (i.e there exists a homeomor-
phism between them) is relatively easy in principle (one just has to produce ONE single homeomorphism between

1



2 1 Reminders on Topology and Analysis

them- and for that it is often enough to follow ones intuition), proving that two spaces are not homeomorphic is
much harder. One way to proceed is by understanding the specific ”topological properties” of the spaces under
discussion (such as Hausdorffness, compactness, etc); if one of them has such a topological property and the other
one does not, then they cannot be homeomorphic. A more advanced approach consists of constructing topological
invariants of algebraic nature (such as numbers, groups, etc)- and that is what Algebraic Topology is about.

1.1.3 Metric topologies; bases

One of the largest class of topological spaces are metric spaces (X ,d): any metric d : X×X→R induces a topology
Td on X : a subset U ⊂ X is open iff for any x ∈U there exists r > 0 such that U contains the d-ball of center x and
radius r:

Bd(x,r) := {y ∈ X : d(x,y)< r}. (1.1.1)

In general, a topological space X is called metrizable if there is a metric d on X such that the original topology
on X coincides with Td (note also that, if such a d exists, in general it is far from being unique; e.g. already
2d, 3d, d

d+1 would do the same job). One of the most interesting questions about topological spaces is to decide
whether they are metrizable or not; metrizability theorems aim at finding simple topological conditions that imply
metrizability.

Considering the Euclidean metric d on Rm, or on any subset A⊂Rm, we see that A is endowed with a canonical
topology- called the Euclidean topology on the subset A⊂Rm (exercise: show that also the square metric induces
the same topology). Note that, in this case, the resulting notion of convergence (and continuity) coincides with the
one from Analysis.

Remark 1.2. Continuing the previous remark, let us point out that showing that two Euclidean spaces Rm and Rn

of different dimensions m 6= n are not homeomorphic is non-trivial. When m = 1, this can be done using the notion
of connectedness but, for m,n≥ 2, one has to appeal to tools from Algebraic Topology.

We now return to general metric spaces. A metric d on X allows us to talk about the open balls Bd(x,r) for x∈ X ,
r ∈ R+ (see (1.1.1)), giving rise to the collection of open balls induced by d:

Bd = {Bd(x,r) : x ∈ X ,r ∈ R+}.

This is not a topology on X , but Td is the smallest topology containing Bd .
Recall also (simple exercise) that any family B of subsets of X gives rise to a topology T (B) on X , defined as

the smallest one containing B. It is called the topology generated by B. In general, the members of T (B) are
arbitrary unions of finite intersections of members of T .

Depending on the properties of B, the members of T (B) may have simpler descriptions. The most common
case is when B is a topology basis, i.e. satisfies the following axioms: any x ∈ X is contained in at least one
member B of B and, for any B1,B2 ∈B and any x ∈ B1∩B2, there exists B ∈B containing x with B⊂ B1∩B2. In
this case, for U ⊂ X , the following are equivalent:

(0) U belongs to T (B).
(1) for any x ∈U there exists B ∈B s.t. x ∈ B⊂U .
(2) U is a union of members of B.

For instance, for any metric d on X , the collection Bd is a topology basis, and (1) is precisely the original definition
of Td .

One can change a bit the point of view and, starting with a topology T on X , look for collections B generating
T , i.e. such that T =T (B). Of course, one possibility is to take B =T , but this is the least interesting one. The
more interesting choices are the ones for which B is smaller- e.g. countable. And here is the precise terminology:
given a topological space X , a basis for the topological space X is any collection B of subsets of X with the
property it is a topology basis and T = T (B). As above, for a collection B of subsets of X , the following are
equivalent:
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(0) B is a basis for the space X .
(1) for any open U in X and any x ∈U there exists B ∈B s.t. x ∈ B⊂U .
(2) any open in X is a union of members of B.

(in particular, each of the conditions (1) and (2) imply that B is a topology basis).
Repeating what we said before, but with a slightly different wording, we have that for any metric d on X , the

metric topology admits Bd as basis. Another possible basis for the space X (endowed with the topology Td),
slightly smaller, is

Bd = {Bd(x,
1
n
) : x ∈ X ,n ∈ N}.

For the Euclidean metric dEucl on Rm we can do even better:

BQ := {BdEucl(q,
1
n
) : q ∈Qm,n ∈ N}

is still a basis for the Euclidean topology on Rm, but it it ”much smaller”: it is countable.
In general, one says that a topological space X is second countable if it admits a basis B which is countable.

1.1.4 Topological manifolds

The second countability condition is a very subtle one and turns out to be of capital importance in establishing
some central results in Topology and Geometry- such as metrizability and embedding theorems. In particular, it is
part of the basic axioms for the notion of manifolds. For now:

Definition 1.3. A topological m-dimensional manifold is a topological space X satisfying the following:

(TM0): any point x ∈ X admits a neighborhood X which is homeomorphic to an open subset of Rm.
(TM1): it is Hausdorff.
(TM2): it is second countable.

A homeomorphism
χ : U →Ω ⊂ Rm

from an open subset U of X to an open subset Ω in Rm is called a m-dimensional topological chart for X , and U
is called the domain of the chart- so that axiom (TM0) can also be read as:

(TM0): X can be covered by (domains) of m-dimensional topological charts.

You should convince yourself (or remember) why some of the usual examples of topological spaces such as
spheres, tori, Moebius band, etc are topological manifolds. Also, in all these examples, one should concentrate
first on the condition (TM0) (... as the labelling indicates). Note however that, while the notion of dimension is
intuitively clear (at least in all examples), handling it theoretically is not such a piece of cake; see Remark 1.2. This
is due to the fact that there is no obvious topological characterization of the (intuitive notion) of dimension. This
will be much less of a problem as soon as we move to (differentiable) manifolds.

Remark 1.4. Since the notion of ”topological space” is built on the notion of ”open”, so are most of the basic
definitions in Topology- such as continuity, Hausdorffness, compactness, etc etc. However, under rather mild as-
sumptions, such definitions can be rephrased more intuitively, using sequences. The main ”mild assumption” that
we have in mind here is that of ”first countability”; please see the basic course on Topology. This condition is
weaker even than the second countability condition. For instance, metric topologies are always first countable but
may fail to be second countable. For our purpose, it is enough to know that either of the conditions (TM0) or (TM2)
implies 1st countability (and, if you look at the definitions, you will see that this statement is completely trivial).

What is interesting to know here is that, when restricting to spaces X which are first countable, many of the basic
notions can be reformulated in terms of sequences. E.g.:
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• X is Hausdorff iff any convergent sequence in X has at most one limit.
• f : X → Y is continuous iff it is sequential continuous i.e.: if (xn)n≥1 is a sequence converging in X to x ∈ X ,

then ( f (xn))n≥1 converges in Y to f (x).

1.1.5 Inside a topological space

Recall that, given a space X , a subset A ⊂ X is said to be closed in X if its complement X \A is open. Of course,
knowing the closed subsets of X is equivalent to knowing the open ones- hence one could have introduced the
notion of topology completely in terms of closed subsets (which would then be the axioms?). Opens are preferred
because some of the the most important properties can be described more directly in terms of opens (and perhaps
also because they are closer in spirit to the notion of ”ball” in a metric space). However, closed subsets often have
some very nice properties- e.g. when talking about compactness.

Given the axioms of a topology (namely the fact that arbitrary unions of opens is open or, equivalently, that
arbitrary intersections of closeds is closed), it follows that for any subset A of a topological space X one can talk
about:

• the largest open contained in A- and this is called the interior of A (in the space X), and denoted Int(A).
• the smallest closed containing A- and this is called the closure of A (in the space X), and denoted Cl(A),

Recall also that, under the first countability axiom (in particular, for topological manifolds), the closure has a
particularly nice description in terms of sequences:

Cl(A) = {x ∈ X : ∃ a sequence in A converging to x}.

1.1.6 Construction of topological spaces

We have already seen two (related) ways of constructing topologies on a set X : the metric topology Td induced by
any metric d on X , and the topology T (B) generated by any family B of subsets of X (with the particularly nice
situation when B is a topology basis).

There are various other important constructions of topologies out of the old ones. For instance, given any two
topological spaces X and Y , the Cartesian product

X×Y = {(x,y) : x ∈ X ,y ∈ Y}

carries a canonical topology, called the product topology. There is a slight complication: while we would like that
the products of opens is open,

BX×Y := {U×V : U−open in X ,V −open in Y}

is not a topology on X ×Y ; instead, it is a topology basis, and the product topology is defined as the topology
generated by BX×Y . Equivalently, and more conceptually, it is the smallest topology on X ×Y with the property
that the projections

prX : X×Y → X ,prY : X×Y → Y

are continuous.
The last description is more conceptual because it follows a general philosophy that one should apply when

looking for topologies: require that the most interesting maps that you have around to be continuous, and look for
”the best (least boring)” topology that does that (usually ”the best” means ”the largest” or ”the smallest”).

Another example of this philosophy is the induced topology: given a topological space X , any subset A ⊂ X
carries a canonical, induced, topology: it is the smallest topology with the property that the canonical inclusion

i : A→ X , i(a) = a
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is continuous (why would looking for the largest topology with this property be ”boring”?). Explicitly, the opens
in A (endowed with the topology induced from X) are the intersections A∩U of A with opens U of X .

Yet another example is that of quotient topology. In some sense, it is the other extreme compared to the previous
example. While before we started with an inclusion I : A→ X , we now start with a surjection

π : X → Y,

where X is a topological space and Y is just a set (on which we would like to induce a topology). This time, looking
for ”the most interesting” topology on Y , we are lead to looking at the largest topology on Y with the property that
π is continuous (why?). We obtain the quotient topology on Y : a subset U ⊂ Y is an open of this topology if an
donly if π−1(U) is open in X (check that this is, indeed, a topology on Y ).

The terminology ”quotient” comes from the fact that, typically, the situation of having a surjection π : X → Y
arises when starting with X and an equivalence relation R on X . Then, with the intuition that we want to glue the
points of X that are equivalent (w.r.t. the equivalence relation R), we obtain the quotient space

Y = X/R

(abstractly made of R-equivalence classes [x]R = {y ∈ X : (x,y) ∈ R} of points x ∈ X) together with the canonical
projection

πR : X → X/R, πR(x) = [x]R.

Therefore, starting with an equivalence relation R on a topological space X , we see that the resulting quotient X/R
carries a canonical (quotient) topology.

One of the most interesting examples of quotient topologies is the canonical topology on the projective space

Pm := {l : l− line through the origin in Rm+1}

(i.e. the set of all 1-dimensional vector subspaces of Rm+1). We can put ourselves in the previous situation by
considering

π : Rm+1 \{0}→ Pm,x 7→ lx,

where lx is the line through the origin and x (i.e. the vector subspace R · x spanned by x). In terms of equivalence
relations, we deal with the equivalence relation on Rm+1 \{0} given by:

x∼ y⇐⇒ lx = ly⇐⇒ y = λ · x for some λ ∈ R.

Using the Euclidean topology on Rm+1 \{0} we obtain a natural topology on Pm; endowed with this topology, Pm

is called the projective space (of dimension m). You should convince yourself that convergence in this topology
corresponds to the intuitive idea of ”lines getting close to each other”.

Finally, given the notion of induced topology, one can make use of that of embeddings: an embedding of
a topological space X into a topological space Y is any map i : X → Y that is continuous, injective and, when
interpreted as a continuous map i : X → i(X) and we endow i(X) ⊂ Y with the topology induced from Y , it is a
homemorphism (note that the last map is automatically continuous and bijective, but that does not imply that its
inverse is continuous as well!). Next to metrizability theorems (see above), one of the most interesting problems
in Topology/Geometry is that of deciding whether a space X can be embedded in a Euclidean space; results in this
direction are usually labelled as embedding theorems. Looking at the notion of topological manifold, it is worth
pointing out that, due also to the axioms (TM1) and (TM2), it follows that any topological manifold is metrizable
and can be embedded in some Euclidean space!
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1.1.7 Topological properties

As we have pointed out in Remark 1.1, to distinguish topological spaces from each other (or to understand better
each specific one), it is useful to isolate the various topological properties that spaces may have. By a topological
property we mean any property that can be described by only using the notion of opens or, equivalently, any
property that is preserved via homeomorphisms. We have already mentioned several such properties: Hausdorffness
and second countability. Here we recall a few more.

The first one is that of connectedness: a space X is called connected if it cannot be written as X = U ∪V with
U,V -disjoint non-empty opens in X . Or, equivalently, if the only subsets of X that are both open and closed are
/0 and X . In general, if X is not connected, it can be ”broken” into connected pieces; more precisely, recall that
a connected component of a space X is any connected subset C ⊂ X which (when endowed with the induced
topology) is connected, and which is maximal (w.r.t. the inclusion) with this property. Then the set of connected
components defines a partition of X by closed subspace. In examples, the partition into connected components is
usually easy to guess intuitively; here is a simple exercise that can be used as a recipe to confirm such guesses:
assume that we manage to write X as

X = X1∪ . . .∪Xk, with Xi∩X j = /0 for i 6= j.

Assume also that all the Xis are open or, equivalently (why?), that all the Xis are closed. Then {X1, . . . ,Xk} must
coincide with the partition into connected components.

Remark 1.5. Of course, the number of connected components may sometimes be infinite (even non-countable).
Note however that, for topological manifolds M, due to the second countability axiom, the number of connected
components if always at most countable (and finite if M is compact). Actually, one often restricts the attention to
connected manifolds.

Another important topological property is that of compactness. While this is a property that one usually encoun-
ters in the first courses in Analysis (compacts in Rm being the subsets A⊂Rm that are closed and bounded), the fact
that this is a topological property (i.e. can be described by appealing only to the notion of opens in A, without any
reference to the Euclidean metric or to the way that A sits inside Rm) is not at all obvious. That makes the resulting
general definition less intuitive and a bit hard to digest at first: a topological space X is said to be compact if for
any open cover

U = {Ui : i ∈ I}

of X (i.e. each Ui is open in X , their union is X , and I is an indexing set), one can extract a finite subcover, i.e. there
exists i1, . . . , ik ∈ I such that {Ui1 , . . . ,Uik} is still a cover of X- i.e.

X =Ui1 ∪ . . .∪Uik .

Here is the list of the most important properties of compactness:

1. Compact inside Hausdorff is closed: if X is a topological space, A⊂ X is endowed with the induced topology
(see above) then:

A− compact,X−Hausdorff =⇒ A− is closed inX .

2. Closed inside compact is compact: if X is a topological space, A ⊂ X is endowed with the induced topology
(see above) then:

A− is closed in X ,X− compact =⇒ A− is compact

3. Any compact Hausdorff space is automatically normal:

X− compact =⇒ X−normal.

Recall here that a topological space X is said to be normal if for any A,B⊂ X closed disjoint subsets, one can
find opens in X , U containing A and V containing B, such that U ∩V = /0.

4. Product of compacts is compact: if X and Y are compact spaces then X×Y , endowed with the product topology
(see above), is compact:
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X ,Y − compact =⇒ X×Y − compact.

5. Continuous applied to compact is compact: if f : X → Y is continuous and A⊂ X (with the induced topology)
is compact, then so is f (A)⊂ Y :

f : X → Y continuous,A− compact inside X =⇒ f (A)− compact.

6. In particular: quotients of compacts are compacts.
7. A continuous bijection from a compact space to a Hausdorff one is automatically a homeomorphism:

(continuous f ) : (compact space X)→ (Hausdorff space Y ) =⇒ f is a homeomorphism.

More generally: a continuous injection from compact to Hausdorff is automatically an embedding (see above).

Exercise 1.6. Assuming that you already know that the unit interval [0,1] (endowed with the Euclidean topology)
is compact, use the properties listed above to deduce that: for subsets of Rm endowed with the Euclidean topology:

A⊂ Rm is compact⇐⇒ A is closed and bounded in Rm.

A related topological property is the local version of compactness: one says that a space X is locally compact if
any point x ∈ X admits a compact neighborhood. If X is also Hausdorff, it follows that any point in X admits ”ar-
bitrarily small compact neighborhoods”: for any neighborhood U of x in X there exists a compact neighbhborhood
of x, contained in U . In general, Hausdorff locally compact spaces can be compactified by adding one extra-point.
More on the 1-point compactification can be found in the lecture note on Topology.

For topological manifolds, axiom (MT0) ensures that they are automatically locally compact. But also axioms
(MT1), (MT2) interact nicely with local compactness: they ensure the existence of ”exhaustions”. This is Theorem
4.37 in the notes on Topology:

Theorem 1.7. Any locally compact, Hausdorff, 2nd countable space X admits an exhaustion, i.e. a family {Kn :

n ∈ Z+} of compact subsets of X such that X = ∪nKn and Kn ⊂
◦
Kn+1 for all n.

Proof. Let B be a countable basis and consider V = {B ∈B : B− compact}. Then V is a basis: for any open
U and x ∈ X we choose a compact neighborhood N inside U ; since B is a basis, we find B ∈B s.t. x ∈ B ⊂ N;
this implies B ⊂ N and then B must be compact; hence we found B ∈ V s.t. x ∈ B ⊂U . In conclusion, we may
assume that we have a basis V = {Vn : n ∈ Z+} where V n is compact for each n. We define the exhaustion {Kn}
inductively, as follows. We put K1 =V 1. Since V covers the compact K1, we find i1 such that

K1 ⊂V1∪V2∪ . . .∪Vi1 .

Denoting by D1 the right hand side of the inclusion above, we put

K2 = D1 =V 1∪V 2∪ . . .∪V i1 .

This is compact because it is a finite union of compacts. Since D1 ⊂ K2 and D1 is open, we must have D1 ⊂
◦
K2;

since K1 ⊂ D1, we have K1 ⊂
◦
K2. Next, we choose i2 > i1 such that

K2 ⊂V1∪V2∪ . . .∪Vi2 ,

we denote by D2 the right hand side of this inclusion, and we put

K3 = D2 =V 1∪V 2∪ . . .∪V i2 .

As before, K3 is compact, its interior contains D2, hence also K2. Continuing this process, we construct the family
Kn, which clearly covers X .
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1.1.8 The algebra of continuous functions

Given a topological space X , an ”observable on X” has a precise meaning: it is a continuous function

f : X → R.

The set of all such continuous functions is denoted by

C (X).

One of the simplest but most fundamental ideas in various parts of Geometry is that of understanding a space X
via the associated ”object” C (X). This will allow one to consider ”more relevant observables”: e.g. for subspaces
X ⊂Rm, one can consider only f s that are smooth, or polynomials. Or even to handle ”spaces” which, although are
quite intuitive, are not topological spaces in the strict sense of the word. All together, this point of view gives rise to
several directions in Geometry: Differential Geometry (where the key-word is ”smooth” instead of ”continuous”),
Algebraic Geometry (where the key-word is ”polynomial”, or ”complex analytic”), Noncommutative Geometry
(where X does not even make sense, but C (X) does).

Of course, what makes these work is the rich structure that C (X) posses- making the ”object” C (X) (a priory
just a set) into a more interesting mathematical object. We recall here the most important part of the algebraic
structure present on C (X): it is an algebra. Recall here:

Definition 1.8. A (real) algebra is a vector space A over R together with an operation

A×A→ A, (a,b) 7→ a ·b

which is unital in the sense that there exists an element 1 ∈ A such that

1 ·a = a ·1 = a ∀ a ∈ A,

and which is R-bilinear and associative, i.e., for all a,a′,b,b′,c ∈ A, λ ∈ R,

(a+a′) ·b = a ·b+a′ ·b, a · (b+b′) = a ·b+a ·b′,

(λa) ·b = λ (a ·b) = a · (λb),

a · (b · c) = (a ·b) · c .

We say that A is commutative if a ·b = b ·a for all a,b ∈ A.
Similarly one talks about complex algebras: then A is a vector space over C and λ ∈ C.

For a topological space X , the algebra structure on C (X) is defined simply by pointwise addition and multipli-
cation: for f ,g ∈ C (X) and λ ∈ R, f +g, f ·g,λ · f ∈ C (X) are given by:

( f +g)(x) = f (x)+g(x), ( f ·g)(x) = f (x)g(x), (λ · f )(x) = λ f (x).

And, considering the space C (X ,C) of C-valued continuous functions on X , one obtains a complex algebra.
The fact that, under certain assumptions, a topological space X can be recovered from the algebra C (X), is the

content of the Gelfand-Naimark theorem. While we refer to the basic course on Topology for the full statement
and details, here is the very brief summary:

Theorem 1.9 (informative version of Gelfand Naimark theorem). There is a way to associate to any algebra A
a topological space X(A) (called the spectrum of A) so that, when applied to A = C (X)- the algebra of continuous
functions on a compact Hausdorff space X, one recovers X (i.e. X(C (X)) is homeomorphic to X).

Remark 1.10 (Some details). The spectrum X(A) of an algebra A is defined as the set of characters on A, i.e. maps

χ : A→ R
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which preserve the algebra structure, i.e. which are linear, multiplicative (χ(ab) = χ(a)χ(b) for all a,b ∈ A) and
send the unit of A to 1 ∈ R. The topology on X(A) is ”the best” for which all the evaluation maps

eva : X(A)→ R, χ 7→ χ(a) (one for each a ∈ A)

are continuous.
For instance, when A = C (X) for a compact Hausdorff space X , then any point x ∈M gives rise to a character

χx on C (X), namely the evaluation at x, and the resulting map

X → X(A), x 7→ χx

is the one the realises the desired homeomorphism (of course, there are things to prove along the way). Let us give
here a direct argument showing that, if X is a compact space, then any character on C (X),

χ : C (X)→ R,

is necessarily of type χx for some x ∈M (proving that the previous map is surjective). �

And, with the mind at the fact that we may want to consider more restrictive conditions than continuity (e.g.
smoothness), here is the resulting relevant abstract notion:

Definition 1.11. Given an algebra A (over the base field R or C), a subalgebra of A is any vector subspace B⊂ A,
containing the unit 1 of A and such that

b ·b′ ∈ B ∀ b,b′ ∈ B.

When we want to be more specific about the base field, we talk about real or complex subalgebras.

For instance, for X ⊂ Rm, when looking at smooth or polynomial functions, we obtain a sequence of sub-
algebras:

C polyn(X)⊂ C ∞(X)⊂ C (X).

Finally, when looking at a subset
A ⊂ C (X),

(subalgebra or not), there are several interesting properties that turn out to be interesting- and we say that:

(1) A is point separating if for any x,y ∈ X distinct there exists f ∈A such that f (x) 6= f (y) or, equivalently, if
there exists f ∈A such that f (x) = 0 and f (y) = 1.

(2) A is normal if for any two disjoint closed subset A,B⊂ X , there exists f ∈A such that f |A = 0, f |B = 1.
(3) A is closed under sums if f +g ∈A whenever f ,g ∈A .
(3) A is closed under quotients if f/g ∈A whenever f ,g ∈A and g is nowhere vanishing.

For instance, the Stone-Weierstrass theorem (which will not be used in the rest of the course) says that, if X is
a compact Hausdorff space, then any point-separating sub-algebra A ⊂ C (X) is dense in C (X); with particular
cases of the type: real valued continuous functions on [0,1] (or other similar spaces) can be approximated by poly-
nomial functions.

Note that, for a general topological space X , even the entire A = C (X) need not be point separating or normal.
Actually, it is a rather simple exercise to check that the point separation of C (X) implies that X must be Hausdorff,
while the normality of C (X) implies that the topological space X must be normal (i.e., as recalled above: any
two disjoint closed subsets A,B ⊂ X can be separated topologically: there exist opens U,V ⊂ X containing A and
B, respectively, with U ∩V = /0). What is far less obvious (actually one of the most non-trivial basic results in
Topology) is the converse, known as the Urysohn lemma: if a topological space X is Hausdorff and normal then
C (X) is normal; more precisely, for any two disjoint closed subsets A,B⊂ X there exists

f : X → [0,1] continuous and such that f |A = 0, f |B = 1.

This will not be used later in the course; we mention it here just for completeness.
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1.1.9 Partitions of unity

Finally, one more basic topic from Topology- but this time one that is difficult to appreciate (and perhaps even to
digest) without entering the realm of Differential Geometry and/or Analysis: partitions of unity. To be able to talk
about partitions of unity that are not just continuous (as we will be interested only on smooth functions), we can
place ourselves in the following setting: X is a topological space and

A ⊂ C (X)

is a given vector subspace; we will be looking at partitions of unity that belong to A . For the main definition, we
first need to recall the notion of support: given η : X → R continuous, the support of η in X , denoted suppX (η)
or simply supp(η) is the closure in X of the set η 6= 0 of points of X on which η does not vanish:

suppX (η) := {η 6= 0}= {x ∈ X : η(x) 6= 0}X
.

Given an open U ⊂ X , we say that η is supported in U if supp(η) ⊂U . This condition allows one to promote
functions that are defined only on U , f : U →R, to functions on X , at least after multiplying by η ; namely, η · f , a
priory defined only on U , if extended to X by declaring it to be zero outside U , the resulting function

η · f : X → R

will be continuous (check this and, by looking at examples, convince yourselves that this does not work if the
condition supp(η)⊂U is replaced by the weaker one that {η 6= 0} ⊂U).

We now move to partitions of unity; we start with the finite ones.

Definition 1.12. Let X be a topological space, U = {U1, . . . ,Un} a finite open cover of X . A continuous
partition of unity subordinated to U is a family of continuous functions ηi : X → [0,1] satisfying:

η1 + . . .+ηk = 1, supp(ηi)⊂Ui.

Given A ⊂ C (X), we say that {ηi} is an A -partition of unity if ηi ∈A for all i.

Fig. 1.1 On the left, an annulus X is covered by two open sets U1 and U2. The graph on the right shows two functions ηi : X → [0,1]
that form a partition of unity subordinate to this cover.

Theorem 1.13. Let X be a topological space and assume that A ⊂ C (X) is normal and is closed under sums and
quotients. Then, for any finite open cover U , there exists an A -partition of unity subordinated to U .

In particular if X is Hausdorff and normal, by the Uryshon Lemma (to ensure that A := C (X) is normal), any
finite open cover U admits a continuous partition of unity subordinated to U .
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Proof (sketch; for more details, see the lecture notes on Topology). The main ingredients are:

(St1) the remark made above that the normality of A implies that X is a normal space (simple exercise).
(St2) the fact that, in a normal space X , whenever we have A⊂U with A-closed in X and U-open in X , one can find

a smaller open V such that
A⊂V ⊂V ⊂U

(short proof, but a bit tricky).
(St3) the shrinking lemma: for any finite open cover U = {U1, . . . ,Uk} of a normal space X one can find another

cover V = {V1, . . . ,Vn} such that
V i ⊂Ui ∀ i ∈ {1, . . . ,k}.

(this follows by applying the previous step inductively, starting with U =U1 A = X \ (U2∪ . . .∪Uk).

Now the proof of the theorem. Apply the shrinking lemma twice and choose open covers V = {Vi}, W = {Wi},
with V i ⊂Ui, W i ⊂Vi. For each i, we use the separation property of A for the disjoint closed sets (W i,X−Vi). We
find fi : X → [0,1] that belongs to A , with fi = 1 on W i and fi = 0 outside Vi. Note that

f := f1 + . . .+ fk

is nowhere zero. Indeed, if f (x) = 0, we must have fi(x) = 0 for all i, hence, for all i, x /∈Wi. But this contradicts
the fact that W is a cover of X . From the properties of A , each

ηi :=
fi

f1 + . . .+ fk
: X → [0,1]

is continuous. Clearly, their sum is 1. Finally, supp(ηi) ⊂Ui because V i ⊂Ui and {x : ηi(x) 6= 0} = {x : fi(x) 6=
0} ⊂Vi.

And here is a nice application of the existence of (finite) partitions of unity:

Theorem 1.14. Any compact topological manifold M can be embedded in some Euclidean space Rm.

Proof. Cover M by opens that are homeomorphic to Rd , where d is the dimension of M. Using that M is compact,
we find an open cover U = {U1, . . . ,Un} together with homeomorphisms χi :Ui→Rd . Since M is compact it is also
normal hence we find a partition of unity {η1, . . . ,ηn} subordinated to U . Each of the functions ηi ·χi : Ui→Rd is
extended to M by declaring it to be zero outside Ui; by the previous comments, the resulting functions χ̃i : M→Rd

are continuous. Consider now

i = (η1, . . . ,ηk, χ̃1, . . . , χ̃k) : M→ R× . . .×R︸ ︷︷ ︸
k times

×Rd× . . .×Rd︸ ︷︷ ︸
k times

= Rk(d+1).

One check directly that i is injective; since M is compact and Rk(d+1) is Hausdorff, by the properties recalled on
compactness, i will be an embedding.

Finite partitions of unity are useful mainly when working over compacts (so that one can ensure finite open
covers). For the more general case one first has to make precise sense of ”infinite sums ∑i ηi”. For that first recall
that, given a topological space X , a family S of subsets of X is said to be locally finite (in X) if for any x ∈ X
there exists a neighborhood V of x which intersect only a finite number of members of S . Given a family {ηi}i∈I
(I some indexing set) of continuous functions ηi : X→R, we say that {ηi}i∈I is locally finite in X if their supports
(in X) supp(ηi) form a locally finite family of subsets of X . Note that in this case the sum

∑
i∈I

ηi : X → R

can be defined pointwise (at any x ∈ X only a finite number of terms do not vanish), and the resulting function
is continuous. For a subset A ⊂ C (X), we say that is closed under locally finite sums if for any locally finite
family {ηi} with ηi ∈A , ∑i ηi is again in A .

With these, we can now talk about infinite partitions of unity:
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Definition 1.15. Let X be a topological space, U = {Ui : i ∈ I} an open cover of X . A (continuous) partition of
unity subordinated to U is a locally finite family of continuous functions ηi : X → [0,1] satisfying:

∑
i∈I

ηi = 1, supp(ηi)⊂Ui.

Given A ⊂ C (X), we say that {ηi} is an A -partition of unity if ηi ∈A for all i.

If we are pragmatic and we only care about what is directly applicable later on in this course, the result to have
in mind is:

Theorem 1.16. Let X be a Hausdorff, locally compact and 2nd countable space, A ⊂ C (X) and assume that:

• A is closed under locally finite sums and under quotients and
• A satisfies: for any x∈M and any open neighborhood U of x, there exists f ∈A supported in U with f (x)> 0.

Then, for any open cover U of X, there exists an A -partition of unity subordinated to U .

For the curious student, here is the more detailed discussion to which the previous theorem belongs (with the
explanation of how the proof goes). The existence of partitions of unity subordinated to arbitrary open covers
forces a topological property of X called paracompactness: we say that a topological space X is paracompact if
for any open cover U of X , there exists a locally finite open cover V that is a refinement of U in the sense that any
V ∈ V is included inside some U ∈U . The existence of arbitrary partitions of unity is ensured by the following:

Theorem 1.17. Let X be a paracompact Hausdorff space and assume that A ⊂ C (X) is normal, closed under
locally finite sums and closed under quotients.

Then, for any open cover U of X, there exists an A -partition of unity subordinated to U .

Since paracompact spaces are automatically normal, hence we can use Uryshon’s lemma, it follows that in a
paracompact Hausdorff space a for any open cover there exists a continuous partition of unity subordinated to the
cover.

The proof of the previous theorem is almost identical with the one from the finite case- just that one now has to
establish an infinite version of the shrinking lemma (and that is where paracompactness enters),

To apply the previous theorem, there are two points that may be difficult to check: the paracompactness of X
and, when working with arbitrary A , that A is normal. For the first one, the following comes in handy:

Theorem 1.18. Any Hausdorff, locally compact and 2nd countable space is paracompact.

In particular, topological manifolds are automatically paracompact. One can actually show that, under the axioms
(TM0) and (TM1), the axiom (TM2) on second countability is equivalent to the fact that M is paracompact and has
a countable number of connected components.

Proof. We use an exhaustion {Kn} of X (Theorem 1.7). Let U be an open cover of X . For each n ∈ Z+ there is
a finite family Vn which covers Kn− Int(Kn−1), consisting of opens V with the properties: V ⊂ Int(Kn+1)−Kn−1,
V ⊂U for some U ∈U . Indeed, for any x ∈ Kn− Int(Kn−1) let Vx be the intersection of Int(Kn+1)−Kn−1 with any
member of U containing x; since Kn− Int(Kn−1) is compact, just take a finite subcollection Vn of {Vx}, covering
Kn− Int(Kn−1). Set V = ∪nVn; it covers X since each Kn−Kn−1 ⊂ Kn− Int(Kn−1) is covered by Vn. Finally, it is
locally finite: if x ∈ X , choosing n and V such that V ∈ Vn, x ∈V , we have V ⊂ Int(Kn+1)−Kn−1, hence V can only
intersect members of Vm with m≤ n+1 (a finite number of them!).

Finally, to check the normality of A needed in Theorem 1.17, the following comes in handy:

Theorem 1.19. Let X be a Hausdorff paracompact space and A ⊂ C (X) closed under locally finite sums and
under quotients. If X is also locally compact, then the following are equivalent:

1. A is normal.
2. for any x ∈M and any open neighborhood U of x, there exists f ∈A supported in U with f (x)> 0.
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In particular, for a topological manifold M, checking that a subset A ⊂ C (M) is normal is a local matter- and
that is very useful since, locally, topological manifolds look just like Euclidean spaces.

Proof. That 1 implies 2 is clear: apply the separation property to {x} and X−V . Assume 2. We claim that for any
C⊂ X compact and any open U such that C⊂U , there exists f ∈A supported in U , such that f |C > 0. Indeed, by
hypothesis, for any c ∈C we can find an open neighborhood Vc of c and fc ∈A positive such that fc(c)> 0; then
{ fc 6= 0}c∈C is an open cover of C in X , hence we can find a finite subcollection (corresponding to some points
c1, . . . ,ck ∈C) which still covers C; finally, set f = fc1 + . . .+ fck .

To prove 1, let A,B⊂ X be two closed disjoint subsets. As terminology, D⊂ X is called relatively compact if D
is compact. Since X is locally compact, any point has arbitrarily small relatively compact open neighborhoods. For
each y ∈ X−A, we choose such a neighborhood Dy ⊂ X−A. For each a ∈ A, since a ∈ X−B, applying step (St2)
from the proof of Theorem 1.13, we find an open Da such that a ∈ Da ⊂ X −B. Again, we may assume that Da is
relatively compact. Then {Dx : x ∈ X} is an open cover of X ; let U = {Ui : i ∈ I} be a locally finite refinement.
We split the set of indices as I = I1 ∪ I2, where I1 contains those i for which Ui ∩A 6= /0, while I2 those for which
Ui ⊂ X −A. Using the shrinking lemma (the infinite version of the one described in (St3) of he proof of Theorem
1.13) we can also choose an open cover of X , V = {Vi : i ∈ I}, with V i ⊂Ui. Note that, by construction, each Ui
(hence also each Vi) is relatively compact. Hence, by the claim above, we can find ηi ∈A such that

ηi|V i
> 0, supp(ηi)⊂Ui.

Finally, we define

f (x) =
∑i∈I1 ηi(x)

∑i∈I ηi(x)

From the properties of A , f ∈ A . Also, f |A = 1. Indeed, for a ∈ A, a cannot belong to the Ui’s with i ∈ I2 (i.e.
those⊂ X−A); hence ηi(a) = 0 for all i ∈ I2, hence f (a) = 1. Finally, f |B = 0. To see this, we show that ηi(b) = 0
for all i ∈ I1, b ∈ B. Assume the contrary. We find i ∈ I1 and b ∈ B∩Ui. Now, from the construction of U , Ui ⊂Dx
for some x ∈ X . There are two cases. If x = a ∈ A, then the defining property for Da, namely Da ∩B = /0, is in
contradiction with our assumption (b∈ B∩Ui). If x = y∈ X−A, then the defining property for Dy, i.e. Dy ⊂ X−A,

is in contradiction with the fact that i ∈ I1 (i.e. Ui∩A 6= /0).

1.2 Reminder 2: Analysis

The relationship between Analysis and Differential Geometry is subtle. On one hand, Differential Geometry relies
on the very basics of Analysis. On the other hand, various notions/results from Analysis become much more
transparent/intuitive once the geometric perspective/intuition is brought into picture. In some sense, in many cases,
the geometric point of view indicates the (expected) results while analysis provides the tools to prove them.

1.2.1 Rn

The basic playground for multivariate analysis is the standard Euclidean space

Rn = R× . . .×R︸ ︷︷ ︸
n times

.

Despite its simplicity, this ”space” has many different (but related) structures- and often the problem with handling
Rn comes from the fact that it may not be completely clear which of the structures present on Rn is relevant for the
specific discussions. Here are some of the many interesting structures present on Rn:

• it is a vector space. When we want to emphasize this structure, we will denoted by

v = (v1, . . . ,vn) ∈ Rn
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its elements and we will think of them as ”vectors”/”directions”. Intrinsic in this notation is the presence of yet
another piece of structure: it is not just a vector space- it comes with a preferred (canonical) basis:

e1, . . . ,em ∈ Rn;

in coordinates, ei has 1 on the i-th position and 0 everywhere else.
• it is a vector space endowed with an inner product:

〈v,w〉=
n

∑
i=1

vi ·wi,

hence it is also a normed vector space, with the norm:

||v||=
√
〈v,v〉.

• it is a topological space- endowed with the standard Euclidean topology. When we want to emphasize this
structure, we will denote by

x = (x1, . . . ,xn) ∈ Rn

its elements and we will think of them as ”points”. For instance, when looking at a circle in R2, the vector space
space structure on R2 is not so relevant, and we think of the circle as made by points rather then vectors. Also,
when talking about the continuity of a function f : Rn → R, the vector space structure of Rn is not relevant
(though it may be useful).
Recall also that the topology on Rn is a shadow of yet another structure: Rm is also a metric space, with the
standard Euclidean metric:

d(x,y) =

√
n

∑
i=1

(xi− yi)2.

We say a ”shadow” because uses part of what the metric allows us top talks about: points being ”close to each
other” (or, more precisely: convergence and continuity). In particular, there are several other natural metrics on
Rn that induce the same Euclidean topology- e.g. the so called square metric

d′(x,y) = max{|x1− y1|, . . . , |xn− yn|}.

• even when thinking about Rn as a topological space, so of its elements as points, each point x ∈ Rn can be
represented using ”canonical coordinates”- used already above. Again, the coordinates are not so relevant/im-
portant: they are useful and can be used, but they are not intrinsic to the structure. For instance, a circle in R2

can be described using coordinates by the equation x2 + y2 = 1, but the circle itself can be drawn without any
coordinate axes at our disposal.
Note that the standard coordinates we mentioned are the simplest illustration of the notion of ”chart”- to be
discussed in a bit more detail below, and essential in defining the notion of manifold.

• it is a topological space ”on which analysis can be performed” (... i.e. a manifold).
• etc.

Of course, all these are inter-related but, in each situation, it is important to realize which of these structures really
matter. In particular, whenever one encounters a definition or result, it is instructive to figure out whether the
elements in Rm that show up play the role of points and which ones of vectors, and how much the definition/result
depends on the coordinates. This is the first step towards a geometric understanding of Analysis.

1.2.2 The differential and the inverse function theorem

One can talk about various notions of derivatives of a function f at a point

x ∈ Rn



1.2 Reminder 2: Analysis 15

whenever we have a function f defined on a neighborhood of x- so that the expressions f (y) used below makes
sense for all y near x or, equivalently, f (x+ v) is defined for small vectors v.

Typically one assumes that f is defined on an open subset Ω ⊂ Rn and takes values in some other Euclidean
space Rk,

f : Ω → Rk,

so that it makes sense to talk about derivatives of f at any point in its domain, x ∈Ω .
The most intrinsic notion of derivative is that of ”total derivative”, also called the differential of f (at the

given point x ∈ Ω ). This notion arises when trying to approximate f , near x, by simpler (linear-like) functions.
Understanding f near x is about understanding

v 7→ f (x+ v)

for v ∈ Rn near 0. It sends v = 0 to f (x), hence the best one can hope for is to approximate

v 7→ f (x+ v)− f (x)

by functions that are linear in v. Think that we try to write the last expression as a function linear in v, plus one that
is qudratic in v, etc (plus eventually an ”error term”), but we are interested only in the linear term A. We see we are
looking for a linear map

A ∈ Lin(Rn,Rk)

with the property that

lim
v→0

f (x+ v)− f (x)−A(v)
||v||

= 0. (1.2.1)

It is easy to see that, if such a map A exists, then it is unique. And that is what the differential of f at x is.

Fig. 1.2 Visualization of the total derivative for a function f : Ω → Rk defined over an open Ω ⊆ Rn, in this case with n = 2 and
k = 1. Infinitesimal movements through a point x ∈ Ω are represented by the blue horizontal vectors vi and the resulting infinitesimal
movement in the codomain Rk is represented by the yellow vertical vectors Dx f (vi). They sum up to dashed vectors of the form
(vi,Dx f (vi)) ∈ Rn×Rk that are tangent to the graph of f in the point (x, f (x)). The graph of the best affine approximation T of f in x
(which sends any x̃ ∈ Rn to T (x̃) = f (x)+Dx f (x̃− x)) is an affine plane spanned by the dashed vectors.

Definition 1.20. We say that f : Ω → Rk is differentiable at x if there exists a linear map A ∈ Lin(Rn,Rk) sat-
isfying (1.2.1). The linear map A (necessarily unique) is called the differential of f at the point x (or the total
derivative of f at x) and is denoted

D x f = (D f )x : Rn→ Rk.
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We say that f is differentiable if it differentiable at all points x in its domain Ω . We say that f is of class C1 if it
is differentiable and the resulting map

D f : Ω → Lin(Rn,Rk), x 7→ (D f )x

is continuous (recall here that, via the matrix representation of linear maps, Lin(Rn,Rk) can be interpreted as the
Euclidean space Rn·k).

We say that f is of class C2 if it differentiable and d f is of class C1; proceeding inductively, we can talk about
f being of class Cl for any l ∈ N. We say that f is smooth if it is of class Cl for all l.

Recall here also the chain rule that allows one to compute the differential of a composition of two functions:

Proposition 1.21 (the chain rule). Given opens Ω ⊂ Rn, Ω ′ ⊂ Rk and functions

Ω
f→Ω

′ g→ Rl ,

if f is differentiable at x ∈Ω and g is differentiable at f (x) ∈Ω ′, then g◦ f is differentiable at x and

(D(g◦ f ))x = (Dg) f (x) ◦ (D f )x.

Despite the fact that the differential (D f )x arises as ”the linear approximation” of f near x, it contains a great
deal of information of f near x- and that makes it extremely useful. Probably the best and most fundamental
illustration is the inverse function theorem. Recall here that

Definition 1.22. A map f : Ω →Ω ′ between two opens Ω ⊂Rn and Ω ′ ⊂Rk is said to be a diffeomorphism if it
is bijective and both f and f−1 are smooth.

We say that f is a local diffeomorphism around x ∈Ω if there exist opens Ωx ⊂Ω and Ω
′
f (x) ⊂Ω ′ with x ∈Ωx,

such that f |Ωx : Ωx→Ω
′
f (x) is a diffeomorphism.

It is interesting to draw an analogy with Topology, where the main objects are topological spaces, the relevant
maps are the continuous ones and two spaces are ”isomorphic in Topology” (homeomorphic) if there exists a
bijection f between them such that both f as well as f−1 are continuous. However, in topology is it usually very
hard to prove that two given spaces are not homeomorphic (and one often has to appeal to methods from Algebraic
Topology); for instance, just the simple the fact that Rn and Rk are homeomorphic only when n = k is very hard
to prove. In contrast, the similar statements for diffeomorphisms are much easier to prove thanks to the notion of
differential. Indeed, using the chain rule, the following should be a rather easy exercise:

Exercise 1.23. Show that if a map f : Ω →Ω
′
between two opens Ω ⊂Rn and Ω

′ ⊂Rk is a local diffeomorphism
around x ∈Ω , then

(D f )x : Rn→ Rk

is a linear isomorphism. Deduce that if two opens Ω ⊂ Rn and Ω
′ ⊂ Rk are diffeomorphic, then n = k.

Although this clearly shows the usefulness of the differential, its great power is due to the inverse function
theorem (and its immediate consequences, such as the implicit function theorem -see below). Indeed, we see that
a condition on the differential of f at a single (given) point x tells us information about f around x:

Theorem 1.24 (The inverse function theorem). Given a smooth map f : Ω → Ω
′

between two opens Ω ⊂ Rn

and Ω
′ ⊂Rk, if f is differentiable at a point x ∈Ω and (D f )x is an isomorphism, then f is a local diffeomorphism

around x.

1.2.3 Directional/partial derivatives; the implicit function theorem

Note that, when talking about the differential (D f )x(v) (hence f : Ω → Rk, with Ω ⊂ Rn open), x ∈Ω should be
thought of as a point, while v ∈ Rn as a direction (vector). This becomes more apparent if we reformulate the total
derivative as a directional derivative.
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Fig. 1.3 The directional derivative ∂v f (x) of the function f from Fig. 1.2 can be seen to arise geometrically in the following way: The
map t 7→ x+ vt traces a line through Ω . The slice of the graph of f over this line is exactly the graph of the function t 7→ f (x+ tv)
if we label the horizontal axis by integer multiples of v. The directional derivative can now be defined as the normal derivative of this
function since we have a one-dimensional domain.

Definition 1.25. With f : Ω → Rk and x ∈Ω as above, and an arbitrary vector v ∈ Rn, the derivative of f at x in
the direction v is defined as the vector

∂v( f )(x) =
∂ f
∂v

(x) :=
d
dt

∣∣∣∣
t=0

f (x+ tv) = lim
t→0

f (x+ tv)− f (x)
t

∈ Rk.

When this derivative exists, we say that f is differentiable at x in the v-direction.

The relationship with the total differential is immediate: just replace in (1.2.1) v (small enough) by tv with v∈Rn

fixed (but arbitrary) and t ∈ R approaching 0; using that A is linear, we find that:

(D f )x(v) =
∂ f
∂v

(x).

This relationship is visualized in Fig. 1.3. In particular, if f is differentiable at x then it is differentiable in all
directions. The converse is not true; however, one can show that if f is of class C1 if and only if all the directional
derivatives ∂ f

∂v exist and are continuous (see also the discussion below on partial derivatives).
Applying the previous definition to v ∈ {e1, . . . ,en}, a vector in the standard basis of Rn, we obtain the partial

derivatives
∂ f
∂xi

(x) :=
∂ f
∂ei

(x) =
d
dy

∣∣∣∣
y=xi

f (x1, . . . ,xi−1,y,xi+1, . . . ,xn) ∈ Rk.

Its components are the partial derivatives of the components fi of f :

∂ f
∂xi

(x) =
(

∂ f1

∂x j
(x), . . . ,

∂ fk

∂x j
(x)
)

(where f = ( f1, . . . , fk)).

These partial derivatives contain the same information as (D f )x, just in a less intrinsic way; however, they allow
one to handle (D f )x more concretely, via matrices. For that recall that, due to the fact that the standard Euclidean
spaces come with a preferred basis, linear maps

A : Rn→ Rk

can be represented as matrices
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A = (Ai
j)1≤i≤k,1≤ j≤n =

A1
1 . . . A1

n
. . . . . . . . .
Ak

1 . . . Ak
n


To make a distinction between the matrix A and the linear map A, one may want to denote by Â the linear map, at
least for a while. Then the relationship between the two is (by definition):

Â(e j) =
k

∑
i=1

Ai
jei

or, on a general vector v = v1e1 + . . .+ vnen ∈ Rn, one has

Â(v) =
k

∑
i=1

(
n

∑
j=1

Ai
jv

j)ei.

To write also this formula in terms of matrix multiplication, we interpret any v ∈Rn as a row matrix and we denote
by vT its transpose (column matrix):

vT =

v1

. . .
vn


With this, the previous formula becomes

Â(v)T = A · vT

It follows immediately that the standard multiplication of matrices,

(A ·B)i
j = ∑

k
Ai

kBk
j,

corresponds to the composition of linear maps:

ÂB = Â◦ B̂.

All together, there should be no confusion in identifying A with Â even notationally.
In the case of the differential (D f )x, to see the matrix representing it we write

(D f )x(e j) =
∂ f
∂x j

(x) =
(

∂ f1

∂x j
(x), . . . ,

∂ fk

∂x j
(x)
)
=

k

∑
i=1

∂ fi

∂x j
(x)e j

i.e., in the matrix notation,

(D f )x =


∂ f1
∂x1

(x) . . . ∂ f1
∂xn

(x)
. . . . . . . . .

∂ fk
∂x1

(x) . . . ∂ fk
∂xn

(x)

 .

Note that, with this, the fact that (D f )x is an isomorphism is equivalent to the fact that the matrix above is invertible.
More generally, the rank of (D f )x as a linear map coincides with the rank as a matrix.

With these:

Proposition 1.26. A function f : Ω → Rk is of class C1 if and only if all the partial derivatives ∂ f
∂xi

exist and are
continuous functions on Ω .

In this case we can further look at partials derivatives of order two etc. Hence the higher, order l, partial deriva-
tives are defined inductively:

∂ l f
∂xi1 . . .∂xil

=
∂

∂xi1

(
∂

∂xi2

(
. . .

(
∂ f
∂xil

)))
.
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The previous proposition that extends to a characterization of f being of class Cl ; in particular, f is smooth if and
only if all its higher partial derivatives exist. We will denote by

C ∞(Rn)

the space (algebra!) of smooth functions on Rn. A smooth partitions of unity on Rn (subordinated to an open
cover) is any partition of unity whose members ηi are smooth- i.e. Definition 1.12 (finite case) and Definition 1.15
(general case) applied at A := C ∞(Rn)⊂ C (Rn).

Theorem 1.27. Any open cover of Rn admits a smooth partition subordinated to it.

Proof. We want to use Theorem 1.17 for A := C ∞(Rn). This is clearly closed under quotients and, for the same
reason that locally finite sums of continuous functions are continuous, it is closed under locally finite sums. We
still have to check the last condition on A or, equivalently: for any x ∈Rn and any ball centered at x, B(x,ε), there
exists a smooth functions f : Rn→ [0,1] such that f (x)> 0 and f is supported in the ball. It is clear that we may
assume that x = 0. Also, by rescaling the argument of f (i.e. multiply it by a constant) we may assume that ε = 1.
Then set f (x) = g(x2

1 + . . .+ x2
n) where g : R→ [0,1] is any smooth function with g(0) > 0 and g = 0 outside

[− 1
2 ,

1
2 ]. That such a function exists should be clear by thinking of its graph. The following exercise provides and

explicit formula.

Exercise 1.28. Show that

g0 : R→ R, g0(x) =

{
e−

1
x if x > 0

0 otherwise

is a smooth function. Then show that

g : R→ R, g(x) = g0(x+
1
2
)g0(

1
2
− x).

is a smooth function with the properties required at the end of the previous proof.

We now recall the implicit function theorem- which is one the important and rather immediate consequences of
the inverse function theorems. The importance is rather geometric, as it arises when looking at curves, surfaces
(or higher dimensional ... submanifolds) in Rn. While such subspaces are usually given by equations of type
f (x1, . . . ,xn) = 0 (think e.g. of x2 +y2 = 1, defining the unit circle in the plane), one would like to express some of
the coordinates xi in terms of the others (or, equivalently, describe our subspace as a graph).

Fig. 1.4 The implicit function Theorem 1.29 illustrated for a concrete choice of f : Ω →Rk. The theorem establishes that the preimage
f−1(0) (under appropriate assumptions) can locally be written as a graph of a function par : U → Rk over a subset of the variables. In
other words, the condition that f vanishes implicitly defines the function par.
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Theorem 1.29. Let f : Ω → Rk be a smooth map defined on an open Ω ⊂ Rm×Rk whose elements we label as
(x,y) = (x1, ...,xm,y1, ...,yk). Furthermore let (x̃, ỹ) ∈Ω be a point where f (x̃, ỹ) = 0 and the matrix(

∂ fi

∂y j
(x̃, ỹ)

)
1≤i, j≤k

is non-singular. Then there exists a function par : U →Rk defined in a neighborhood U of x̃ such that for all (x,y)
near (x̃, ỹ), one has

f (x,y) = 0⇐⇒ y = par(x).

The matrix appearing in this theorem is exactly the Jacobian matrix of the map y 7→ f (x̃,y) at y = ỹ. You can
convince yourself using Fig. 1.4 that its non-singularity is a neccessary condition to find a smooth function par: In
the depicted situation, it corresponds exactly to a tangency of f−1(0) in the y-direction at (x̃, ỹ).

Remark 1.30. Note that this theorem is not completely canonical: It gives preference to the last k components of
the arguments of f , i.e. depends on how we split the components of elements of Ω into x and y-components. For
example, there is an obvious modification in which the starting assumption is that the Jacobian with respect to the
first k components is regular, instead of the last ones. Such modifications are necessary even when looking at the
simplest examples: E.g., for the unit circle where f : R2→ R, f (x,y) = x2 + y2−1, the condition

∂ f
∂y

(x,y) 6= 0

(necessary for the theorem) is valid at almost all the points (x,y) in the circle (and, indeed, we can always solve
y = ±

√
1− x2), except for the points (1,0) and (−1,0) (and, indeed, there is a problem there: we would need a

function two take two values simultaneously close to y = 0 in order for it’s graph to match f−1(0)). However,
at those points one can switch the roles of x and y- and, indeed, around those points which are problematic for
±
√

1− x2, one can write x =±
√

1− y2.
A more intrinsic version of the theorem (and with exactly the same proof) can be obtained by requiring that

(D f )x has maximal rank k, without specifying which minor is non-singular. the conclusion will be that there exists
a permutation σ ∈ Sm+k such that f (p) = 0 near p̃ ∈ Rm+k is equivalent to

πy(σ · p) = par(πx(σ · p)),

where πx and πy are the projections of Rm+k onto the first m and last k components, respectively, and we write σ · p
for the result of permuting p by σ . But perhaps the most geometric formulation is what is know as the submersion
theorem- see below.

Proof. Consider the map
F : Ω → Rm+k, F(x,y) := (x, f (x,y)).

Then the non-singularity condition in the statement precisely means that (DF)(x̃,ỹ) is non-singular. Hence, by the
inverse function theorem, we find a smooth inverse G of F , defined near F(x̃, ỹ). Given the form of F , it follows
that G is of a similar form:

G(x,z) = (x,g(x,z)).

That G◦F and F ◦G are the identity maps (near (x̃, ỹ), and F(x̃, ỹ), respectively) translates into

g(x, f (x,y)) = y and f (x,g(x,z)) = z. (1.2.2)

The first equation shows that
f (x,y) = 0 =⇒ g(x,0) = y,

hence we have an obvious candidate par(x) := g(x,0). Note that the assumption f (x̃, ỹ) = 0 guarantees that g is
defined for (x,z) near (x̃,0). The fact that, indeed, f (x, par(x)) = 0 for x close to x̃ is just the second equation in
(1.2.2) applied when z = 0.
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1.2.4 Local coordinates/charts

The standard coordinates in Rn, despite being ”obvious”, are often not the best ones to use in specific problems.
E.g.: often when dealing with (algebraic or differential) equations or computing integrals, one proceeds to a change
of variables (i.e. passing to more convenient coordinates). Baby example: looking at the curve in R2 defined by

5x2 +2xy+2y2 = 1,

a change of coordinates of type

x =
u+ v

3
, y =

u−2v
3

(1.2.3)

brings us to the simpler looking equation u2 + v2 = 1. A very common change of coordinates in R2 is the passing
to polar coordinates:

x = r cos(θ), y = r sin(θ). (1.2.4)

To formalise such changes of coordinates, one talks about charts:

Definition 1.31. A smooth chart of Rn is a diffeomorphism

χ = (χ1, . . . ,χn) : U →Ω ⊂ Rn

between an open U ⊂ Rn and an open Ω ⊂ Rn. The open U is called the domain of the chart and, for p ∈U ,

(χ1(p), . . . ,χn(p))

are called the coordinates of p w.r.t. the chart (U,χ) and we also say that (U,χ) is a smooth chart around p.

For instance the change of coordinates (1.2.3) is about the chart

χ : R2→ R2, χ(x,y) = (2x+ y,x− y) (1.2.5)

so that, in the new coordinates, a point p = (x,y) will have the coordinates (w.r.t. χ)

u(x,y) = 2x+ y, v(x,y) = x− y.

Similarly for the polar coordinates where, computing the inverse of (r,θ) 7→ (r cos(θ),r sin(θ)), one finds the chart

χ(x,y) =
(√

x2 + y2,arctg(
y
x
)
)
.

1.2.5 Changing coordinates to make functions simpler (the immersion/submersion theorem)

In general, given a smooth function
f : Rn→ Rk

and a point p ∈Rn, whenever we have two new charts χ and χ ′ around p and f (p), respectively, one can represent
the function f using the new resulting coordinates: the representation of f w.r.t. the charts χ and χ ′ is

f χ ′
χ = χ

′ ◦ f ◦χ
−1.

Of course, for the standard charts (the identity maps) one obtains back f . If just χ ′, or just χ , is the standard chart
then we use the notations fχ and f χ ′ , respectively.

For instance, for the function
f (x,y) = 5x2 +2xy+2y2,

with respect to the new chart (1.2.5) one obtains fχ(u,v) = u2 + v2.
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In general, it is interesting to try to write smooth functions in the simplest possible way, modulo change of
coordinates. The simplest types of functions for which this is possible are the most ”non-singular” ones. More
precisely, given

f : U → Rk

a smooth map defined on an open U ⊂ Rn and given x ∈U , the ”non-singular behaviour” that we require is that

(D f )p : Rn→ Rk

has maximal rank. It is interesting to consider the cases n≥ k and n≤ k separately. The first case brings us to the
more canonical version of the implicit function theorem:

Theorem 1.32 (the submersion theorem). Assume that f is a submersion at a given point p ∈U in the sense
that (D f )p : Rn → Rk is surjective. Then there exists a smooth chart χ of Rn around p such that, around χ(p),
fχ = f ◦χ−1 is given by

fχ(x1, . . . ,xk,xk+1, . . . ,xn) = (x1, . . . ,xk).

Proof. Since the matrix representing (D f )p is of maximal rank, one of its maximal minors (an k× k matrix) is
invertible; we may assume that the invertible minor is precisely the one made of the last k rows (why?)- which
is also the hypothesis of the implicit function theorem (Theorem 1.29). Looking at the proof of the theorem, one
remarks that the desired chart is χ = f̃ .

A similar argument gives rise to the following:

Theorem 1.33 (the immersion theorem). Assume that f is an immersion at a given point p ∈U in the sense that
(D f )p : Rn→Rk is injective. Then there exists a smooth chart χ ′ of Rk around f (p) such that, in a neighborhood
p, f χ ′ = χ ′ ◦ f is given by

f χ ′(x1, . . . ,xn) = (x1, . . . ,xn, 0, . . . ,0︸ ︷︷ ︸
k−n zeros

). (1.2.6)

More precisely, denoting q = f (p), there exist:

• a smooth chart χ ′ : U ′q→Ω ′q of Rk around q,
• a neighborhood Ωp of p in Rn, inside the domain of f

such that (1.2.6) holds on Ωp. Furthermore, one may choose χ ′ and Ωp so that:

f (Ωp) = {u ∈U ′q : χ
′
L+1(u) = . . .= χ

′
k(u) = 0}.

Proof. Let us give a proof that makes reference to (D f )p as a linear map and not as a matrix. Since (D f )p : Rn→
Rk is injective, we find a second linear map B : Rk−n→ Rk such that

((D f )p,B) : Rn×Rk−n→ Rk

is an isomorphism. Consider then

h : U×Rk−n→ Rk, h(x1,x2) = f (x1)+B(x2).

We see that h satisfies the hypothesis of the inverse function theorem at the point (x,0). Hence it is a diffeomor-
phism around a neighborhood of (x,0). We denote by

χ
′ : U ′→Ω

′

its inverse. Note that:

1. U ′ is an open neighborhood of f (p) in Rk.
2. Ω ′ is an open neighborhood of (p,0) in Rk, contained in U×Rk−n.
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3. the intersection of Ω ′ ⊂ Rk with Rn×{0},

Ω := {u ∈ Rn : (u,0) ∈Ω
′},

is an open neighborhood of p included in the domain of f .

Note that, since χ ′(h(x1,x2) = 0 for all (x1,x2) ∈ Ω ′ and h(x,0) = f (x), we have χ ′( f (x)) = (x,0) for all x ∈ Ω .
This proves the main part of the theorem; for the last part, note that we have, by the first part, that f (Ω) is inside
the zero set of χ ′2 : U ′→ Rk−n (the second component of the chart χ ′ w.r.t. the decomposition Rk = Rn×Rk−n).
For the reverse inclusion, let x ∈U ′ with χ ′2(x) = 0; since h◦χ ′ = id on U ′, we obtain

x = h(χ ′(x)) = h(χ ′1(x),0) = f (χ ′1(x))

where, for the last equality, we used the explicit formula for h. Moreover, since χ ′(x) ∈ Ω ′ and since χ ′(x) =
(χ ′1(x),0), by the definition of Ω , we have χ ′1(x) ∈Ω . With the previous equality in mind, we obtain x ∈ f (Ω).

For later use let us introduce the notion of smoothness defined on arbitrary subsets M ⊂ Rn.

Definition 1.34. Given M ⊂ Rn and a function f : M → Rk, we say that f is smooth around p ∈ M if, in a
neighborhood U of p in M, f |U admits a smooth extension to an open inside Rn containing U . When this happens
around all p ∈M, we say that f is smooth.

A diffeomorphism between M ⊂ Rn and N ⊂ Rk is any bijection f : M→ N with both f and f−1 smooth.

And here is a nice application of the existence of smooth partitions of unity.

Exercise 1.35. Show that if M ⊂ Rn is a closed subset that any smooth function f : M → Rk admits a smooth
extension f̃ : Rn→ Rk. (Hint: Rn \M is open; get an open cover of Rn out of one of M.)

1.2.6 Embedded submanifolds of RL

We now move to the notion of (smooth) embedded submanifolds of RL 1. In low dimensions, these are curves (1-
dimensional) and surfaces (2-dimensional); for an arbitrary dimension m we will be talking about m-dimensional
submanifolds of RL. For instance, the standard sphere

Sm = {(x0, . . . ,xm) ∈ Rm+1 : ∑
i
(xi)

2 = 1} (L = m+1)

will be such a smooth m-dimensional submanifold. Already when looking at the simplest examples one sees that
such subspaces may (naturally) be described in several different (but equivalent) ways. E.g., already for the unit
circle in the plane, one has the standard descriptions:

• implicit (by equations): x2 + y2 = 1.
• parametric: x = cos(t),y = sin(t) with t ∈ R.

Accordingly, the notion of submanifold of RL can be introduced in several ways that look differently (but which
turn out to be equivalent).

We start with the definition that can be seen as just a small variation on the notion of topological manifold from
Definition 1.3 just that, for M ⊂ RL the axioms (TM1), (TM2) are automatically satisfied, and one can can further
take advantage of the Euclidean space to talk about smoothness of charts- as in Definition 1.34.

Definition 1.36. An m-dimensional embedded submanifold of RL is any subset M ⊂ RL which, for each p ∈ M,
satisfies the (m-dimensional) manifold condition at p in the following sense: there exists a topological chart of M
(Definition 1.3)

1 here L is an integer, possibly large, that will denote the dimension of the Euclidean space inside which our manifolds M ⊂ RL; we
use here the letter L not only to suggest that L may be possibly large w.r.t. the dimension of M, but also to emphasise that the role of
the dimension L is very different than that of the dimension m of M
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χ : U →Ω

(U ⊂M open neighborhood of p, Ω open in Rm) which is also a diffeomorphism (i.e. χ and χ−1 are smooth in the
sense of Definition 1.34). These will also be called smooth (m-dimensional) charts for M.

Of course, when M =RL, the resulting notion of ”smooth chart for RL” coincides with the one already introduced
in Definition 1.31. For general M, a particularly nice class of smooth charts of M are the ones that can be obtained
by restricting such charts of RL. More precisely, given a subset M ⊂ RL, a smooth chart of RL

χ̃ : Ũ → Ω̃ ⊂ RL (1.2.7)

said to be adapted to M if it takes U := M∩Ũ into Ω := Ω̃ ∩ (Rm×{0}):

χ̃|U : U →Ω . (1.2.8)

Equivalently: inside Ũ ⊂ RL, the points that belong to M are characterised by the equations χ̃i = 0 for i > m:

M∩Ũ = {q ∈ Ũ : χ̃m+1(q) = . . .= χ̃L(q) = 0.}

Note also that Ω may be, and will be, interpreted as an open in Rm; in this way, any smooth chart (1.2.7) of RL

that is adapted to M induces a smooth chart (1.2.8) of M.
Not every smooth chart χ of M is induced by an adapted smooth chart χ̃ of RL. However:

Proposition 1.37. For M ⊂ RL and p ∈ M, the manifold condition for M at p is equivalent to the existence of a
smooth chart of RL around p, that is adapted to M.

The proof will be done together with the proof of the following theorem. This theorem describes submanifolds
parametrically (think of x = cos(t),y = sin(t) for the circle) and by equations (think of x2 + y2 = 1 for the circle),
taking care of the precise conditions.

Theorem 1.38. Given a subset M ⊂ RL, p ∈M, the following are equivalent:

1. M satisfies the m-dimensional manifold condition at p.
2. M admits an m-dimensional parametrization around p- by which we mean a homeomorphism

par : Ω →U ⊂M

between an open Ω ⊂ Rm and an open neighborhood U of p in M satisfying the regularity condition that, as
a map from Ω to RL, par is an immersion.

3. M can be described by an m-dimensional implicit equation around p- by which we mean a submersion

eq : Ũ → RL−m

defined on an open neighborhood Ũ of p in RL and which describes M near p by the equation eq = 0:

M∩Ũ = {q ∈ Ũ : eq(q) = 0}.

Proof. For keeping track of notations note that, throughout the proof, we look around the given point p ∈M ⊂RL

and around the corresponding point

x = χ(p) = par−1(p) ∈Ω ⊂ Rm.

Therefore, we will deal with

• neighborhoods Up of p in M, and Ũp of p in RL.
• neighborhoods Ωx of x in Rm.
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Fig. 1.5 The equivalent ways of phrasing the manifold condition in Theorem 1.38 involve (adapted) charts, parametrizations or implicit
equations that are related as shown in this figure. Note that U = Ũ ∩M and Ω = Ω̃ ∩Rm. ι and pr are canonical inclusions and
projections of the product space RL = Rm×RL−m in the lower right. All these maps commute where they can be evaluated.

The points in the neighborhoods of p will be denoted by q, while the ones in the neighborhoods of x by y; for them,
we may be looking at similar neighborhoods Uq, Ũq and Ωy.

We first prove that (1) implies (2). We start with the the chart χ : U→Ω ⊂Rm defined in a neighborhood U of p
in M. Setting par = χ−1 we have to check that par is a homeomorphism -which is clear by construction (it has the
continuous χ as inverse)- and that, as a map Ω →RL, it is an immersion. For the last part use that the composition

Ω
par−→U

χ−→Ω

is the identity on Ω and then apply the chain rule to deduce that, for each point y ∈Ω , (D χ)par(y) ◦ (D par)y is the
identity- hence, in particular, (D par)y will be injective.

We now prove that (2) implies both (1) as well as (3). Hence we start with a parametrization par : Ω →U ⊂M;
as above, we set χ = par−1 : U →Ω . To get (1), we still have to check that χ is smooth in the sense of Definition
1.34: i.e., around any point q ∈U , it is obtained by restricting a smooth map defined on an open Ũq ⊂RL. For that
we use the immersion theorem (Theorem 1.33) applied to par : Ω → RL around

y = χ(q) ∈Ω .

We find:

• an open neighborhood Ωy of y in Ω ⊂ Rm

• a diffeomorphism χ̃ : Ũq→ Ω̃q from an open neighborhood Ũq ⊂ RL of p′ to an open Ω̃q ⊂ RL,
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so that, on Ωy, χ̃ ◦ par becomes the inclusion on the first factors. We now write χ̃ = (χ̃1, χ̃2) where we use again
the decomposition RL = Rm×RL−m. We deduce that χ̃1(par(z)) = z for all z ∈ Ωy. Since z = χ(par(z)) for all
z ∈ Ω , we deduce that χ̃1(r) = χ(r′) for all r ∈ par(Ωq). In this way, on the neighborhood par(Ωq) of q in U , χ

is now the restriction of a smooth function defined on an open neighborhood of q in RL- namely χ̃1 : Ũq→ Rm.
To prove (3) (still assuming (2)), we use q = p in the previous reasoning and the resulting diffeomorphism

χ̃ : Ũp → Ω̃p; in principle, the desired function f will be χ̃2, but we have to choose the domain of definition
carefully. For that we use the last part of Theorem 1.33 which says that we may assume that

par(Ωx) = {y ∈ Ũp : χ̃m+1(y) = 0, . . . , χ̃L(y) = 0}.

Since this is open in M, we can write it as M∩Wp for some open Wp ⊂ RL. Considering now

Ũ := Ũp∩Wp, eq = χ̃2|Ũ : Ũ → RL−m

one checks right away that M∩Ũ is the zero set of eq (why is eq a submersion?).

Exercise 1.39. Conclude now that χ̃ is actually an adapted chart.

We are now left with proving that (3) implies (1). Let eq : Ũ → RL−m satisfying the conditions from the hy-
pothesis. Note that if we replace Ũ by a smaller open neighborhood of p in RL (and eq by its restriction), those
conditions will still be satisfied. Therefore, using the submersion theorem applied to eq, we may assume that we
also find a diffeomorphism χ̃ : Ũ → Ω̃ into an open subset of RL, such that eq = χ̃2. This chart will then take the
zero set of eq into the zero set of the second projection pr2 : Ω̃ → RL−m, i.e. into

Ω := {u ∈ Rm : (u,0) ∈ Ω̃}.

We deduce that the restriction of χ̃ to U = M∩Ũ ,

χ := χ̃|U : U →Ω ⊂ Rm,

is a smooth chart of M (around p).

Example 1.40. Returning to the circle S1,

• h(x,y) = x2 + y2−1 serves as a (1-dimensional) implicit equation (around any point!)
• p(t) = (cos(t),sin(t)), when considered on sufficiently small intervals (on which it is injective) serves as para-

matrization of S1 around any point in S1.
• as smooth (1-dimensional) charts one could use two projections pr1, pr2 : S1→ R, restricted to the appropriate

domains (so that they become homeomorphisms). Another possible choice of charts is given by the stereo-
graphic projections (see the lecture notes on Topology).

Exercise 1.41. Generalize this discussion to the spheres Sm of arbitrary dimension.

1.2.7 From directional derivatives to tangent spaces

The point of view provided by the directional derivatives brings us closer to the intrinsic nature of (p,v) when
talking about (D f )p(v): that of tangent vector. The key point is that (D f )p(v) depends only on the behaviour of f
near p, in ”the direction of v”- and how we realize that ”direction” is less important. This is best seen by looking
at arbitrary paths through p with the original speed v, i.e. any smooth map

γ : (−ε,ε)→ Rn

(with ε > 0) satisfying

γ(0) = p,
dγ

dt
(0) = v. (1.2.9)
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For instance, one could take γ(t) = p+ tv, but the point is that the variation of f (p+ tv) at t = 0 does not depend
on this specific choice of γ .

Lemma 1.42. If f is differentiable at p then, for any path γ satisfying (1.2.9), one has

(D f )p(v) =
∂ f
∂v

(p) =
d
dt

∣∣∣∣
t=0

f (γ(t)).

In particular, if f is constant along such a path γ , then (D f )p(v) = 0.

This point of view becomes extremely useful when looking at more general subspaces

M ⊂ Rn.

Definition 1.43. Let M ⊂ Rn and consider a point p ∈ M. A smooth curve in M is any smooth map γ : I → Rn

defined on some interval I ⊂ R, which takes values in M.
A vector tangent to M at p is any vector v ∈ Rn which can be realized as the speed at t = 0 of a smooth curve

in M that passes through p at t = 0 (i.e. for which 0 ∈ I and γ(0) = p):

v =
dγ

dt
(0).

The set of such vectors is denoted by T geom
p M; hence

T geom
p M ⊂ Rn.

Although we use the name ”tangent space”, in general (for completely random Ms inside Rn), T geom
p M is just a

subset of Rn (... but it is a vector subspace if M is ”nice”).

Exercise 1.44. Compute T geom
p M when:

1. M ⊂ R2 is the unit circle and p = (1,0).
2. M ⊂ R2 is the union of the coordinate axes and p = (0,0).

Exercise 1.45. Assume that M ⊂Rn is defined by an equation f (x) = 0, where f : Rn→Rk is a smooth function.
For p ∈ Rn we denote by Kerp(D f ) the kernel (= the zero set) of the differential (D f )p : Rn→ Rk. Show that, in
general,

T geom
p (M f )⊂ Kerp(D f ),

but the inclusion may be strict. Then prove this inclusion becomes and equality when

f (x1, . . . ,xn) = (x1)
2 + . . .+(xn)

2−1.

Exercise 1.46. With the notations from the previous exercise show that for all p ∈M f at which f is a submersion

T geom
p (M f ) = Kerp(D f ).

We now return to our discussion on differentials/directional derivatives, recast in terms of tangent spaces.
Namely, Lemma 1.42 gives us right away:

Corollary 1.47. Given M ⊂ Rn, p ∈M and a function f̃ : Rn ⊂ Rk differentiable at p then, for any vector v ∈ Rn

tangent to M at p, (D f̃ )p(v) depends only on f̃ |M .

Of course, a similar conclusion holds slightly more generally, for any function f̃ : U → Rk defined on an open
neighborhood U ⊂Rn of p- the otcome being that (D f̃ )p(v) only depends on the values of f̃ |M near p. This shows
how to define the differential of a function f : M→ Rk which is differentiable at p ∈M in the sense of Definition
1.34: for f : M→ Rk that is differentiable at p, one has a well-defined differential

(D f )p : T geom
p M→ Rk,
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defined using an extension f̃ of f near p, but independent of the extension.

Exercise 1.48. Show that if M ⊂ Rn and N ⊂ Rk and f : M→ N is smooth at p ∈ M, then (D f )p takes values
in T geom

f (p) N. Then prove the chain rule in this context and deduce that, if f is a diffeomorphism, then (D f )p is a
bijection between T geom

p M and T geom
f (p) N.

Finally, let us look at tangent spaces of submanifolds of Rn.2

Proposition 1.49. If M ⊂ Rn is a m-dimensional embedded submanifold then, for any p ∈M, the tangent space of
M at p is an m-dimensional vector subspace of Rn, which can also be described as follows:

1. as the kernel of (Deq)p : Rn→ RL−m, where eq : Ũ → RL−m is any implicit equation defining M around p.
2. as the image of (D par)p : TpΩ → Rn, where par : Ω →M is any parametrization of M around p.

Proof. Exercise.

Exercise 1.50. Compute again the tangent spaces of the spheres, but applying now the previous proposition.

1.2.8 More exercises

Exercise 1.51. Consider two smooth functions

U
f→U ′

g→ Rp,

defined on opens U ⊂ Rn, U ′ ⊂ Rk. Using the interpretation of linear maps as matrices (as made precise on page
23) show that the chain rule becomes:

∂g◦ f
∂xi

(x) =
n

∑
j=1

∂g
∂y j

( f (p))
∂ f j

∂xi
(x)

for all x ∈U and 1≤ i≤ n .

Exercise 1.52. Show that for any function g : R→ R, the function

g̃ : Rn→ R, g̃(x1, . . . ,xn) = g((x1)
2 + . . .+(xn)

2)

is not a submersion at x = 0.

Exercise 1.53. Assume that f : U0→ Rk is a smooth map, U ⊂ Rn open, p ∈U . Let

χ : U →Ω ⊂ Rn, χ
′ : U ′→Ω

′ ⊂ Rk

be charts, of Rn around p and of Rk around f (p), respectively. What is the (maximal) domain of definition of f χ ′
χ ?

Exercise 1.54. Consider
f : R2→ R, f (x,y) = 3 · 3

√
x2 +2xy+2y2

and look around p = (1,0). Find a chart χ of R2 around p and a chart χ ′ of R around f (p) = 3 such that, w.r.t.
these charts,

f χ ′
χ (u,v) = u2 + v2.

2 is this the right place?
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Exercise 1.55. Show that
f : R→ R2, f (t) = (cos(t),sin(t))

is an immersion at each point. Then, looking around t = 0, find a chart χ ′ of R2 around f (0) = (1,0) such that,
w.r.t. this chart,

fχ ′(t) = (t,0).

Exercise 1.56. Show that if f : U → Rk, p ∈U satisfy the conclusion of the submersion theorem, then f must be
a submersion at p. Similarly for the immersion theorem.
(Hint: try it! If it really doesn’t work, then look at the next exercise).

Exercise 1.57. Assume that f : U → Rk is a smooth map, U ⊂ Rn open, p ∈U . Let χ be a chart of Rn around
p and let χ ′ be a chart of Rk around f (p). Show that f is a submersion/immersion at p if and only if f χ ′

χ is a
submersion/immersion at χ(p).

Exercise 1.58. Consider the stereographic projection w.r.t. the north pole pN , denoted

χN : S2 \{pN}→ R2

and similarly the one w.r.t. the south pole, denoted χS. Show that

χS ◦χ
−1
N : R2 \{0}→ R2 \{0}

is a diffeomorphism.

Exercise 1.59. For any ε > 0 describe a smooth function

f : Rn→ [0,1]

with the property that f (0)> 0 and whose support (in Rn) is contained in the ball {x ∈ Rn : ||x||< ε}.

Exercise 1.60. Assume that f : U →U ′ and g : U ′ →U ′′ are two smooth functions, with U ⊂ Rn, U ′ ⊂ Rk and
U ′′ ⊂ Rp opens. Show that if g◦ f is a local diffeomorphism around a given point x ∈U , then:

1. f is an immersion at x and g is a submersion at f (x).
2. however, it may happen that f is not a submersion at x and g is not an immersion at g(x) (describe an example!).
3. if, furthermore, f is a submersion at x or g is an immersion at f (x), then both f and g are local diffeomorphisms

(around x and f (x), respectively).





Chapter 2
Smooth manifolds

2.1 Manifolds

2.1.1 Charts and smooth atlases

The difference between topological manifolds (see Definition 1.3) and smooth manifolds is, as the terminology
suggests, that we assume smoothness for all the objects one considers (so that, on smooth manifolds, unlike for
topological ones, we will be able to talk about speeds of curves, tangent vectors, differential forms, etc etc). For
subspaces M ⊂ Rn, making use of the ambient space Rn, we managed to make sense of smoothness of various
objects on M, such as charts- giving rise to the notion of smooth submanifold of Rn (as in Definition 1.36).
However, in the general setting, there is no intrinsic way to make sense of smoothness just for a topological space
M (not necessarily embedded into Rn)- instead, we need extra-data on M that serves precisely that purpose. And
that is the notion of smooth atlas that we start with here.

Recall from Definition 1.3 that, given a topological space M, an m-dimensional chart is a homeomorphism χ

between an open U in M and an open subset χ(U) of Rm,

χ : U → χ(U)⊂ Rm.

We also say that (U,χ) is a chart for M, and we call U the domain of the chart. Given such a chart, each point
p ∈U is determined/parametrized by its coordinates w.r.t. χ:

(χ1(p), . . . ,χm(p)) ∈ Rm

(a more intuitive notation would be: (x1
χ(p), . . . ,xm

χ (p))).
Given a second chart

χ
′ : U ′→ χ

′(U ′)⊂ Rm,

the map
cχ ′

χ := χ
′ ◦χ

−1 : χ(U ∩U ′)→ χ
′(U ∩U ′)

is a homeomorphism between two opens in Rm. It will be called the change of coordinates map from the chart χ

to the chart χ ′. The terminology is motivated by the fact that, denoting

cχ ′
χ = (c1, . . . ,cm),

the coordinates of a point p ∈U ∩U ′ w.r.t. χ ′ can be expressed in terms of those w.r.t. χ by:

χ
′
i (p) = ci(χ1(p), . . . ,χm(p)).

31
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Fig. 2.1 Two charts χ : U → χ(U) and χ ′ : U ′ → χ ′(U ′) ⊆ Rm together with the change of coordinates map cχ ′
χ : χ(U ∩U ′)→

χ ′(U ∩U ′). These maps commute wherever they can be evaluated sensibly, i.e. cχ ′
χ ◦χ = χ ′ holds on U ∩U ′.

Definition 2.1. We say that two charts (U,χ) and (U ′,χ ′) are smoothly compatible if the change of coordi-
nates map cχ ′

χ (a map between two opens in Rm) is a diffeomorphism.

Definition 2.2. A (m-dimensional) smooth atlas on a topological space M is a collection A of (m-
dimensional) charts of M with the following properties:

1. the domains of the charts that belong to A cover M entirely.
2. each two charts from A are smoothly compatible.

Fig. 2.2 An atlas of Earth is exactly a collection of charts that covers the surface of the globe. The same region might be included in
several charts of a smooth atlas in a way that measured distances, angles and areas do not match - e.g. one chart might use the Mercator
projection whereas another might faithfully depict areas. However, the smooth compatibility between charts does guarantee at least
that a smooth path in one chart cannot develop any kinks in another.
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Example 2.3. (Euclidean spaces) On M = Rm there are several interesting atlases. We mention here the extreme
ones: the atlas ARm consisting of only one chart, namely the identity chart IdRm : Rm→ Rm, and A max

Rm consisting
of all smooth charts of Rm in the sense of Definition 1.31.

Example 2.4. (inside Euclidean spaces) For embedded m-dimensional submanifolds M ⊂RL (cf. Definition 1.36),
there are two interesting atlases on M: the atlas A max

M consisting of all smooth m-dimensional charts of M in the
sense of Definition 1.36, and the atlas A adapt

M consisting of all charts that arise from smooth charts of RL that are
adapted to M (see the discussion following Definition 1.36).

Fig. 2.3 Example of two smoothly compatible charts over the same open subset U = {(x,y) ∈ R2 :
√

x2 + y2 < 5}\ (−∞,0]×{0} of
the plane: The identity chart χ = (x,y) as well as polar coordinates χ ′ = (r,φ). The change of coordinate map going from right to left,
for example, can be visualized by first collapsing the left boundary of the rectangle into the origin and then glueing the two boundary
components that touch the origin together on the negative x-axis.

The charts of an atlas are used to transfer notions and properties that involve smoothness from the Euclidean
spaces (and opens inside) Rm to M; the compatibility of the charts ensures that the resulting notions (now on M)
do not depend on the choice of the charts from the atlas. Hence one may say that an atlas on M allows us to
put a ”smooth structure” on M. For instance, given a smooth m-dimensional atlas A on the space M, a function
f : M→ R is called smooth w.r.t. the atlas A if for any chart (U,χ) that belongs to A ,

fχ := f ◦χ
−1 : χ(U)→ R

is smooth in the usual sense (χ(U) is an open in Rm!). We will temporarily denote by

C ∞(M,A )

the set of such smooth functions. However, there is a little ”problem”: the fact that two different atlases may give
rise to the same smooth functions.

Exercise 2.5. Returning to Example 2.3, show that

C ∞(Rm,ARm) = C ∞(Rm,A max
Rm ).
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2.1.2 Smooth structures

As we have pointed out, there is one aspect that requires a bit of attention: the fact that two different atlases may
give rise to the same ”smooth structure”. One way to overcome this ”problem” is by using smooth atlases that are
maximal:

Definition 2.6. An m-dimensional smooth structure on a topological space M is an m-dimensional smooth
atlas A on M which is maximal, i.e. with the property that there is no smooth atlas strictly containing A .

Example 2.7. (Euclidean spaces) On Rm the collection of all its smooth charts in the sense of Definition 1.31,

A max
Rm := {χ : U →Ω diffeomorphisms between opens U,Ω ⊂ Rm},

is a maximal atlas and, therefore it defines a smooth structure on Rm. This is called the standard smooth struc-
ture on the Euclidean space Rm; unless otherwise stated, from now on the Euclidean spaces Rm will always be
endowed with this smooth structure.

Example 2.8. (inside Euclidean spaces) Similarly, for an embedded submanifold M ⊂ RL the collection of all
smooth charts of M in the sense of Definition 1.36 form a smooth maxima atlas A max

M and therefore defines a
smooth structure on M- called the standard smooth structure on the embedded submanifold.

Here is a more direct characterization of the maximality condition:

Exercise 2.9. Show that, given any smooth atlas A on any topological space M, one has:

(A is maximal)⇐⇒

 any topological chart of M (see Def 1.3)
which is smoothly compatible with all the charts from A

must belong to A



Actually, starting with an arbitrary (maximal or not) smooth atlas A on M, the collection of all charts of M that
are compatible with all the charts that belong to A ,

A max := {charts χ of M : χ is smoothly compatible with all χ
′ ∈A },

is a new smooth atlas on M (exercise!), which is maximal (why?), and which contains A (why?). And the previous
exercise says that A is maximal if and only of A = A max.

Definition 2.10. Given a smooth atlas A on M, the smooth structure on M induced by the atlas A is the
associated maximal atlas A max.

Exercise 2.11. Show that for any smooth atlas A one has

C ∞(M,A ) = C ∞(M,A max),

As we shall see a bit later (in Exercise 2.99), if A1 and A2 are two maximal smooth atlases, then

C ∞(M,A1) = C ∞(M,A2)⇐⇒A1 = A2.
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One should keep in mind that very often a smooth structure is exhibited by describing a rather small atlas (ideally
”the smallest possible one”).

Example 2.12. (various atlases on Euclidean spaces) The standard smooth structure on Rm (see Example 2.7) can
be induced by a very small atlas,

ARm := {IdRm},

i.e. the one consisting only of the identity chart

χ = IdRm : Rm→ Rm.

And a lot more is possible. E.g. here are two new smooth atlases:

A1 := {IdU : U−open in Rm},

or A2 defined similarly, but using only open balls B⊂ Rm. Note that:

ARm ⊂A1, ARm ∩A2 = { /0};

however, they all induce the same smooth structure on Rm (the standard one):

A max
1 = A max

2 = A max
Rm .

Example 2.13. Also for embedded submanifolds M ⊂ RL, there may be smaller and/or nicer atlases inducing the
standard smooth structure on M described in Example 2.8. E.g., in full generality, one has the atlas A adapt

M arising
from adapted charts of RL (as in Example 2.4). But probably the nicest and most convincing example is provided
by the stereographic projections for the spheres- see below.

A slightly different way of understanding smooth structures is via equivalence classes of atlases where, in principle, two atlases are
equivalent if they induce the same smooth functions. Let us make this more precise.

Definition 2.14. We say that two smooth atlases A1 and A2 are smoothly equivalent if any chart in A1 is smoothly compatible with
any chart in A2 (or, shorter: if A1∪A2 is again a smooth atlas).

This defines an equivalence relation on the collection of all smooth atlases. From this point of view, the main property of maximal at-
lases is that: in each equivalence class one can find one, and only one, maximal atlas (so that maximal atlases are in 1-1 correspondence
with equivalence classes of smooth atlases). This is made more precise in the following simple exercise:

Exercise 2.15. Show that, for any atlas A , A is (smoothly) equivalent to A max; then show that for two atlases A1 and A2, one has

A1 is smoothly equivalent to A2⇐⇒A max
1 = A max

2 .

We see that one obtains a 1-1 correspondence{
smooth

structures
on M

}
=

{
maximal
atlases
on M

}
1−1←→

{
equivalence classes of

smooth atlases
on M

}
,

and, for this reason, some text-books introduce the notion of smooth structure as an equivalence class of smooth atlases. The bottom
line is that

any atlas A on M induces a smooth structure on M

and, depending on the point of view on smooth structure that we adopt, the smooth structure associated to an atlas A is interpreted
either as the maximal atlas A max associated to A , or as the equivalence class [A ], respectively. The use of maximal atlases is more
”down to earth”- in the sense that it avoids the use of equivalence classes. However, as we have illustrated above (e.g. in Example
2.12), one should keep in mind that very often a smooth structure is exhibited by describing a rather small atlas (ideally ”the smallest
possible one”).

Exercise 2.16. Assume Exercise 2.11 show now that, indeed, for any two atlases A1 and A2 on M, one has:

C ∞(M,A1) = C ∞(M,A2)⇐⇒A1 is smoothly equivalent to A2.
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2.1.3 Manifolds

We now come to the main objects of study of this course.

Definition 2.17. A smooth m-dimensional manifold is a Hausdorff, second countable topological space M
together with am m-dimensional smooth structure on M.

Given a smooth m-dimensional manifold M, when saying that (U,χ) is a chart of the smooth manifold
M we mean that (U,χ) belongs to the maximal atlas A defining the smooth structure on M.

Example 2.18. [Euclidean spaces and its embedded submanifolds] As a conclusion of the discussions from Ex-
ample 2.7 and 2.8:

• Rm endowed with the standard smooth becomes an m-dimensional manifold; and its charts are precisely the
classical smooth charts of Rm in the sense of Definition 1.31.

• similarly, any embedded submanifold M ⊂ RL as above, endowed with its standard smooth structure, becomes
an m-dimensional manifold whose charts are the smooth charts from Definition 1.36. 1.

Example 2.19. [Opens] Given an m-dimensional manifold M, any non-empty open U ⊂ M carries a natural (in-
duced) smooth structure that makes U itself into an m-dimensional manifold: the charts of U are, by definition, the
charts of M whose domain are contained in U .

In particular, any open
Ω ⊂ Rm

comes with a standard smooth structure making it into an m-dimensional manifold. Note that, again, this smooth
structure can be induced by a very small atlas, namely

AΩ := {IdΩ};

actually, these are all the possible manifolds for which the smooth structure can be induced by an atlas consisting
of one chart only- see Exercise 2.38.

Exercise 2.20. Show that the unit circle S1 (with the topology induced from R2) admits an atlas made of two
charts, but does not admit an atlas made of a single chart.

Exercise 2.21. Describe a smooth structure on the torus such that the underlying topology is the usual (Euclidean)
one (just intuitively, on the picture for now). How many charts do you need?

Can you do the same for the Moebius band?

Exercise 2.22 (product of manifolds). Let M and N be two manifolds of dimensions m and n, respectively and
we want to make M×N into a manifold of dimension m+n. For that, for any smooth charts χ : U →Ω ⊂ Rm of
M and χ ′ : U ′→Ω ′ ⊂ Rn of N we would like that their product

χ×χ
′ : U×U ′→Ω ×Ω

′ ⊂ Rm×Rn = Rm+n, (p,q) 7→ (χ(p),χ ′(q))

becomes a smooth chart for M×N. Show that M×N carries a unique smooth structure satisfying this property.
(this is called the product smooth structure).

1 actually, one can prove that that is all there is- in the sense that any manifold M can be ”embedded” in some Euclidean space.
This is a very interesting result, but the conclusion may be a bit misleading and it is not so important as it may seem: the ”general”
theory frees the embedded submanifolds from the ambient spaces and describe the geometry of the space that is independent of the
ambient space- shading light even on the notions that are described, originally, using those embeddings. Think e.g. of what happens
in Topology, when compactness was originally described for subsets of RL requiring them to be closed and bounded, and then turned
out to be a completely topological property (with important consequences). Moreover, some manifolds just do not come with ”natural
embeddings” into some Euclidean spaces- see e.g. the projective spaces!
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Exercise 2.23. In the definition of smooth manifolds show that the condition that M is second countable is equiv-
alent to the fact that the smooth structure on M can be defined by an atlas that is at most countable.

Remark 2.24 (Avoiding Topology?). In an attempt to avoid any reference to topology, one may give a definition of manifolds as a
structure on a set M rather than a topological space M. One problem with such an approach is that its ”directness” (avoiding topology)
is only apparent, and the various topological notions that inevitably show up over and over again would look even more complicated
and also rather mysterious (for instance, to hide the second countability axiom we would have to require countable atlases- as indicated
by the previous exercise). Another problem with such an approach (even more important than the previous one) is the fact that the
various manifolds that we encounter are, before anything, topological spaces in a very natural way. Not making any reference to such
natural topologies would be artificial and less intuitive.

However, here is an exercise that indicates how one could (but should not) proceed.

Exercise 2.25. Let M be a set and let A be a collection of bijections

χ : U → χ(U)⊂ Rm

between subsets U ⊂M and opens χ(U) ⊂ Rm. We look for topologies on M with the property that each χ ∈ A becomes a homeo-
morphism. We call them topologies compatible with A .

(i) If the domains of all the χ ∈A cover M, show that M admits at most one topology compatible with A .
(ii) Assume that, furthermore, for any χ,χ ′ ∈ A , χ ′ ◦ χ−1 (defined on χ(U ∩U ′), where U is the domain of χ and U ′ is of χ ′) is a

homeomorphism between opens in Rm. Show that M admits a topology compatible with A .
(Hint: try to define a topology basis).

2.1.4 Variations

There are several rather obvious variations on the notion of smooth manifold. For instance, keeping in mind that

smooth = of class C ∞,

one can consider a C k-version of the previous definitions for any 1≤ k ≤ ∞. E.g., instead of talking about smooth
compatibility of two charts, one talks about C k-compatibility, which means that the change of coordinates is a
C k-diffeomorphism. One arises at the notion of manifold of class C k, or C k-manifold. For k = ∞ we recover
smooth manifolds, while for k = 0 we recover topological manifolds.

Yet another possibility is to require ”more than smoothness”- e.g analyticity. That gives rise to the notion of
analytic manifold. Looking at manifolds of dimension m = 2n, hence modeled by Rm = C n, one can also restrict
even further- to maps that are holomorphic. That gives rise to the notion of complex manifold. Etc.

Another possible variation is to change the ”model space” Rm. The simplest and most standard replacement
is by the upper-half planes

Hm = {(x1, . . . ,xm) ∈ Rm : xm ≥ 0}.

This gives rise to the notion of smooth manifold with boundary: what changes in the previous definitions
is the fact that the charts are homeomorphisms into opens inside Hm.

For instance, the closed interval [0,1] and the closed disk D2 ⊂R2 (with their standard Euclidean topology) can
be made into manifolds with boundary.

Exercise 2.26. Go back to Exercise 2.21 and do again the second part.

Exercise 2.27. If M is an m-dimensional manifold with boundary:

1. while this may be clear intuitively, give a precise definition of ”the boundary ∂M of M” (note that you cannot
use the notion of boundary from Topology, as M is not part of a larger space).

2. prove that ∂M is a smooth (m−1)-dimensional manifold (without boundary).

Exercise 2.28. Return to products M×N of manifolds, as in Exercise 2.22. What if N is a manifold with boundary?
And what if both M and N are manifolds with boundary?
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2.2 Smooth maps

2.2.1 Smooth maps

Having introduced the main objects (manifolds), we now move to the maps between them. The idea will always
be the same: use charts to move to Euclidean spaces, and use the standard notions there.

Definition 2.29. Let f : M→ N be a map between two manifold M and N of dimensions m and n, respec-
tively. Given charts (U,χ) and (U ′,χ ′) of M and N, respectively, the representation of f with respect to χ

and χ ′ is
f χ ′
χ := χ

′ ◦ f ◦χ
−1.

This map makes sense when applied to a point of type χ(p) ∈ Rd with p ∈U with the property that f (p) ∈U ′,
i.e. p ∈U and p ∈ f−1(U ′). Therefore, it is a map

f χ ′
χ : Domain( f χ ′

χ )→ Rn.

whose domain is the following open subset of Rm:

Domain( f χ ′
χ ) = χ(U ∩ f−1(U ′))⊂ Rm.

Fig. 2.4 A map f : M→ N between an m- and n-dimensional manifold equipped with local charts χ and χ ′ defined on opens U ⊆M
and U ′ ⊆ N, respectively, can locally be characterized by the representative f χ ′

χ : Domain f χ ′
χ → Rn. These maps commute wherever

they can be evaluated sensibly, i.e. χ ′ ◦ f = f χ ′
χ ◦χ holds on U ∩ f−1(U ′).
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Definition 2.30. Let M and N be two manifolds and

f : M→ N

a map between them. We say that f is smooth if its representation f χ ′
χ with respect to any chart χ of M and

χ ′ of N, is smooth (in the usual sense of Analysis).

Exercise 2.31. With the notation from the previous definitions, let AM and AN be two arbitrary (i.e. not necessarily
maximal) atlases inducing the smooth structure on M and N, respectively. Show that, to check that f is smooth, it
suffices to check that f χ ′

χ is smooth for χ ∈AM and χ ′ ∈AN .

Example 2.32. In particular, when N = Rn (which, according to our conventions, is always endowed with the
standard smooth structure), one can use the small atlas ARn (Example 2.12). We see that, for a map

f : M→ Rn,

the smoothness of f is checked by using charts (U,χ) for M and looking at the representation of f w.r.t. χ

fχ = f ◦χ
−1 : χ(U)→ Rn.

Of particular interest will be the case n = 1 which gives rise to the space C ∞(M) of real-valued smooth functions
on M (denoted C ∞(M,A ) in the previous sections); this will be discussed in more detail a bit later and will show
up in various places throughout the course. Very roughly, one may even say that C ∞(M) together with its algebraic
structure (to be discussed) encodes entirely the smooth structure of M.

Example 2.33. Another extreme is when M = I ⊂R is an open interval (again with the standard smooth structure)
and N is an arbitrary manifold. Then smooth maps

γ : I→ N

are called (smooth) curves in N. Again, smoothness of γ is checked using charts (U,χ) for M and the resulting
representation of γ in the chart χ:

γ
χ := χ ◦ γ : Iχ ⊂ Rm

(with domain Iχ = γ−1(U)⊂ I).

We now look at embedded submanifolds of Rn endowed with their standard smooth structure (see Example 2.8)
and comparing smoothness to the the one from the reminder on Analysis.

Proposition 2.34. Let M ⊂ Rn and M′ ⊂ Rn′ be two embedded submanifolds, and we view them also as abstract
manifolds. Then a function f : M→ M′ is smooth as a map between abstract manifolds (Definition 2.30) if and
only if f is smooth as a function between subsets of Euclidean spaces, i.e. in the sense of Section 1.2, Definition
1.34.

Proof. Let us call ”A-smoothness” the notion from Section 1.2 of Chapter 1, and smoothness the one from this
chapter. It is clear that the two coincide when M and N are open in their ambient Euclidean spaces.

Assume first that f is A-smooth. We will consider charts χ̃ : Ũ → Ω of Rm̃ adapted to M (see Chapter 1,
Proposition 1.37 from Section 1.2), and similarly χ̃ ′ : Ũ ′→Ω ′ adapted to N; they induce charts χ := χ̃|U∩M for M,
and similarly χ ′ for N. To prove that f is smooth around a point p ∈M it suffices to show that for any χ̃ around p
and χ̃ ′ around f (p), as above, f χ ′

χ is smooth. Since f is A-smooth, we may assume that f |U = f̃ |U with f̃ : Ũ→ Ũ ′

is smooth; in turn, f̃ induces F := f̃ χ̃ ′

χ̃
: Ω → Ω ′, whose restriction to Ω ∩ (Rm×{0} ⊂ Rm̃ is precisely f χ ′

χ (and
takes values in Ω ′∩ (Rn×{0} ⊂Rñ). Hence we are in the situation of having a smooth map F : Ω →Ω ′ between
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opens in Rm̃ and Rñ, taking Ω0 =Ω ∩(Rm×{0} to Ω
′
0 =Ω ′∩(Rn×{0} and we want to show that F |Ω0 : Ω0→Ω

′
0

is smooth as a map between opens in Rm and Rn; that should be clear.
Assume now that f is smooth. Tho check that it is A-smooth, we fix p ∈ M and consider charts χ̃ and χ̃ ′

and proceed as above and with the same notation. This time but we do not have f̃ , but having it is equivalent to
having F extending F0 = f χ ′

χ . Then we are in a similar general situation as above, when we have a smooth map
F0 : Ω0→Ω

′
0 between opens in Rm and Rn and we want to extend it to a smooth map F between opens in Rm̃ and

Rñ, defined in a neighborhood of χ(p). Using the decomposition Rm̃ = Rm×Rm̃−m and similarly for Rñ, we just
set F(x,y) = (F0(x),0).

2.2.2 Special maps: Diffeomorphisms, immersions, submersions

Like in the case of Rm, there are certain types of smooth maps that deserve separate names. The first one describes
the correct notion of ”isomorphisms” in Differential Geometry (analogous to linear isomorphisms in Linear Alge-
bra, isomorphisms of groups in Group Theory, homeomorphisms in Topology).

Definition 2.35. A diffeomorphism between two manifolds M and N is a map f : M→ N with the property
that f is bijective and both f and f−1 are smooth.

Two manifolds M and N are said to be diffeomorphic if such a diffeomorphism exists.

A diffeomorphism allows one to pass from whatever differential geometric object/property on M to N and
backwards; for that reason, two manifolds that are diffeomorphic are usually thought of as being ”(basically) the
same as manifolds”.

Exercise 2.36. In general, Rm has many smooth structures, though many of them (but not all!) are actually dif-
feomorphic. This exercise takes care of the simpler parts of these assertions. For a homeomorphism χ : Rm→Rm,
consider

Aχ = {χ},

(the atlas on Rm consisting of one single chart, namely χ itself).
Show that, for a general homeomorphism χ , Aχ defines a smooth structure different than the standard one, but

Rm endowed with the resulting smooth structure is diffeomorphic to the standard one.

Remark 2.37 (For the interested student: exotic smooth structures). As the previous exercise shows, the interesting question for Rm,
and as a matter of fact for any topological space M, is:

how many non-diffeomorphic smooth structures does a topological space M admit?

Even for M = Rm this is a highly non-trivial question, despite the fact that the answer is deceivingly simple: each of the spaces Rm

with m 6= 4 admits only one such smooth structure, while R4 admits an infinite number of them (called ”exotic” smooth structures on
R4)!

Exercise 2.38. Show that if M is a smooth manifold with the property that its smooth structure can be induced
by an atlas consisting of only one chart, then M is diffeomorphic to an open subset Ω ⊂ Rm (endowed with the
standard smooth structure- cf. Example 2.19).

With the notion of diffeomorphism at hand, and the fact that opens inside manifolds are automatically manifolds
(as discussed in Example 2.19), one can now make sense of a smooth map f : M→N being a local diffeomorphism
around a point p ∈ M: there are open neighborhoods U of p in M, and V of f (p) in N, such that f restricts to a
diffeomorphism f |U : U →V .
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Exercise 2.39. First, convince yourself that the map

exp : R→ S1, t 7→ eit = (cos t,sin t)

is a local homeomorphism around any point. Put now a smooth structure on S1 such that exp is a local diffeo-
morphism. Can you find more than one? Compare it with the smooth structure you found when doing Exercise
2.20.

Finally, we export the notion of immersion and submersion form Euclidean spaces to the general setting; the
definition below is not the best one, but has the advantage that it can be given right away, before discussing tangent
spaces (however, we will return to it later on- see Proposition 3.11).

Definition 2.40. Let f : M→ N be a smooth map between two manifolds. We say that f is an immersion/-
submersion at p if its local representations f χ ′

χ is an immersion/submersion at χ(p) (in the usual sense from
Analysis) for any chart χ of M around p and χ ′ of N around f (p).

We say that f is an immersion/submersion if it is one at all p ∈M.

Fig. 2.5 Intuitively, an immersion at p is a map that locally around p does not crush the domain together, or in other words: wiggling
p infinitesimally always corresponds to (first-order) movement of f (p). Consider the map π : R→ R3 from the rotating ribbon R on
the left that projects each point down to its shadow. It is an immersion at all points with x < x0, but fails to be one as soon as the ribbon
becoms exactly vertical for all x≥ x0. A submersion at p is a map such that small wiggling away from p corresponds to movement of
f (p) in all directions in the codomain. Take the map h : T 2→ R on the right that assigns to every point of the torus its height. At the
marked point, it fails to be a submersion as any wiggling about p is horizontal, not changing the height to first order. Can you identify
all the points where h is a submersion?

Exercise 2.41. Show that, in the previous definition, it is enough to check the required condition for (single!) one
chart χ of M around p and one chart χ ′ of M′ around f (p).

Remark 2.42. Another definition/characterisation of the immersion and submersion conditions which does not
make use of charts will be possible once we discuss that notion of tangent spaces. That will provide another
proof of, and actually extra-insight into, the previous exercise.

From the submersion and immersion theorems on Euclidean spaces, i.e. Theorem 1.32 and Theorem 1.33 from
the previous chapter, we immediately deduce:

Theorem 2.43 (the submersion theorem). If f : M → N is a smooth map between two manifolds which is a

submersion at a point p ∈M, then there exist charts χ of M around p and χ ′ of N around f (p) such that f χ
′

χ =

χ
′ ◦ f ◦χ−1 is given by

f χ
′

χ (x1, . . . ,xn,xn+1, . . . ,xm) = (x1, . . . ,xn).
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Theorem 2.44 (the immersion theorem). If f : M → N is a smooth map between two manifolds which is an

immersion at a point p ∈ M, then there exist charts χ of M around p and χ ′ of N around f (p) such that f χ
′

χ =

χ
′ ◦ f ◦χ−1 is given by

f χ
′

χ (x1, . . . ,xm) = (x1, . . . ,xm,0, . . . ,0).

Moreover, the charts χ : U →Ω ⊂ Rm and χ ′ : U ′→Ω ′ ⊂ Rn can be chosen so that

f (U) = {q ∈U
′
: χ
′
m+1(q) = . . .= χ

′
n(q) = 0}.

Combining also with the inverse function theorem we deduce:

Lemma 2.45. Consider a smooth function f : M→ N, p ∈M. Then the following are equivalent:

(1) f is a local diffeomorphism around p.
(2) f is both a submersion as well as an immersion at p.
(3) f is a submersion at p and dim(M) = dim(N).
(4) f is an immersion at p and dim(M) = dim(N).

Moreover, f is a diffeommorphism if and only if it is a local diffeomorphism as well as a bijection.

Proof. The equivalence between (2), (3) and (4) is immediate from linear algebra: for a linear map A : V →W
between two finite dimensional vector spaces, looking at the conditions: A is injective, A is surjective, dim(V ) =
dim(W ), any two implies the third. Since these actually imply that A is an isomorphism, making use also of the
inverse function theorem, we obtain the equivalence with (1) as well.

The last part should be clear (otherwise should be treated as an easy exercise!).

Exercise 2.46. Consider S1 endowed with the smooth structure previously discussed (e.g. in Exercise 2.20) and R
endowed with it canonical smooth structure. Prove that there are no submersions or immersions f : S1→ R.

Then try to find a generalisation.

Exercise 2.47. Let M and N be two smooth manifolds, consider their product (with the product smooth structure
as in Exercise 2.22). Show that the two projection maps

prM : M×N→M, prN : M×N→ N

are submersions.

Exercise 2.48. Let M be a manifold and consider the product M×M (with the product smooth structure as in
Exercise 2.22). Show that the diagonal inclusion

∆ : M −→M×M, ∆(x) = (x,x)

is an immersion.

Next we move to actions of groups Γ on manifolds M

Γ ×M→M, (γ,x) 7→ φγ(x) = γ · x;

we will only be interested in. smooth actions in the sense that for any γ ∈ Γ , the corresponding action map
φγ : M→M is smooth. Recall also that the action is said to be free is γ ·x = x is possible only when γ is the unit of
Γ .

Exercise 2.49. Consider a smooth and free action of a finite group Γ on a manifold M. Show that M/Γ carries
an induced smooth structure, uniquely determined by the condition that the quotient map M→ M/Γ becomes a
submersion.
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Finally, let us point out the following immediate consequence of the discussion from subsection 1.2.6, namely
the description of embedded submanifolds of Rn via equations 2. Its usefulness can hardly be overestimated and a
more general version will be presented a bit later, in Theorem 2.77.

Corollary 2.50 (the regular value theorem in Rn). Assume that M ⊂ Rn can be written as the zero-set of a
smooth map f : Ω →Rk defined on an open subset Ω ⊂Rn and assume that f is a submersion at each point
p ∈M. Then M is an m = n− k dimensional embedded submanifold of Rn.

Exercise 2.51. Apply this to obtain the spheres Sm.

Here are two more exercises that can be obtained by applying the previous corollary.

Exercise 2.52. Show that
M = {(x,y,z) ∈ R3 : x3 + y3 + z3−3xyz = 1}

is a 2-dimensional embedded submanifold of R3.

Exercise 2.53. Denote by Mm(R) the set of m×m matrices with real coefficients, and let O(m) be the subset
consisting of orthonormal matrices

O(m) = {A ∈Mm(R) : A ·AT = Im.}

Identifying Mm(R) with Rm2
, show that O(m) is a submanifold of dimension m(m−1)

2 .

2.3 Examples

2.3.1 The spheres Sm

The first example in our list are the m-dimensional spheres

Sm := {(x0, . . . ,xm) ∈ Rm+1 : (x0)
2 +(x1)

2 + . . .+(xm)
2 = 1}.

Of course, this example fits into the general discussion of embedded submanifolds of Euclidean spaces mentioned
already in Example 2.18. However, it is one of the many examples which are instructive to consider separately,
even as abstract manifolds, and notice their rather special properties.

First of all, as with any subspace of a Euclidean space, we endow it with the Euclidean topology: opens are
intersections of Sm with opens in Rm+1. In this way, Sm is a Hausdorff, second countable space (... even compact).

Intuitively it should be clear that, locally, Sm looks like (opens inside) Rm- and that is something that we use
everyday (we do live on some sort of sphere, remember?). For instance, drawing small disks on the sphere and
projecting them on planes through the origin, one can easily build charts. For instance, the upper hemisphere

U+
0 = {(x0, . . . ,xm) ∈ Sm : x0 > 0}

(not even so small!) and the projection into the horizontal plane {0}×Rm ⊂ Rm+1 gives rise to

χ
+
0 : U+

0 → Rm, χ(x0, . . . ,xm) = (x1, . . . ,xm).

Considering the similar charts with x0 < 0 or using the other coordinates, and putting them all together, we get a
smooth atlas

2 to be moved to the first chapter
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(U+
0 ,χ+

0 ), (U−0 ,χ−0 ), . . . , (U+
m ,χ+

m ), (U−m ,χ−m ) (2.3.1)

defining a ”natural” smooth structure on Sm, called the standard smooth structure on Sm.
One can actually use the intuition to build similar charts and atlases; however, if you really follow your intuition,

you will obtain the same smooth structure (and therefore the name ”natural”). Here is an example of another smooth
atlas on the sphere (... describing the same smooth structure). It is probably the most elegant one; at least it uses the
least amount of charts: two. These are the so-called stereographic projections w.r.t. the north and the south poles,

pN = (0, . . . ,0,1), pS = (0, . . . ,0,−1) ∈ Sm,

respectively. The one w.r.t. to pN is the map

χN : Sm \{pN}→ Rm

which associates to a point p∈ Sn the intersection of the line pN p with the horizontal hyperplane (see Figure 2.3.1).

p

p

N

S

 The stereographic projection (sending the red points to the blue ones)

p

f(p)

Fig. 2.6

Computing the intersections, we find the precise formula:

χN : Sm \{pN}→ Rn, χN(x0,x1, . . . ,xm) =

(
x0

1− xm
, . . . ,

xm−1

1− xm

)
(while for χS we find a similar formula, but with +s instead of the −s). Reversing the process (i.e. computing its
inverse), we find

χ
−1
N : Rm→ Sm \{pN}, χ

−1
N (u1, . . . ,um) =

(
2u1

|u|2 +1
, . . . ,

2um

|u|2 +1
,
|u|2−1
|u|2 +1

)
and we deduce that χN is a homeomorphism. And similarly for χS. Computing the change of coordinates between
the two charts we find

χS ◦χ
−1
N : Rm \{0}→ Rm \{0}, χS ◦χ

−1
N (u) =

u
|u|2

.

This is clearly smooth, composed with itself is the identity, therefore it is a diffeomorphism (... therefore also
solving Exercise 1.58 from Chapter 1). We deduce that the two charts

(Sm \{pN},χN), (Sm \{pS},χS) (2.3.2)

define a smooth m-dimensional atlas on Sm.

Exercise 2.54. Show that the stereographic projections give rise to the standard smooth structure on Sm. Or, more
precisely, show that the smooth atlas (2.3.2) induces the same smooth structure as (2.3.1).

Exercise 2.55. Consider the height function

f : S2→ R, f (x,y,z) = z.
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At which points in the sphere does f fail to be a submersion?

Remark 2.56 (For the curious students: exotic spheres). As for the Euclidean spaces, it becomes very interesting (and exciting!) when
we ask about the existence of other smooth structures on Sm (endowed with the Euclidian topology). Of course, for the reasons we
explained, we only look at non-diffeomorphic smooth structures. Again, the answers are deceivingly simple (and the proofs highly
non-trivial):

• except for the exceptional case m = 4 (see below), for m≤ 6 the standard smooth structure on Sm is the only one we can find (up to
diffeomorphisms).

• S7 admits precisely 28 (!?!) non-diffeomorphic smooth structures.
• S8 admits precisely 2.
• . . .
• and S11 admits 992, while S12 only one!
• and S31 more than 16 million, while S61 only one (and actually, next to the case Sm with m ≤ 6, S61 is the only odd-dimensional

sphere that admits only one smooth structure).
• . . .

Moreover, some of the exotic (i.e. non-diffeomorphic to the standard) spheres can be described rather simply. For instance, fixing
ε > 0 small enough, inside the small sphere of radius ε , S9

ε ⊂ C5,

Wk := {(z1,z2,z3,z4,z5) ∈ S9
ε : z6k−1

1 + z3
2 + z2

3 + z2
4 + z2

5 = 0} ⊂ C5 ∼= R10

(one for each integer k≥ 1) are all homeomorphic to S7, they are all endowed with smooth structures induced from the standard (!) one
on R10, but the first 28 of them are each two non-diffeomorphic (and after that they start repeating). In this way one obtains a rather
explicit description of all the 28 smooth structures on S7.

While the number of smooth structures on Sm is well understood for m 6= 4, the case of S4 remains a mystery: is there just one
smooth structure? Is there a finite number of them (and how many?)? Or there is actually an infinite number of them? The smooth
Poincare conjecture says that there is only one; however, nowadays it is believed that the conjecture is false.

2.3.2 The projective spaces Pm

Probably the simplest example of a smooth manifold that does not sit naturally inside a Euclidean space (therefore
for which the abstract notion of manifold is even more appropriate) is the m-dimensional projective space Pm.
Recall that it consists of all lines through the origin in Rm+1:

Pm = {l ⊂ Rm+1 : l−one dimensional vector subspace}.

Remark 2.57. As you have seen in the course on Topology (but we recall below), it comes with a natural topology.
This topology can be described in several ways. The bottom line is that each point x ∈ Rm+1 \{0} defines a line:
the one through x and the origin:

lx = Rx = {λx : λ ∈ R} ⊂ Rm+1;

and each line arises in this way. More formally, we have a natural surjective map

π : Rm+1 \{0}→ Pm, x 7→ lx,

and then we can endow Pm with the induced quotient topology: the smallest one which makes π into a continuous
map. Explicitly, a subset U of Pm is open if and only if π−1(U) is open in Rm+1 (think on a picture!).

Noticing that two different points x,y define the same line if and only if x = λy for some λ ∈ R∗, we see that
we are in the situation of group actions: the multiplicative group R∗ acts on Rm+1 \ {0} and Pm is the resulting
quotient

Pm =
(
Rm+1 \{0}

)
/R∗,

endowed with the quotient topology. And one can do a bit better by making use of the fact that each line intersects
the unit sphere, i.e. can be written as lx with x ∈ Sm. The restriction of π defines a surjection
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H : Sm→ Pm

which is continuous (or, if we did not define the smooth structure on Pm yet, can be used to define it again as a
quotient topology). This ”improvement” shows in particular that Pm is compact (as the image of a compact by a
continuous map).

Moreover, since lx = ly with x,y ∈ Sm happens only when y = ±x, we see that we deal with an action of Z2 on
Sm and

Pm = Sm/Z2.

As a quotient of a Hausdorff space modulo an action of a finite group, Pm is Hausdorff (however, that should
be clear to you right away!). (Furthermore, one could now just use Exercise 2.49 to obtain a smooth structure;
however, we will make the smooth structure more explicit.) �

From now on we will use the more standard notation

[x0 : x1 : . . . : xm]

to represent that elements of Pm (hence [x] is the line through x). The notation [·] may remind you that we may
think of a line as equivalence classes, while the use of : in the notation should suggest ”division”. Keep in mind
that

[x0 : x1 : . . . : xm] = [λ · x0 : λ · x1 : . . . : λ · xm]

with λ ∈ R∗, are the only type of identities that we have in Pm.
The natural smooth structure is obtained by starting from a simple observation: the last equality allows us in

principle to make the first coordinate equal to 1:

[x0 : x1 : . . . : xm] =

[
1 :

x1

x0
: . . . :

xm

x0

]
,

i.e. to use just coordinates from Rm; with one little problem- when x0 = 0 (this ”little problem” is what forces us
to use more than one chart). We arrive at a very natural chart for Pm: with domain

U0 = {[x0 : x1 : . . . : xm] ∈ Pm : x0 6= 0}

and defined as

χ
0 : U0→ Rm, χ

0([x0 : x1 : . . . : xm]) =

(
x1

x0
, . . . ,

xm

x0

)
.

And similarly when trying to make the other coordinates equal to 1:

χ
i : Ui→ Rm, χ

0([x0 : x1 : . . . : xm]) =

(
x0

xi
, . . . ,

xi−1

xi
,

xi+1

xi
, . . . ,

xm

xi

)
,

defined on Ui defined by xi 6= 0.

Exercise 2.58. Show that, indeed,
(U0,χ

0),(U1,χ
1), . . . ,(Um,χ

m),

is a smooth atlas (hence it gives rise to a smooth structure on Pm).

The following exercise show that, when m = 1, P1 is not really new: it is diffeomorphic to the circle S1 ⊂ R2.

Exercise 2.59. Consider the function

f : P1→ S1, f ([x : y]) =
(

x2− y2

x2 + y2 ,
2xy

x2 + y2

)
and do the following:
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1. show that f is well-defined and smooth.
2. show hat f is actually a diffeomorphism.
3. after identifying P1 with S1 using f , what does the map H : S1→ P1 become?
4. explain f with a picture.

Exercise 2.60. Let f : P2→ R4 be the function given by

f ([x : y : z]) = (xy, yz, zx, y2− z2) for (x,y,z) ∈ S2.

Please do the following:

1. check that f is well-defined and write the general formula for f (not only for (x,y,z) in the sphere).
2. compute the representation of f with respect to the charts χ i of P2 (and the identity chart for R4).
3. show that f is an immersion.
4. show that, composing with the projection R4→ R3 on the first three coordinates, the resulting map

pr◦ f : P2→ R3

is an immersion everywhere except for 6 points.

Note that the image of the last map is

R :=
{
(X ,Y,Z) ∈ R3 : |X |, |Y |, |Z| ≤ 1

2
, (XY )2 +(Y Z)2 +(ZX)2 = XY Z,

}
,

know as ”the Roman surface”, or the ”Steiner surface” (discovered by Steiner in Rome in 1844, according to
Wikipedia). Finding actual immersions of P2 into R3 is quite a bit more difficult but also very interesting, and
gives rise to Boy’s surface in R3 (ok, I let you search for this one ...).

Exercise 2.61. Show that the smooth structure on Pm discussed here makes the canonical map

H : Sm→ Pm, H(x0, . . . ,xm) = [x0 : . . . : xm]

into a submersion.

Exercise 2.62. As a continuation of the previous exercise: show that it is the unique smooth structure on Pm for
which H is a submersion.

Remark 2.63 (For the interested students: minimal number of charts). Note that this smooth structure on Pm is also a first example in
which, at least intuitively, we need many more than just two charts to form an atlas. The question, valid for any manifold M, asking
what is the minimal number of charts one needs to obtain an atlas of M, is a very interesting one. In general one can show that one
can always find an atlas consisting of no more than m+1 charts where m is the dimension of M (not very deep, but not trivial either!).
Therefore, denoting by N0(M) the minimal number of charts that we can find, one always has N0(M)≤ dim(M)+1. The atlas described
above confirms this inequality for Pm. However, in concrete examples, we can always do better. E.g. we have seen that N0(Sm) = 2
(well, why can’t it be 1?). The same holds for all compact orientable surfaces. Thinking a bit (but not too long) about Pm one may
expect that N0(Pm) = m+1; however, that is not the case. The precise computation was carried out by M. Hopkins, except for the cases
n = 31 and n = 47. For those cases we know that N0(P31) is either 3 or 4, while N0(P46) is either 5 or 6. For all the other cases, writing
m = 2ka−1 with a odd, one has

N0(Pm) =

{
max{2,a} if k ∈ {1,2,3}
the least integer≥ m+1

2(k+1) otherwise
�

2.3.3 The complex projective spaces CPm

Returning to the basics, note that there is a complex analogue of Pm; for that reason Pm is sometimes denoted RPm

and called the real projective space. The m-dimensional complex projective space CPm is defined completely
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analogously but using complex lines lz ⊂Cm+1, i.e. 1-dimensional complex subspaces of Cm+1 (and 1-dimensional
is in the complex sense). Again, one can write

CPm =
{
[z0 : z1 : . . . : zm] : (z0,z1, . . . ,zm) ∈ Cm+1 \{0}

}
where [z0 : z1 : . . . : zm] is just a notation for the line through the origin and the point z = (z0, . . . ,zm)∈Cm+1. Hence

[z0 : z1 : . . . : zm] = [λ · z0 : λ · z1 : . . . : λ · zm] for λ ∈ C∗.

Analogously to the real case, one can realize

CPm =
(
Cm+1 \{0}

)
/C∗.

Using R2m = Cm we can also represent the (2m+1)-dimensional sphere as:

S2m+1 = {(z0, . . . ,zm) ∈ Cm+1 : |z0|2 + . . .+ |zm|2 = 1}

and there is an obvious map

H : S2m+1→ CPm, H(z0, . . . ,zm) = [z0 : . . . : zm].

Intersecting the (complex) lines with this sphere we can realize each line as as [z] with z ∈ S2m+1; two like this,
[z1] and [z2], are equivalent if and only if z2 = λ · z1, where this time λ ∈ S1; i.e. the group Z2 from the real case is
replaced by the group S1 of complex numbers of norm 1 (endowed with the usual multiplication). We obtain

CPm = S2m+1/S1.

As for the smooth structure one proceeds completely analogously, keeping in mind the identification Cm =R2m:
we get a (smooth) atlas made of m+1 charts.

A = {(U0,χ
0), . . . ,(Um,χ

m)}

given by
Ui = {[z0 : z1 : . . . : zm] ∈ CPm : zi 6= 0},

χ
i : Ui→ Cm = R2m,

χ
i([z0 : z1 : . . . : zm]) = (

z0

zi
, . . . ,

zi−1

zi
,

zi+1

zi
, . . . ,

zm

zi
).

Remark 2.64 (For the interested students: minimal number of charts for CPm). Note that the change of coordinates is actually given
by holomorphic maps- therefore CPm is also a complex manifold (see Section 2.1.4). Note that m is the complex dimension of CPm;
as a manifold, it is 2m-dimensional. As a curiosity: for the minimal number of charts needed to cover CPm, the answer is much simpler
in the complex case:

N0(CPm) =

{
m+1 if m is even
m+1

2 if m is odd
. �

Similar to Exercise 2.59, the following exercise show that, when m= 1, CP1 is not really new: it is diffeomorphic
to the 2-sphere. This will be discussed together with the map

H : S3→ CP1, H(z0,z1) = [z0 : z1].

The notation H (and h for the map in the next exercise) are related to the name of Hopf (... fibration).

Exercise 2.65. Consider the map

h : S3→ S2, h(z0,z1) := (|z0|2−|z1|2,2i · z0 · z1)

or, using real coordinates, h sends (x,y,z, t)≡ (x+ i · y,z+ i · t) to
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h(x,y,z, t) = (x2 + y2− z2− t2,2(yz− xt),2(xz+ yt)).

Show that:

1. h is well defined and it is a smooth submersion.
2. H is a smooth submersion.
3. There exists and is unique a map Φ : CP1→ S2 such that h = Φ ◦H i.e. a commutative diagram:

S3

H

}}
h

��
CP1

Φ

// S2

.

4. Φ is smooth.
5. Φ is actually a diffeomorphism.

Exercise 2.66. Returning to arbitrary dimensions and the canonical map H : S2m+1 → CPm then, as in Exercise
2.61, show that the smooth structure on CPm discussed here is uniquely determined by the condition that the
projection H becomes a submersion. Try to further generalize, and eventually deduce something about smooth
structures on quotients of smooth manifolds.

2.3.4 The torus T 2

We now concentrate now on 2-dimensional manifolds (surfaces). Some of them (e.g. the 2-sphere and the 2-torus)
sit naturally inside a Euclidean space, but they are interesting on their own. And some other (e.g. the projective
plane or the Klein bottle) do not even sit inside an Euclidian space that naturally. Therefore, it is interesting to free
our mind and to think of them as abstract manifolds.

a a aa

b

b

b

a

b

Fig. 2.7

We start with ”the torus”- which is the standard name for subspaces of R3 which look like the surface of
a doughnut; we use it generically for any manifold that is diffeomorphic to such a doughnut surface (or just
homeomorphic, if you are doing Topology ...). There are several ways to built up tori and produce various models
for it. Probably the simplest is by a gluing process: one starts with the unit square and then one glues each pair of
opposite sides; see Figure 2.7. The same gluing process arises in a slightly more abstract disguise:

T 2 := R2/Z2,
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the quotient of the plane modulo the action of the abelian group Z2 given by translations:

(n,m) · (x,y) = φn,m(x,y) := (x+n,y+m) for (n,m) ∈ Z2, (x,y) ∈ R2.

Another way to get a torus (and obtain an explicit parametrization) is to place ourselves at the origin, perpendic-
ular on the XOY plane, grab a circle of some radius r (... smaller than the length R of your hand) by its centre (you
find a way to do that!) and then rotate around until you get back to the original position. The locus spanned by the
circle will be a torus.

O

X

Y

Z

R

r

TR, r

b

a

Fig. 2.8

To parametrise the points on the torus just remark that they are determined by the angles a and b as shown in the
picture and, computing the resulting coordinates, one obtains the parametric description:

T 2 = {((R+ r · cos a)cosb, (R+ r · cos a)sinb, r · sin a) : a,b ∈ [0,2π]} ⊂ R3.

Or, denoting the coordinates by x,y,z and eliminating a and b using sin2+cos2 = 1 one finds the implicit descrip-
tion

T 2 = {(x,y,z) ∈ R3 :
(√

x2 + y2−R
)2

+ z2 = r2}. (2.3.3)

Of course, a more appropriate notation would be T 2
R,r as these concrete models depend on r and R (but they are all

diffeomorphic).

Exercise 2.67. Use the regular value theorem in R3 (see Corollary 2.50) to show that T = T 2
R,r defined by (2.3.3)

is an embedded submanifold of R3.

But probably the shortest description of the torus is simply: S1× S1 or, in words, ”a circle of circle”! This is
indicated in Figure 2.9. There one can think of the red and blue circles as longitude and latitude lines; then through
each point on the torus there passes precisely one blue and one red circle, and we see that the point is uniquely
determined by a ”latitude coordinate” and a ”longitude coordinate” which can be measured once we fix two such
circles (playing the role of ”axes”). We see that the coordinates are now elements of the circle and, therefore, one
gets a pair (z1,z2) with z1,z2 ∈ S1× S1 as coordinates. In the explicit description above this is simply looking at
ei·a = (cos a,sin a) and ei·b = (cos b,sin b). One can now try to do the following, though the most elegant (and
with less computations) way to do it will be possible later, after we discuss tangent spaces (Exercise 2.68 to come).

Exercise 2.68. Prove that

f0 : S1×S1→ T 2, (ei·a,ei·b) 7→ ((R+ r · cos a)cos b, (R+ r · cos a)sin b, r · sin a)

is a diffeomorphism.
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Fig. 2.9

As a curiosity, note that, in principle, while the circle sits inside R2, S1×S1 sits ”naturally” inside R2×R2 =R4.
Hence the torus can be seen as a realisation of S1×S1 that sits in one dimension lower.

The torus also comes with a ”full-version”. Playing the game from Fig 2.8, one would now need to grab and
rotate a full 2-dimensional disk

D2 = {(x,y) ∈ R2 : x2 + y2 ≤ 2}.

Then one obtains a parametrization with an extra-parameter λ ∈ [0,r] (distance to the center of the disk). Or, in the
spirit of (2.3.3),

T 2
solid = {(x,y,z) ∈ R3 :

(√
x2 + y2−R

)2
+ z2 ≤ r2}.

Exercise 2.69. Show that T 2
solid is a manifold with boundary, and that it is diffeomorphic to S1×D2.

Of course, the diffeomorphism from the exercise, when restricted to the boundary, will become the diffeomor-
phism between T 2 and S1×S1 discussed above.

And here is a very nice property of the solid torus, that one sometimes states simply as: the 3-sphere can be
obtained by gluing together two solid tori along their boundary. The following exercise explains this process and
its interaction with the Hopf map from Exercise 2.65.

Exercise 2.70. Consider again the Hopf map in the explicit form

h : S3→ S2, h(x,y,z, t) = (x2 + y2− z2− t2,2(yz− xt),2(xz+ yt)).

Consider also the decomposition of S2 into the open upper and lower hemispheres,

S2
+ = {(u,v,w) ∈ S2 : u≥ 0}, S2

− = {(u,v,w) ∈ S2 : u≤ 0}

with the common intersection the circle identified with

S1 = S2
+∩S2

+ = {(u,v,w) ∈ S2 : u = 0}.

Show that:

1. each of the hemispheres are manifolds with boundary diffeomorphic to the unit disk D2.
2. the pre-image of the common circle S1 via h is homeomorphic to the torus.
3. the pre-image of the upper/lower hemisphere via h is homeomorphic to the solid torus.

Therefore, the pre-image via h of the decomposition S2 = S2
+∪S2

− becomes a decomposition of S3 into two copies
of the solid torus.

Note that we do not quite have yet the theoretical foundation to make this exercise into a ”smooth one”; but,
with the right concepts, all the homeomorphisms will become smooth (diffeomorphisms).
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2.3.5 ... and the Klein bottle, and the rest

A good friend of the torus is the so called Klein bottle, call it K. As for the torus, it can be obtained from a square
by gluing each pair of opposite sides, as shown in Figure 2.10, i.e. changing the orientation in one of the pairs.
This time, the outcome can be pictured (embedded) in dimension four or higher. Here is an explicit description of
K as a subspace of R4:

K = {((2+ cos(a))cos(b),(2+ cos(a))sin(b),sin(a)cos(b/2),sin(a)sin(b/2)) : a,b ∈ [0,2π]} . (2.3.4)

Fig. 2.10 Construction of the Klein bottle by gluing: Take a rectangle and glue the sides b together to get a cylinder. Then twist one
end around so that the remaining a sides can be glued together in opposite orientation from what we would do to get a torus. Note
that when visualizing this in R3, we are forced to create a self intersection when pulling the a sides close, but this does not affect the
abstract topological gluing procedure.

Exercise 2.71. Explain why this subspace of R4 can be interpreted as the result of the gluing from Fig. 2.10.

Here is yet another description which shows that the Klein bottle is to the torus what the projective space is to
the sphere: a quotient which is obtained by gluing ”antipodal points”. To see this, we go back to the square used
to obtain the Klein bottle. Since the gluing is so problematic, let us mirror the square as in the picture; to get the
Klein bottle we would first have to fold the longer square back (a gluing process itself) and perform the original
gluing. However, in the longer square, the gluing that of the opposite side (which was problematic at the beginning)
disappears: we can perform it and we get precisely the torus! However, to get the Klein bottle we see we have to
keep on going and finish gluing the rest. Inspecting the picture, it will eventually be clear that what we still have
to do is to glue points in the torus which are ”antipodal” (reflections of each other with respect to the origin). This
can be further interpreted as a quotient of the torus modulo a Z2-action, similar to P2 = S2/Z2:

K = T/Z2.

Realising the torus as T = S1× S1, the action of Z2 is simply given by (z1,z2) 7→ (−z1,−z2). While part of this
discussion is purely topological and ”hand waving”, the last description we achieved is precise and makes sense in
the realm of smooth manifolds. Actually, one can now apply Exercise 2.49 right away and make K into a smooth
manifold.

Of course, the spaces that we have mentioned here: the torus, the Klein bottle, the 2-sphere S2 and the projective
plane P2, they are all examples of surfaces or, in our language, of 2-dimensional manifolds. One may remember
from other courses (Meetkunde een Topologie?) that, at least topologically, surfaces are classified into:

• orientable ones: the sphere S2, the torus T and then, for each g, the torus with g-wholes Tg (g-times connected
sum of T with itself).

• non-orientable ones: the projective plane P2 and, similar to Tg, the spaces Ph obtained as the connected sum of
h copies of P2.

Exercise 2.72. Starting from the definition of the Klein bottle as T/Z2 with the smooth structure coming from
Exercise 2.49, describe an embedding into R4 (and prove that it is embedding) whose image is (2.3.4).
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The same classification result holds also in the smooth context. But, before that, one has to make sense of all
these spaces as smooth manifolds. And that can be done using some basic very general operations with manifolds:

• Manifolds with boundary (subsection 2.1.4), N1 and N2, if they have the same boundary, they can be glued along
their boundary producing a new manifold,

N1∪∂ N2,

now a manifold without boundary!
• Given an m-dimensional manifold without boundary M, after removing a small open ball (in a coordinate chart)

one obtains a manifold with boundary; let us denote it M◦ and call it ”cut-M”. It boundary is just Sm−1. Hence,
if we have two m-dimensional manifolds M1 and M2 and we consider their cuts, we can just apply the gluing
from the previous point. Hence one gets a new m-dimensional manifold,

M1]M2 := M◦1 ∪Sm−1 M◦2 ,

called the connected sum of M1 and M2.

To do all of this in detail and properly (e.g. to see that the connected sum does not depend on how we remove the
balls) requires a bit of work which goes beyond the scope of this course. But the intuition should be clear. And it
can be applied right away: in this way all the surfaces

Tg = T ] . . . ]T︸ ︷︷ ︸
g times

and
Ph = P2] . . . ]P2︸ ︷︷ ︸

h times

glue the

circles
Cut a small
disk from 
each tori

Fig. 2.11

become smooth manifolds. Furthermore, various constructions that you may have seen already in Topology,
makes sense in the context of smooth manifolds. For instance the fact that the projective space P2 can be described
as obtained by gluing a disk D2 to the Moebius band:

P2 = Moebius∪∂ D2.

In turn, this property can be read a bit differently: the cut projective space (i.e. after removing a ball) is the Moebius
band. Therefore, for any 2-dimensional manifold M, the operation of taking the connected sum with P2,

P2]M

means: remove a ball from M and, along the boundary circle, glue back a Moebius band.
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Exercise 2.73. You should convince yourself now that the Klein bottle can also be described as

K = P2]P2.

2.4 Submanifolds

2.4.1 Embedded submanifolds; the regular value theorem

The characterization of embedded submanifolds of Euclidean spaces in terms of adapted charts (Proposition 1.37
in subsection 1.2.6) allows us to proceed more generally and talk about embedded submanifolds M of an arbitrary
manifold N. Indeed, the notion of adapted chart that appears in Proposition 1.37 has an obvious generalization to
this context:

Definition 2.74. Given an n-dimensional manifold N and a subset M ⊂ N, we say that M is an embedded
m-dimensional submanifold of N if for any p ∈M, there exists a chart

χ̃ : Ũ → Ω̃ ⊂ Rn

for N around p with the property that

Ũ ∩M = {p ∈ Ũ : χ̃m+1(p) = . . .= χ̃n(p) = 0} (2.4.1)

or, equivalently,
χ̃(Ũ ∩M) = Ω̃ ∩ (Rm×{0}).

A chart (Ũ , χ̃) of N satisfying this equality is called chart of N adapted to M.

Fig. 2.12 Two examples of charts χ̃ : Ũ → Ω̃ of an ambient manifold N adapted to an embedded submanifold M. The dimensions of
the manifolds M,N are (1,2) on the left hand side, and (2,3) on the right hand side. Can you draw a picture for dimensions (1,3)?

For any such chart one can talk about the restriction of the adapted chart to M and denoted

χ̃|M : U →Ω .
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Its domain is U := Ũ ∩M, its codomain is

Ω := Ω̃ ∩ (Rm×{0}),

interpreted as an (open) subset of Rm. With these we obtain an induced smooth structure on M.

Exercise 2.75. Check that, indeed, the collection of all charts of type χ̃|M obtained from charts χ̃ of N that are
adapted to M, define a smooth structure on M.

Exercise 2.76. Assume that M ⊂ N is an embedded submanifold and let P be another manifold. Show that:

1. a function f : P→M is smooth if and only if it is smooth as an N-valued function.
2. if a function f : M→ P admits a smooth extension to N, then f is smooth.
3. if M is closed in N, than the previous statement holds with ”if and only if”.

(Hint for the last point: use partitions of unity for N and don’t forget that N \M is already open in N).

The regular value theorem presented as Corollary 2.50 can now be generalized from Euclidean spaces to more
general manifolds. The setting is as follows: we are looking at a smooth map

f : M→ N

and we are interested in its fiber above a point q ∈ N:

F = f−1(q), (with q ∈ N).

The condition that we need here is that q is a regular value of f in the sense that f is a submersion at all points
p ∈ f−1(q).

Theorem 2.77 (the regular value theorem). If q ∈ N is a regular value of a smooth map

f : M→ N,

then the fiber above q, f−1(q), is an embedded submanifold of M of dimension

dim( f−1(q)) = dim(M)−dim(N).

Proof. In principle, this is just another face of the submersion theorem. Let d = m− n, where m and n are the
dimension of M and N, respectively. We check the submanifold condition around an arbitrary point p∈F = f−1(q).
For that we apply the submersion theorem to f near p to find charts χ : U → Ω and χ ′ : U ′→ Ω ′ of M around p
and of N around f (p), respectively, such that f (U)⊂U ′ and

f χ ′
χ (x) = (x1, . . . ,xn) for all x ∈Ω .

After changing χ and χ ′ by a translation, we may assume that χ(p) = 0 and χ ′(q) = 0. We claim that, up to a
reindexing of the coordinates, χ is a chart of M adapted to F . Indeed, we have

χ(U ∩F) = {χ(p′) : p′ ∈U, f (p′) = q}= {x ∈Ω : f χ ′
χ (x) = 0},

or, using the form of f χ ′
χ ,

χ(U ∩F) = {x = (x1, . . . ,xm) ∈Ω : x1 = . . .= xn = 0},

proving that F is an m−n-dimensional embedded submanifold of M.
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The notion of embedded submanifold allows us to introduce the smooth version of the notion of topological
embedding. Recall that a map f : M → N between two topological spaces is a topological embedding if it is
injective and, as a map from M to f (M) (where the second space is now endowed with the topology induced from
N), is a homeomorphism. The difference between the topological and the smooth case is that, while subspaces
of a topological space inherit a natural induced topology, for smooth structures we need to restrict to embedded
submanifolds.

Definition 2.78. A smooth map f : M→ N between two manifolds M and N is called a smooth embedding
if:

1. f (M) is an embedded submanifold of N.
2. as a map from M to f (M), f is a diffeomorphism.

Here is an useful criterion for smooth embeddings.

Theorem 2.79. A map f : M→ N between two manifolds is a smooth embedding if and only if it is both an
immersion as well as a topological embedding.

Proof. The direct implication should be clear, so we concentrate on the converse. We first show that f (M) is an
embedded submanifold. We check the required condition at an arbitrary point q = f (p) ∈ N, with p ∈M. For that
use the immersion theorem (Theorem 2.44) around p; we consider the resulting charts χ : U → Ω ⊂ Rm for M
around p and χ̃ : Ũ → Ω̃ ⊂ Rn for N around q; in particular,

f (U) = {q ∈ Ũ : χ̃m+1(q) = . . .= χ̃n(q) = 0}.

Since f is a topological embedding, f (U) will be open in f (M), i.e. of type

f (U) = f (M)∩W

for some open neighborhood W of q ∈ N. It should be clear now that Û := Ũ ∩W and χ̂ := χ̃|Û defines a chart for
N adapted to M.

We still have to show that, as a map f : M → f (M), f is a diffeomorphism (where f (M) is with the smooth
structure induced from N). It should be clear that this map continues to be an immersion. Since M and f (M) have
the same dimension, it follows from Lemma 2.45 that f : M→ f (M) is a diffeomorphism.

And here is a very useful consequence:

Corollary 2.80. Let f : M → N be a smooth map between two manifolds M and N, with the domain M being
compact. Then f is a smooth embedding if and only if it is an injective immersion.

Proof. Use one of the main properties of compact spaces: injective maps from compacts to Hausdorff spaces are
automatically topological embeddings!

Exercise 2.81. Show that the map from Exercise 2.60 is an embedding of P2 in R4.

Recall that, while S1× S1 naturally embeds in R2×R2 = R4, the interpretation of S1× S1 as a torus provides
an even better embedding: inside R3. In the following you are asked to show that this can be propagated to higher
dimensional tori. Here we use products of manifolds as discussed in Exercise 2.22
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Exercise 2.82. Show that the n-dimensional torus,

T n := S1× . . .×S1︸ ︷︷ ︸
n times

(sitting canonically inside R2n) can actually be embedded inside Rn+1.

Exercise 2.83. With the same notations as in Exercise 2.65, show that each fiber of the Hopf map h : S3→ S2 is an
embedded submanifold of S3 which is diffeomorphic to a circle.

Exercise 2.84. Consider the height function f : T → R on the torus as indicated in Fig 2.13. At which points does
f fail to be a submersion?

Fig. 2.13

Exercise 2.85. Let M be a smooth m-dimensional manifold and let

f : M −→ R

be a smooth function. For λ ∈ R define

Mλ = f−1(λ ), M≤λ := {p ∈M : f (p)≤ λ}.

Assume that λ is a regular value of f (so that, by the regular value theorem, Mλ is an (m−1)-dimensional manifold.
Prove that M≤λ is an m-dimensional manifold with boundary (see subsection 2.1.4), with

∂M≤λ = Mλ .

How many manifolds do you obtain in this way for the height function from the previous exercise?

Exercise 2.86 (part of the 2019/2020 exam). Consider

f : S3→ R, f (x,y,z, t) = x2 + y2− z2− t2.

(a) show that the zero-set M0 := f−1(0) is an embedded submanifold of S3.
(b) show that M0 is diffeomorphic to the 2-torus.
(c) find all the points at which f is a submersion.
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Exercise 2.87 (part of an exam from 2018; and you may want to skip (b) for now). Consider

M4 := {(x,y,z) ∈ R3 : x4 + y4 + z4 = 1} ⊂ R3,

and the map from M4 to the 2-sphere S2 given by

f : M4→ S2, f (x,y,z) = (x2,y2,z2)

(a) Show that M4 is a submanifold of R3 and f is a smooth map.
(b) Compute the tangent space of M4 at the point p = ( 1

4√2
, 1

4√2
,0); more precisely, show that it is spanned by(

∂

∂x

)
p
−
(

∂

∂y

)
p

and
(

∂

∂ z

)
p
∈ TpM4.

Similarly at the point q = ( 1
4√3
, 1

4√3
, 1

4√3
).

(c) Show that f is not an immersion at p, but it is a local diffeomorphism around q.
(d) Show that M4 is not diffeomorphic to

M3 := {(x,y,z) ∈ R3 : x3 + y3 + z3 = 1} ⊂ R3.

but it is diffeomorphic to S2.

2.4.2 General (immersed) submanifolds

In Topology (or, if you do not like that generality, just take X = Rn) the leading principle for talking about ”a
subspace A of a space X” was to make sure that the inclusion i : A→ X was continuous, and we chose ”the best
possible topology” on A doing that- and that gave rise to the induced (subspace) topology on any subset A ⊂ X .
Looking for the analogous notion of ”subspace” in the smooth context (i.e. a notion of ”submanifold”), the first
remark is that ”inclusions” in the smooth context are expected to be immersions. Furthermore, starting with a
subset M of a manifold N, there are several possible ways to proceed:

(1) try to make the space M (endowed with the topology induced from N) into a manifold such that the inclusion
i : M ↪→ N is an immersion.

(2) forget about the induced topology on M and try to make the set M into a manifold such that the inclusion
i : M ↪→ N is an immersion.
(yes, M will have a topology underlying the smooth structure, but it does not have to be the induced one).

(3) in the previous point choose ”the best possible” manifold structure on M.

In (1), insisting that M has the endowed topology means that i : M ↪→ N is also an embedding (next to being an
immersion) means that we are in the setting of Theorem 2.79. In other words, the previous section implemented
precisely (1); gave rise to the notion of embedded submanifold.

The second possibility (i.e. item (2) above) gives rise to the notion of immersed submanifold.

Definition 2.88. Given a manifold N, an immersed submanifold of N is a subset M ⊂ N together with a
structure of smooth manifold on M, such that the inclusion i : M→ N is an immersion.

We emphasize: an immersed submanifold is not just the subset M ⊂ N, but also the auxiliary data of a smooth
structure on M (and, as the next exercise shows, given M, there may be several different smooth structures on M
that make it into an immersed submanifold). Moreover, the required smooth structure on M induces, in particular,
a topology on M; but we insist: this topology does not have to coincide with the one induced from N!
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Exercise 2.89. Consider the figure eight in the plane M =R2. Show that it is not an embedded submanifold of R2,
but it has at least two different smooth structures that make it into an immersed submanifold of R2.

Immersed submanifolds may look a bit strange/pathological, but they do arise naturally and one does have to
deal with them. In general, any injective immersion

f : M→ N

gives rise to such an immersed submanifold: f (M) together with the smooth structure obtained by transporting the
smooth structure from M via the bijection f : M→ f (M) (i.e. the charts of f (M) are those of type χ ◦ f−1 with χ

a chart of M). And often immersed submanifolds do arise naturally in this way.

Example 2.90. For instance, the two immersed submanifold structures on the figure eight from the preceding
exercise arise from two different injective immersions f1, f2 : R→ R2 (with the same image: the figure eight), as
indicated in the picture. Make pictures!

So: what happens for an embedded submanifold M ⊂ N? Endowed with ”the smooth structure induced from N”
(notion that only makes sense when M is embedded submanifold!) it clearly becomes an immersed submanifold.
Can it be still given another smooth structure (as in the last example)? The answer is: no! Indeed, one has the
following result which is a simplified version of Proposition 2.93 below.

Proposition 2.91. If M is an embedded submanifold of the manifold N, then the set M admits precisely one smooth
structure such that the inclusion into M becomes an immersion.

To see the difference between ”immersed” and ”embedded” one just has to stare at the meaning of ”immersions”.
If M (... together with a smooth structure on it) is an immersed submanifold of N, the immersion theorem tells us
that there exist charts (U,χ) of N around arbitrary points p ∈ M such that UM := M∩{q ∈U : χn+1(q) = . . . =
χm(q) = 0} is open in M and χM = χ|UM is a chart for M. However, when saying that ”UM is open in M”, we
are making use of the topology on M induced by the smooth structure we considered on M, and not with respect
to the topology induced from N (look again at the previous exercise!). This is the difference with the notion of
”embedded submanifold”.

Moving now to item (3), the best possible scenario would be when the subset M ⊂N has the following property:
M admits a unique smooth structure that makes it into an immersed submanifold of N. When this happens we say
that M has the unique smooth structure property. In this case there is no ambiguity what smooth structure we
put on M, M becomes an immersed submanifold, and we are looking at those immersed submanifolds that are
encoded just in the subset M ⊂ N and no extra-data prescribed beforehand. There are two remarks here:

• but, again, even in this case, the underlying topological structure need not be the induced topology from N.
• on the other hand, embedded submanifolds do have this property (this is implied by the next result).

Of course, there are other examples of submanifolds with unique smooth structure besides the embedded ones: e.g.
the ”dutch figure eight” (exercise); for one more see Example 2.94 below.

However, it turns out that there is a smaller and more interesting class of submanifolds with unique smooth
structures (and still includes the embedded submanifolds, as well as most of the other interesting examples):

Definition 2.92. An immersed submanifold M of a manifold N is called an initial submanifold if the fol-
lowing condition holds: for any other manifold P and any map f : P→ M, f is smooth if and only if it is
smooth as a map with values in N. In other words,

f is smooth⇐⇒ i◦ f is smoooth,

where i : M ↪→ N is the inclusion; here one may want to think on the diagram:

P
f //

i◦ f ��

M

i
��

N

.
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What happens is that, while this condition is easier to check than the uniques smooth structure property, one has:

Proposition 2.93. For a subset M of a manifold N one has the following:

embedded submanifold =⇒ initial submanifold =⇒ the unique smooth structure property.

Proof. Consider the inclusion i : M ↪→ N. For the first implication the main point is to show that if M is embedded
and f : P→M has the property that i◦ f : P→ N is smooth, then f is smooth. To check that f is smooth, we we
use arbitrary charts χ of P and charts χ ′ of N adapted to M; we also use χ ′M = χ ′|M . Note that

(i◦ f )χ ′
χ = f χ ′M

χ : Ω → Rm ∼= Rm×{0} ⊂ Rn,

for some open Ω ⊂ Rp. Hence it suffices to remark that if a function g : Ω → Rm is smooth as a map with values
in the larger space Rn, then it is smooth.

For the second part assume that M is initial. In particular, it comes with a smooth structure defined by some
maximal atlas A , making the inclusion into N an immersion. To prove the uniqueness property, we assume that
we have a second smooth structure with the same property, with associated maximal atlas denoted A ′. Applying
the initial condition to P = (M,A ′) with f being the inclusion into N, we find that the identity map id : (M,A

′
)→

(M,A ) is smooth. Applying the definition of smoothness, we see that any chart in A ′ must be compatible with
any chart in A . Therefore A ′ = A .

Example 2.94. When N is the 2-torus and one draws a curve in N winding around, there are two interesting cases:

• the curve closes up after a few turnings. That give a subset M0 ⊂ N.
• the curve keeps on winding around infinitely, densely inside the torus. That gives another M1 ⊂ N.

The picture shows M0. Draw a picture for M1! Note that the two types of curves are not even that far apart: any one
that closes up, if perturbed a little, will become of the second type. However, M0 and M1 are quite different:

• M0 is embedded in the torus.
• M1 is only immersed.

For the last point, there is a map which should be clear on the picture f : R→ N with image precisely M1 and
which is an immersion. Therefore making M1 into an immersed submanifold. However, we are in the better case:
M1 is an initial submanifold (... exercise!).

Exercise 2.95. In the previous example show that M0 is diffeomorphic to S1 while M1 is diffeomorphic to R.

Using arguments similar to those from Proposition 2.93 you can try the following:

Exercise 2.96. Let M be a subset of the manifold N. Then:

(i) For any topology on M, the resulting space M can be given at most one smooth structure that makes it into an
immersed submanifold of N.

(ii) If we endow M with the induced topology, then the space M can be given a smooth structure that makes it into
an immersed submanifold of N if and only if M is an embedded submanifold of N; moreover, in this case the
smooth structure on M is unique.
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2.4.3 C ∞(M), partitions of unity and embeddings in Euclidean spaces

Similar to the space (algebra) of continuous functions C (M) on a topological space M (see the reminder on Topol-
ogy, Section 1.1.8), for any manifold M one has the similar space of smooth real-valued functions

C ∞(M)⊂ C (M).

This appeared already in subsection 2.1.1 under the notation C ∞(M,A ), and in the second part of Example 2.32-
where we also briefly alluded to its importance.

The main operations on C (M) are addition, multiplication by scalars and multiplication- together making C (M)
into an algebra (cf. Definition 1.8). The first remark, although rather immediate, is important from a conceptual
point of view:

Exercise 2.97. Show that C ∞(M) is a sub-algebra of C (M), i.e. the sum of two smooth functions, the multiplica-
tion by a scalar of a smooth function, as well as products of smooth functions, they are all smooth.

Then show also that C ∞(M) is closed under locally finite sums (as discussed in subsection 1.1.9), i.e. for any
locally finite family {ηi}i∈I of real-valued smooth functions on M, ∑i ηi is again smooth.

Now we move to one of the most useful lemmas involving C ∞(M), lemma that will turn out to be useful in
several places later on.

Lemma 2.98. For any manifold M, for any p ∈ M and any open neighborhood U of p, there exists f ∈ C ∞(M)
that is supported in U and such that f (p) 6= 0.

Actually, one may arrange f so that f = 1 in a (small enough) neighborhood of p.

Proof. Given our discussion from Rm (namely the proof of Theorem 1.27), there is very little that we have to do:
we may assume that U is the domain of a coordinate chart χ : U ∼→ Rm (why?) sending p to 0 ∈ Rm, then choose
a smooth function f : Rm→ [0,1] supported in the ball B(0,1) and such that f (0) 6= 0 (as in the proof of Theorem
1.27), then move it to U via χ , i.e. consider f ◦χ : U → [0,1]; given the support property of f , it follows that if we
extend f to M by declaring it to be zero outside U , we get a smooth functions f̃ : M→ [0,1] satisfying the desired
property.

For the last part, we would need a function f on Rm as above, with the extra-property that f = 1 in a neigh-
borhood of the origin. For that, one has to slightly improve the choice of g in the proof of Theorem 1.27: choose
g : R→ R is any smooth function that is 1 when |t|< 1

3 and is 0 when t ≥ 1
2 and set f (x) = g(||x||2).

With this lemma at hand, one can now return to Exercise 2.11 and prove the result mentioned there:

Exercise 2.99. Prove the assertion made in the second part of Exercise 2.11: if A1 and A2 are two maximal smooth
atlases on M, then

C ∞(M,A1) = C ∞(M,A2)⇐⇒A1 = A2.

And here is another interesting consequence:

Exercise 2.100. Show that, for any manifold M, C ∞(M) is point separating, i.e. for any p,q ∈ M distinct, there
exists f ∈ C ∞(M) such that f (p) = 0, f (q) = 1.

The importance of Lemma 2.98 is best understood from the perspective offered by the general discussion on
subspaces of C (M), as discussed in the reminder on Topology, subsection 1.1.8. To apply Theorem 1.16 to A =
C ∞(M): one has to check some simple algebraic properties which were taken care of in Exercise 2.97 above, and
then there was the last, and more subtle, condition in that theorem; and that is precisely what the first part of the
previous lemma is taking care of! Therefore we deduce:

Theorem 2.101. On any manifold M, for any open cover U of M, there exists a smooth partition of unity on
M subordinated to U .
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Diving a bit more into the details of subsection 1.1.8 one see that, from the various properties discussed there,
the one that is most subtle is ”paracompactness”. But Theorem 1.18 immediately implies that any manifold is
automatically paracompact. One the other hand, when it comes to properties of subspaces A ⊂C∞(M) discussed
in subsection 1.1.8, the one that is more subtle is ”normality”; from this perspective, the previous lemma checks
the criteria for normality provided by Theorem 1.19. Therefore one also obtains:

Corollary 2.102. On any manifold M, for any two disjoint closed subset A,B⊂M, there exists a smooth function
f : M→ [0,1] with the property that f |A = 0, f |B = 1.

Finally, with smooth partitions of unity at hand one can use the same arguments as in the topological case and
obtain the smooth version of Theorem 1.14 from Section 1.1 of Chapter 1:

Theorem 2.103. Any (smooth) compact manifold can be smoothly embedded into some Euclidean space.

Proof. We use the same map as in the proof of Theorem 1.14 from Section 1.1 of Chapter 1, just that we now make
use of smooth partitions of unity (which exist by Theorem 2.101). It suffices to show that the resulting topological
embedding

i = (η1, . . . ,ηk, χ̃1, . . . , χ̃k) : M→ R× . . .×R︸ ︷︷ ︸
k times

×Rd× . . .×Rd︸ ︷︷ ︸
k times

= Rk(d+1).

is also an immersion. We check this at an arbitrary point p ∈M. Since ∑i ηi = 1, we find an i such that ηi(p) 6= 0.
We may assume that i = 1. In particular, p must be in U1, and then we can choose the chart χ1 around p and look at
the representation iχ1 with respect to this chart; we will check that it is an immersion at x := χ1(p). Hence assume
that the differential of iχ1 at x kills some vector v ∈ Rd (and we want to prove that v = 0). Then the differential of
all the components of iχ1 (taken at x) must kill v. But looking at those components, we remark that:

• the first R-component is η := η1 ◦χ
−1
1 : U1→ R.

• the first Rd component is the linear map f : U1→ Rd , f (u) = η(u) ·u.

Hence we must have in particular:
(dη)x(v) = 0, (d f )x(v) = 0.

From the formula of f we see that (d f )x(v) = (dη)x(v) · x+η(x) · v; hence, using that previous equations we find
that η(x) · v = 0. But η(x) = η1(p) was assumed to be non-zero, hence v = 0 as desired.

Remark 2.104 (For the curious students: a smooth Gelfand-Naimark ...). The ”Gelfand-Naimark message” from Topology is that,
for reasonable topological space X , the topological information on X can be completely recovered from the C (X) and its algebraic
structure (the sums and products that make it into an algebra). As recalled in Remark 1.10, the way one ”reconstructs” the space X
from the algebra C (X) is by associating to any algebra A a topological space X(A), called the spectrum of A, and defined as the set of
all characters χ : A→ R (see Remark 1.10).

Since the notion of character makes sense for any algebra, we can apply it to

A := C ∞(M),

the algebra of smooth functions on a manifold M. As before, any point p ∈M gives rise to a character

χp : A→ R, χp( f ) := f (p);

and this gives rise to a map
GN : M→ X(A), p 7→ χp.

Note that the previous exercise says precisely that this map is injective! What about surjectivity? I.e., is is true that any character

χ : C ∞(M)→ R

is of type χp for some p ∈M?

Theorem 2.105. If M is a compact manifold then the map GN is 1-1.
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Proof. We are left with proving surjectivity. Hence we start with a character χ and we look for p ∈M such that χ = χp. First remark
that, for the last equality to hold (given p), it suffices to require something apparently weaker condition

if f ∈ C ∞(M) is killed by χ (i.e. χ( f ) = 0) =⇒ f (p) = 0.

Indeed, for an arbitrary f ∈ C ∞(M), since f − χ( f ) ·1 is anyway killed by χ , the previous implication would imply χ( f ) = f (p) for
all f , i.e. χ = χp.

Therefore, it suffices to show that there exists p ∈M for which the previous implication holds. We proceed by contradiction. If no
such p exists then we find, for each p, a function fp with

χ( fp) = 0, fp(p) 6= 0.

We may actually assume that fp(p) > 0 (otherwise replace fp by its square). Since fp is smooth (hence also continuous), for each p
we find a neighborhood Up of p s.t. fp > 0 on the entire Up. Then {Up : p ∈M} forms an open cover of M and, using the compactness
of M, we cab extract a finite subcover- corresponding to a finite number of points p1, . . . , pk. Then the sum f of the corresponding
functions fpi will have the property that

f ∈ C ∞(M), χ( f ) = 0, f > 0 everywhere on M.

But then we can write the constant function 1 = f · 1
f , with both f and 1

f , so that

χ(1) = χ( f ) ·χ( 1
f
) = 0,

which provides us with a contradiction we were looking for.

Exercise 2.106. Adapt the previous proof to show that, if M is not necessarily compact then, for any character χ on C ∞(M), there
exists p ∈M such that χ( f ) = f (p) for all f ∈ C ∞(M) that are compactly supported (i.e. vanish outside some compact).

Exercise 2.107. Given two manifolds M and N, any smooth F : M→ N induces

F∗ : C ∞(N)→ C ∞(M),

which is a morphism of algebras (i.e. is linear, multiplicative and sends the unit to the unit). Prove that conversely, any morphism from
the algebra C ∞(N) to C ∞(M) arises in this way.

Then deduce that, for any two manifolds M and N,

M and N are diffeomorphic ⇐⇒ C ∞(M) and C ∞(N) are isomorphic as algebras

2.5 More examples: classical groups and ... Lie groups

One very interesting (and special) class of manifolds are the so-called Lie groups: they are both groups, as well as
manifolds, and the two structures are compatible (see below for the precise definition). The classical examples are
groups of matrices (endowed with the usual product of matrices).They sit inside the space of all n×n matrices (for
some n natural number)- which is itself a Euclidean space (just that the variables are arranged in a table rather than
in a row):

Mn(R)∼= Rn2

for matrices with real entries, and
Mn(C)∼= Cn2 ∼= R2n2

for matrices with complex entries. Since we are interested in groups w.r.t. multiplication of matrices (and in a
group one can talk about inverses), we have to look inside the so called general linear group:

GLn(R) = {A ∈Mn(R) : det(A) 6= 0},

and similarly GLn(C). Since the determinant is a polynomial function, it is also continuous, hence the groups GLn
are opens inside the Euclidean spaces Mn- therefore they are manifolds in a canonical way (and the usual entries
of matrices serves as global coordinates). Inside these there are several interesting groups such as:
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• the orthogonal group:
O(n) = {A ∈ GLn(R) : A ·AT = I}.

• the special orthogonal group:
SO(n) = {A ∈ O(n) : det(A) = 1}.

• the special linear group:
SLn(R) = {A ∈ GLn(R) : det(A) = 1}.

• the unitary group:
U(n) = {A ∈ GLn(C) : A ·A∗ = I}.

• the special unitary group:

SU(n) = {A ∈ GLn(C) : A ·A∗ = I,det(A) = 1}.

• the symplectic group:
Spn(R) := {A ∈ GL2n(R) : AT JA = J},

where

J =

(
0 −In
In 0

)
∈ GL2n(R). (2.5.1)

Recall that AT denotes the transpose of A, A∗ the conjugate transpose.
We would like to point out that they are carry a natural smooth structure (making them into Lie groups); actually,

they are all embedded submanifolds of the corresponding (Euclidean) spaces of matrices. Since they are all given by
(algebraic) equations, there is a natural to proceed: use the regular value theorem (Theorem 2.77). As an illustration,
let us look at the case of O(n).

Example 2.108 (the details in the case of O(n)). The equation defining O(n) suggest we should be looking at

f : GLn(R)→Mn(R), f (A) = A ·AT .

However, it is important to note that the values of this function takes values in a smaller Euclidean space. Indeed,
since in general, (A ·B)T = BT ·AT , the matrices of type A ·AT are always symmetric. Therefore, denoting by Sn

the space of symmetric n× n matrices (again a Euclidean space, of dimension n(n+1)
2 ), we will deal with f as a

map
f : GLn(R)→Sn.

(If we didn’t remark that f was taking values in Sn, we would not have been able to apply the regular value
theorem; however, the problem that we would have encountered would clearly indicate that we have to return and
make use of Sn from the beginning; so, after all, there is no mystery here).

Now, f is a map from an open in a Euclidean space (and we could even use f defined on the entire Mn(R)),
with values in another Euclidean space; and it is clearly smooth since it is given by polynomial expressions. So, at
each point A ∈ GLn(R), the differential of f at A,

(d f )A : Mn(R)→Sn

can be computed by the usual formula:

(d f )A(X) =
d
dt

∣∣∣∣
t=0

f (A+ tX) =
d
dt

∣∣∣∣
t=0

(
A ·AT + t(A ·XT +AT ·X)+ t2X ·XT )= A ·XT +X ·AT .

Since O(n) = f−1({I}), we have to show that (d f )A is surjective for each A ∈ O(n). I.e., for Y ∈Sn, show that
the equation A ·XT +X ·AT =Y has a solution X ∈Mn(R). Well, it does, namely: X = 1

2YA (how did we find it?).
Therefore O(n) is a smooth submanifold of GLn of dimension n2− n(n+1)

2 = n(n−1)
2 .

Note that it also follows that the tangent space of O(n) at the identity,
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TIO(n)⊂ TIGLn(R) = Mn(R),

coincides with the kernel of (d f )I , i.e. it is the space of antisymmetric matrices, usually denoted:

o(n) := {X ∈Mn(R) : X +XT = 0}.

The tangent space of such groups, taken at the identity matrix, play a very special role and are known under the
name of Lie algebra of the group (well, the name also refers to some extra-structure they inherit- but we will come
back to that later, after we discuss tangent vectors and vector fields). For the other groups one proceeds similarly
and we find that they are all embedded submanifolds of GLns, with:

• SO(n): of dimension n(n−1)
2 , with

TISO(n) = o(n) = {X ∈Mn(R) : X +XT = 0}.

• SLn(R): of dimension n2−1, with

TISLn(R) = sln(R) = {A ∈Mn(R) : Tr(X) = 0}.

• U(n): of dimension n2, with

TIU(n) = u(n) = {X ∈Mn(C) : X +X∗ = 0}.

• SU(n): of dimension n2−1, with

TISU(n) = su(n) = {X ∈Mn(C) : X +X∗ = 0,Tr(X) = 0}.

Exercise 2.109. Do the same for the other groups in the list. At least for one more.

Exercise 2.110. The aim of this exercise is to show how GLn(C) sits inside GL2n(R), and similarly for the other
complex groups. Well, there is an obvious map

j : GLn(C)→ GL2n(R), A+ iB 7→
(

A B
−B A

)
.

Show that:

1. j is an embedding, with image {X ∈ GL2n(R) : J ·X = X · J}, where J is the matrix (2.5.1).
2. j takes U(n) into O(2n).
3. actually j takes U(n) into SO(2n).

(Hints:

• for (2): first check that j(Z∗) = j(Z)T for all Z ∈ GLn(C).
• for (3): First prove that det( j(Z)) = |det(Z)|2 for all Z ∈ GLn(C). For this: show that for B invertible, there

exists a matrix X ∈ GLn(R) such that(
A B
−B A

)
=

(
X 0
0 I

)(
I X−1

−I X

)(
B 0
0 B

)
Instead of handling each of the groups separately, there is a much stronger result that ensures that such groups

are smooth manifolds:

Theorem 2.111. Any closed subgroup of GLn(R) or GLn(C) is automatically an embedded submanifold.
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Of course, this theorem is very useful and one should at least be aware of it. The proof is not tremendously diffi-
cult, but it would require one entire lecture- and that we cannot afford. But, in principle, the idea is simple: starting
with G⊂ GLn(R) closed subgroups, one looks at g := TIG⊂Mn, one shows that it is a vector subspace, and one
uses the exponential of matrices (exp : Mn→ GLn) restricted to g to produce a chart for G around exp(0) = I (the
identity matrix); for charts around other points, one uses the group structure to translate the chart around I to a
chart around any point in G.

Finally, since we have mentioned ”Lie groups”, here is the precise definition:

Definition 2.112. A Lie group G is a group which is also a manifold, such that the two structures are com-
patible in the sense that the multiplication and the inversion operations,

m : G×G→ G,m(g,h) = gh, ι : G→ G, ι(g) = g−1,

are smooth.
An isomorphism between two Lie groups G and H is any group homomorphism f : G→ H which is a

diffeomorphism.

Of course, all the groups that we mentioned are Lie groups (just think e.g. that the multiplication is given by a
polynomial formula!); and, the conclusion of the last theorem is that all closed subgroups are actually Lie groups.

Example 2.113. The unit circle S1, identified with the space of complex numbers of norm one,

S1 = {z ∈ C : |z|= 1},

is a Lie group with respect to the usual multiplication of complex numbers. Actually, we see that

S1 = SU(1).

Also, looking at SO(2), we see that it consists of matrices of type(
cosα sinα

−sinα cosα

)
.

and we obtain an obvious diffeomorphism (an isomorphism of Lie groups) SO(2)∼= S1.

Example 2.114. Similarly, the 3-sphere S3 can be made into a (non-commutative, this time) Lie group. For that
we replace C by the space of quaternions:

H= {x+ iy+ jz+ kt : x,y,z, t ∈ R}

where we recall that the product in H is uniquely determined by the fact that it is R-bilinear and i2 = j2 = k2 =
−1, i j = k, jk = i,ki = j. Recall also that for

u = x+ iy+ jz+ kt ∈H

one defines
u∗ = x− iy− jz− kt ∈H, |u|=

√
uu∗ =

√
x2 + y2 + z2 + t2 ∈ R.

Then, the basic property |u · v| = |u| · |v| still holds and we see that, identifying S3 with the space of quaternionic
numbers of norm 1, S3 becomes a Lie group.

Exercise 2.115. Show that

F : S3→ SU(2), F(α,β ) =

(
α β

−β α

)
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where we interpret S3 as {(α,β ) ∈ C2 : |α|2 + |β |2 = 1}, is an isomorphism of Lie groups.

By analogy with the previous example, one may expect that S3 is isomorphic also to SO(3) (at least the dimen-
sions match!). However, the relation between these two is more subtle:

Exercise 2.116. Recall that we view S3 inside H. We also identify R3 with the space of pure quaternions

R3 ∼→{v ∈H : v+ v∗ = 0}, (a,b,c) 7→ ai+b j+ ck.

For each u ∈ S3, show that
Au(v) := u∗vu

defines a linear map Au : R3→ R3 which, as a matrix, gives an element

Au ∈ SO(3).

Then show that the resulting map
φ : S3→ SO(3), u 7→ Au

is smooth, is a group homomorphism, is a surjective local diffeomorphism, but each fiber has two elements (it is a
2-1 cover).

Then deduce that SO(3) is diffeomorphic to the real projective space P3.

Remark 2.117 (For the interested students: spheres, Lie groups, etc). One may wonder: which spheres can be made into Lie groups?
Well, it turns out that S0, S1 and S3 are the only ones!

On the other hand, it is interesting to understand what happens with the arguments we used for S1 and S3 (and which were very
similar to each other) in higher dimensions. The main point there was the multiplication on C and H and the presence of a norm such
that

|x · y|= |x| · |y| (2.5.2)

(so that, for two elements in the sphere, i.e. of norm one, their product is again in the sphere). So, to handle Sn similarly, we would need
a ”normed division algebra” structure on Rn+1, by which we mean a multiplication ”·” on Rn+1 that is bilinear and a norm satisfying
the previous condition. Again, it is only on R, R2 and R4 that such a multiplication exists. If we do not insist on the associativity of
the multiplication, there is one more possibility: R8 (the so called octonions). But nothing else! And this was known since the 19th
century! But why did people care about such operations in the 19th century? Well ... it was number theory and the question of which
numbers (integers) can be written as a sum of two, three, etc squares. For sum of two squares the central formula which shows that a
product of two numbers that can be written as a sum of two squares can itself be written as a sum of two squares is:

(x2 + y2)(a2 +b2) = (xa− yb)2 +(xb+ ya)2.

Or, in terms of the complex numbers z1 = x+ iy,z2 = aib, the norm equation (2.5.2). The search for similar “magic formulas” for sum
of three squares never worked, but it did for four:

(x2 + y2 + z2 + t2)(a2 +b2 + c2 +d2) =

(xa+ yb+ zc+ td)2 +(xb− ya− zd + tc)2+

+(xc+ yd− za− tb)2 +(xd− yc+ zb− ta)2.

This is governed by the quaternions and its norm equation (2.5.2).





Chapter 3
Tangent spaces

3.1 Intro

So far, the fact that we dealt with general manifolds M and not just embedded submanifolds of Euclidean spaces
did not pose any serious problem: we could make sense of everything right away, by moving (via charts) to opens
inside Euclidean spaces.

However, when trying to make sense of ”tangent vectors”, the situation is quite different. Indeed, already intu-
itively, when trying to draw a ”tangent space” to a manifold M, we are tempted to look at M as part of a bigger
(Euclidean) space and draw planes that are ”tangent” (in the intuitive sense) to M. The fact that the tangent spaces
of M are intrinsic to M and not to the way it sits inside a bigger ambient space is remarkable and may seem coun-
terintuitive at first. And it shows that the notion of tangent vector is indeed of a geometric, intrinsic nature. Given
our preconception (due to our intuition), the actual general definition may look a bit abstract. For that reason, we
describe several different (but equivalent) approaches to tangent spaces. Each one of them starts with one intuitive
perception of tangent vectors on Rm, and then proceeds by concentrating on the main properties (to be taken as
axioms) of the intuitive perception.

However, before proceeding, it is useful to clearly state what we expect- i.e. a list of ”wishes” for whatever we
are looking for:

• TW1. Tangent spaces: for M-manifold, p ∈M, have a vector space TpM.

• TW2. Differentials: for smooths map F : M→ N (between manifolds), p ∈M, have an induced linear map

(dF)p : TpM→ TF(p)N,

called the differential of F at p. For the differential we expect, like inside Rm:

– F = IdM : M→M is the identity map, (dF)p should be the identity map of TpM.

– The chain rule: for M F→ N G→ P smooth maps between manifold and p ∈M,

(d G◦F)p = (dG)F(p) ◦ (dF)p.

• TW3. Nothing new in Rm: Of course, for embedded submanifolds M ⊂ Rm̃, these tangent spaces should be
(canonically) isomorphic to the previously defined tangent spaces TpM and dF should become the usual differ-
ential.

We also expect that embeddings N ↪→M induce injective maps TpN ↪→ TpM, but this will turn out to be the case
once one imposes the milder condition that, for any open U ⊂M, the resulting maps TpU→ TpM are isomorphisms.

69
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Fig. 3.1 Tangent space at p of a manifold M as well as at the image f (p) under a smooth map f : M→ N. We want the differential
(d f )p of f at p to be a linear map between these.

Exercise 3.1. Show that, whatever construction of the tangent spaces TpM we give so that it satisfies the previous
properties, for any diffeomorphism F : M→ N and any p ∈M, the differential of F at p,

(dF)p : TpM→ TF(p)N,

is a linear isomorphism. Deduce that for any m-dimensional manifold M, TpM is an m-dimensional vector space.

However, even before these properties, one should keep in mind that the way we should think intuitively about
tangent spaces is:

TpM is made of speeds (at t = 0) of curves γ in M passing through p at t = 0.

This is clear and precise in the case when M ⊂ Rm̃, where the embedding was used to make sense of ”speeds”.
For conciseness, we introduce the notation

Curvesp(M) := {γ : (−ε,ε)→M smooth, with ε > 0,γ(0) = p}

(valid for all manifold M and p∈M). Therefore, one would like to add to the previous list of wishes the following:

• TW4. Speeds of curves (leading principle!): for any curve γ in M that starts at p, ”the speed dγ

dt (0)” should
make sense as an element of TpM, and

TpM = {”dγ

dt
(0)” : γ ∈ Curvesp(M)}, (3.1.1)

so that we can think of tangent vectors at p as ”speeds of curves that start at p”.

Fig. 3.2 We want to construct the tangent space in a point p ∈M in such a way that vectors correspond to the speeds dγ

dt (0) of curves
γ : (−ε,ε)→M that pass through p at time t = 0. Note that the image of the curve determines the direction of the vector, but not it’s
length: A reparametrized curve that passes through the same image twice as fast will correspond to a vector of twice the size.
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Remark 3.2 (Extra-for the interested student: tangent spaces very abstractly: via equivalence relations). One way to introduce tangent
spaces is by realizing the ”leading principle” mentioned above by ”brute force”, starting from the following remark: although ”the
speed of γ” (at t = 0) is not defined yet, we can make sense right away of the property that two such curves γ1,γ2 ∈ Curvesp(M) have
the same speed at t = 0: if their representations γ

χ

1 and γ
χ

2 with respect to any chart χ around p have this property:

dγ
χ

1
dt

(0) =
dγ

χ

2
dt

(0).

(recall that, for χ : U → Ω ⊂ Rm, γ
χ

i = χ ◦ γi is a curve in Ω ⊂ Rm). It is not difficult to see (exercise!) that it suffices to check this
condition for one chart χ . When this happens, we write

γ1 ∼p γ2,

and another simple exercise is to check that ∼p is an equivalence relation. The ”brute force” approach to tangent spaces would then be
to define:

• TpM as the quotient of Curvesp(M) modulo the equivalence relation ∼p.
• the speed dγ

dt (0) as the ∼p equivalence class of γ .

Then equality (3.1.1) that corresponds to our intuition is forced in tautologically. Although this does work, and it is sometimes taken
as definition in some text-books/lecture notes, we find it too abstract for such an intuitive concept. Instead, we will discuss the tangent
space via charts, as well as via derivations. Nevertheless, one should always keep in mind the intuition via speeds of paths (and make
it precise in whatever model we use). �

3.2 Tangent vectors via charts

The brief philosophy of this approach is:

while a chart χ for M allows one to represent points p by coordinates,
it will allow us to represent tangent vectors v ∈ TpM by vectors in Rm

3.2.1 The general notion

Concentrating on the tangent vectors rather than on the charts, the previous ”slogan” reads:

a tangent vector to M at p can be seen
through each chart, as a vector in the Euclidean space Rm

Remark 3.3 (bla, bla, bla- leading to the actual motivation/first definition of tangent spaces; i.e., in principle, you
may skip this and jump right to the definition). The actual definition can be discovered as the outcome of ”wishful
thinking”: we want to extend the definition of TpM from the case of embedded submanifolds of Euclidean spaces
to arbitrary manifolds M, satisfying the ”wish list” TW1 and TW2 above. We see that, for a general manifold M
and p ∈M, choosing a chart (U,χ) for M around p and viewing χ as a smooth map from (an open inside) M to
(an open inside) Rm, the wishful thinking tells us that we expect an induced map (even an isomorphism)

(dχ)p : TpM→ Rm.

Therefore, an element v ∈ TpM can be represented w.r.t. to the chart χ by a vector in the standard Euclidean space:
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vχ := (dχ)p(v) ∈ Rm.

What happens if we change the chart χ by another chart χ ′ around p? Then vχ ′ should be changed in a way that
is dictated by the change of coordinates

c = cχ ′
χ = χ

′ ◦χ
−1.

Indeed, since χ ′ = c◦χ and we want the chain rule still to hold, we would have:

vχ ′ = (dχ
′)p(v) = (d c)χ(p) ((dχ)p(v)) ,

i.e.
vχ ′ = (d c)χ(p)(v

χ). (3.2.1)

Therefore, whatever the meaning of TpM is, we expect that the elements v ∈ TpM can be represented w.r.t local
charts χ (around p) by vectors vχ ∈ Rm which, when we change the chart, transform according to (3.2.1). Well, if
that is what we want from TpM, let us just define it that way! �

Fig. 3.3 A tangent vector v at a point p ∈ M assigns to every chart χ : U → χ(U) around p a representation vχ . When changing
coordinates to a new chart χ ′ : U ′ → χ ′(U ′) along cχ ′

χ , this representation transforms into vχ ′ by applying the differential (dcχ ′
χ )χ(p).

Note that for a map between Euclidean spaces such as cχ ′
χ , the differential is just the total derivative in the usual sense.

Definition 3.4. Given an m-dimensional manifold M and p ∈M, a tangent vector of M at p is a function v

v : {charts of M around p}→ Rm, χ 7→ vχ ,

with the property that, for any two charts χ and χ ′ one has

vχ ′ = (d c)χ(p)(v
χ), (3.2.2)

where c = cχ ′
χ is the change of coordinates from χ to χ ′.

We denote by TpM the vector space of all such tangent vectors of M at p- made into a vector space using
the vector space structure on Rm (i.e. (v+w)χ := vχ +wχ , etc. )
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Fig. 3.4 This atlas shows two charts covering the city center of Utrecht. While we are used to charts like χ on the left, it also contains
(smoothly) distorted charts like χ ′ on the right. A vector v pointing along the Oudegracht that is based at the Hamburgerbrug p clearly
has different representations vχ and vχ ′ ∈ R2 in the two charts, based at different points χ(p) and χ ′(p).

Some comments are in order here. First of all, vχ is the notation that we use for the value of v on the chart χ; the
vector vχ ∈ Rm is also called the representation of the tangent vector v with respect to the chart χ , or simply
v on the chart χ . Note also that, as above, c = χ ′ ◦ χ−1 is a smooth map from an open in Rm containing χ(p), to
another open in Rm), so that (d c)χ(p) appearing in the condition (3.2.2) is the usual differential defined as a linear
map

(d c)χ(p) : Rm→ Rm.

In more detail, the vector space structure on TpM is defined as follows: for v,w ∈ TpM, and a scalar λ ∈ R, the
sum v+w and the multiplication λ ·v,

v+w, λ ·v ∈ TpM,

are defined using the similar operations + and · from Rm:

(v+w)χ := vχ +wχ , (λ ·v)χ := λ · vχ .

Staring for a minute at the condition (3.2.2) imposed on tangent vectors v ∈ TpM, we see that once we know vχ

for one single chart χ around p, we completely know v. Actually, we obtain:

Lemma 3.5. If we fix a chart χ0 of M around p, then

TpM→ Rm, v 7→ vχ0

is an isomorphism of vector spaces.

Proof. As we just pointed out, once we fixed χ0, and given v0 ∈ Rm, the element v ∈ TpM such that vχ0 = v0 is
unique (if it exists) and it must be given by the formula

vχ = (d cχ

χ0)χ0(p)(v0),

for any other chart χ around p. Strictly speaking we still prove (3.2.2) but that follows from the chain rule and the
remark that cχ ′

χ0 = cχ ′
χ ◦ cχ

χ0 .

We deduce in particular that any chart χ of M around p gives rise to a basis

(
∂

∂ χ1

)
p
, . . . ,

(
∂

∂ χm

)
p
∈ TpM (3.2.3)
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of the tangent space TpM, which corresponds to the canonical basis e1, . . . ,em of Rm via the isomorphism from
the previous lemma. In other words,(

∂

∂ χi

)
p
∈ TpM is the unique vector which, on the chart χ , is

(
∂

∂ χi

)χ

p
= ei.

The basis (3.2.3) is called the canonical basis of TpM with respect to χ .

Fig. 3.5 In the situation of Fig. 2.3, we fix a point p ∈U and can consider the vectors based at p that are represented by unit vectors
within the identity and polar coordinates. They always point in the direction in which the corresponding coordinate increases.

Exercise 3.6. If χ and χ ′ are two charts of M around p, c = cχ ′
χ , show that

(
∂

∂ χi

)
p
= ∑

j

∂c j

∂xi
(χ(p))

(
∂

∂ χ
′
j

)
p

. (3.2.4)

3.2.2 The case of Rm (the standard identifications)

For M =Rm (or an open in Rm) and p ∈M, one can use the previous lemma combined with the fact that Rm comes
with a standard chart (around any point!): the identity chart Id. One obtains

• an isomorphism
standardp : TpRm ∼−→ Rm, v 7→ vId (3.2.5)

• a canonical basis, denoted (
∂

∂x1

)
p
, . . . ,

(
∂

∂xm

)
p
∈ TpRm

These will be called the standard identification of the abstract tangent space TpRm with Rm, and standard
basis of TpRm. Of course, the standard identification just picks up the coefficients with respect to the standard
basis:
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∑
i

vi

(
∂

∂xi

)
p
7→ (v1, . . . ,vm).

The inverse map translates into the fact that any vector w ∈ Rm gives rise to a tangent vector

w̃ ∈ TpRm,

uniquely determined the condition that, with respect to the identity chart, w̃Id = w. Explicitly, on an arbitrary chart
χ of Rm around p (now just a smooth map from an open in Rm containing p, to Rm),

w̃χ := (dχ)p(w) ∈ Rm.

As pointed out at the begining, the same discussion applies to any open inside Euclidean spaces (why open?),
giving rise to standard identifications

standardΩ
p : TpΩ

∼−→ Rm, v 7→ vId (for Ω ⊂ Rm open). (3.2.6)
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3.2.3 Speeds of curves

Let us show that, indeed, the definition of the tangent spaces from this section accommodates the leading principle:
we can make sense of

dγ

dt
(0) ∈ TpM

for γ ∈ Curvesp(M). The actual definition should be clear: the representation of this vector with respect to a chart
χ should be the speed (at t = 0) of the representation γχ of γ with respect to χ . In more detail: if χ : U → Ω is a
chart of M around p, consider the resulting curve γχ = χ ◦ γ in Ω ⊂ Rm, and take its derivatives at 0- which is a
vector in Rm. This gives an operation

{charts of M around p}→ Rm, χ 7→ dγχ

dt
(0),

which is clearly linear and satisfies the Leibniz identity; therefore we obtain a tangent vector denoted

dγ

dt
(0) ∈ TpM.

In a short formula:
dγ

dt
(0)χ :=

dγχ

dt
(0).

Of course, there is nothing special for t = 0, and in the same way one talks about

dγ

dt
(t) ∈ Tγ(t)M.

for all t in the domain of γ .

Exercise 3.7. For M = Rm show that the abstract derivative dγ

dt (0) ∈ TpRm defined above corresponds, via the
standard identification (3.2.6), to the usual derivative at 0 of γ .

Then check that for any w ∈ Rm, the corresponding tangent vector at p (i.e. w̃ ∈ TpRm corresponding to w
via the standard identification (3.2.6)) coincides with the speed (in the sense we have just defined) of the curve
t 7→ p+ t ·w:

w̃ =
d
dt

∣∣∣∣
t=0

(p+ t ·w).

3.2.4 Differentials

Finally, let us show show that, as desired, smooth maps induce differentials at the level of tangent spaces.

Lemma 3.8. Given a smooth map F : M→ N between manifolds, and given p ∈M, there exists a linear map

(d F)p : TpM→ TF(p)N, v 7→ (d F)p(v)

unique determined by the property that, for any chart χ of M around p and χ ′ of N around F(p), one has:

((d F)p(v))
χ ′ = (d Fχ ′

χ )χ(p)(v
χ)

for all v ∈ TpM.

Proof. Fixing v and χ , the required condition forces the definition of (d F)p(v); to see that one ends up with a
tangent vector to N at F(p) (i.e. the condition (3.2.2) is satisfied in this context) one uses again the chain rule. One
still has to check that the resulting map does not depend on the choice of χ- but that follows again from the chain
rule.
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Definition 3.9. For a smooth map F : M→ N and p ∈M, the resulting linear map (d F)p : TpM→ TF(p)N is
called the differential of F at the point p.

Exercise 3.10. Show that the differential of smooth functions has the following properties:

1. the chain rule continues to hold: for M F→ N G→ P, p ∈M,

(d G◦F)p = (d G)F(p) ◦ (d F)p.

2. if F is a (local) diffeomorphism than (d F)p is an isomorphism.
3. when F : M→ N with M and N opens in Euclidean spaces then, via the standard identifications (3.2.6) for M

and N, d F is identified with the standard differential DF .

TpM
(d F)p //

standardM
p ∼
��

TF(p)N

standardN
F(p)

∼
��

Rm
(DF)p

// Rn

4. (d F)p is uniquely characterized also by the condition that, for any γ ∈ Curvesp(M), one has:

(d F)p

(
dγ

dt
(0)
)
=

d F ◦ γ

dt
(0).

Note that, with the general notion of tangent spaces and differentials at hand, one has a neater characterization
of immersions and submersions (which is actually taken as definition in some text-books- with the disadvantage
that one has to wait until those concepts are introduced).

Proposition 3.11. A smooth map F : M→ N between two manifolds is an immersion (or submersion) at a point
p ∈M if and only if (d F)p is injective (or surjective, respectively).

Proof. Choose coordinate charts (U,χ) for M around p (U ′,χ ′) for N around q := F(p) such that F(U)⊂U ′, so
that we can consider the restriction

F |U : U →U ′.

It suffices to prove the statement for this restricted map (why?). On the other hand, since χ : U →Ω and χ ′ : U ′→
Ω ′ are diffeomorphism, (d χ)p and (d χ ′)q are isomorphisms.

TpU
(d F)p //

(d χ)p

��

TqU ′

(d χ ′)q

��
Tχ(p)Ω

(d Fχ ′
χ )χ(p)

// Tχ ′(q)Ω
′

We see that we can pass further to Euclidean spaces- i.e. it suffices to prove the statement for

Fχ ′
χ : Ω →Ω

′

(around the point χ(p)). However, the differential of this function is identified, via the standard identifications, to
the usual differential (cf. the previous exercise) therefore, what we have to check becomes the actual definition of
immersions/submersions.
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3.2.5 Submanifolds M ⊂ N

We apply the previous discussion to the inclusion of embedded submanifolds: whenever M ⊂ N is an embedded
submanifold of a manifold N, the inclusion i : M ↪→ N is a smooth map and, therefore, at each p ∈M, it induces an
injective map

(d i)p : TpM→ TpN.

This allows one to promote a vector v∈ TpM tangent to a submanifold M to a tangent vector for the larger manifold
N. Actually, while for p ∈M, i(p) ∈ N is still (denoted by) p, a tangent vector v ∈ TpM is still denoted by v when
interpreted as a vector tangent to N (i.e. (d i)p(v) is still denoted by v); in particular, we think of TpM as a subspace
of TpN:

TpM ⊂ TpN.

This makes the notation somehow simpler and agrees with the intuition. Note that, thinking of tangent spaces as
consisting of speeds of curves, the previous inclusion is rather tautological as the curves in M are curves also in N:{

dγ

dt
(0) : γ ∈ Curvesp(M)

}
⊂
{

dγ

dt
(0) : γ ∈ Curvesp(N)

}
.

Exercise 3.12. With the previous identifications and notations in mind show that, for M ⊂ N embedded submani-
fold, p ∈M, v ∈ TpM, v interpreted as a vector tangent to N has the following property that determines it uniquely:
on any chart χ of N adapted to M, it is precisely v on the induced chart χ|M for M.

The previous discussion can be applied in particular to embedded submanifolds of Euclidean spaces

M ⊂ Rn.

The resulting inclusion of TpM ⊂ TpRn combined with the standard identification of TpRn with Rn from (3.2.5)
gives rise to:

standardM
p := standardp|TpM : TpM→ Rn. (3.2.7)

Lemma 3.13. For any embedded submanifold M ⊂ Rn, the map (3.2.7) is injective and its image is precisely the
geometric tangent space T geom

p M from Chapter 1 (Definition 1.43). In other words, it becomes an isomorphism

standardM
p : TpM ∼−→ T geom

p M.

Proof. Defined as a composition of an injective map with an isomorphism, standardM
p is injective. By the very

definition of the map we see that, choosing a chart (U,χ) for Rn around p, adapted to M, with induced chart on M
denoted χ|M ,

Exercise 3.14. Please revisit some of the previous exercises on immersions/submersions and find now more ele-
gant/simpler arguments:

1. The height function on S2 (Exercise 2.55) and on the torus (Exercise 2.84),
2. The explicit Hopf map h from Exercise 2.65,
3. Part (c) of Exercise 2.86,
4. And then also parts (b) and (c) of Exercise 2.87.
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3.3 Tangent vectors as directional derivatives

Here is another approach to the tangent spaces; the brief philosophy of this approach is:

tangent vectors at p allow us to take directional derivatives (at p) of smooth functions

3.3.1 The general notion

To implement the previous ”slogan” we return to the differential

(d f )p(v)

of a smooth function f : Ω → R (Ω ⊂ Rm open) at a point p ∈ Ω , applied to a (tangent) vector v ∈ Rm, that we
reinterpreted it as a v-derivative at p

(d f )p(v) =
∂ f
∂v

(p) = ∂v( f )(p).

Hence, if we want to understand what the (tangent) vector v really does (at p), one may say that it defines a function

∂v =
∂

∂v
: C ∞(Ω)→ R;

What are the main properties of this function? Well, it is clearly linear and, moreover, it acts on the product of
functions according to the Leibniz rule at p:

∂v( f g) = f (p) ·∂v(g)+g(p) ·∂v(g) (3.3.1)

for all f ,g ∈ C ∞(Ω). Note that here we are making use of the following algebraic structures on C∞(Ω): the vector
space structure (for linearity) and the product of functions (to make sense of the Leibniz identity at p); all together,
we are making use of the ”algebra structure” on C∞(Ω). The main point is that, conversely, any map

∂ : C ∞(Ω)→ R

which is linear and satisfies the Leibniz identity at p is of type ∂v for a unique vector v ∈Rm (this will follow from
the discussion below). This gives another perspective/possible approach to tangent spaces.

Definition 3.15. Given an m-dimensional manifold M and p ∈M, a derivation of M at p is any linear map

∂ : C ∞(M)→ R

which is linear and which satisfies the Leibniz identity (3.3.1) at p.
We denote by T deriv

p M the vector space of all such derivations M at p- made into a vector space using the
usual addition and multiplication by scalars from R.

In more detail, the vector space structure on T deriv
p M is defined as follows: for ∂ ,∂ ′ ∈ T deriv

p M, and a scalar
λ ∈ R, the sum ∂+∂ ′ ∈ T deriv

p M and the multiplication λ ·∂ ∈ T deriv
p M, are defined using the similar operations +

and · from R:
(∂+∂

′)( f ) := ∂ ( f )+∂
′( f ), (λ ·∂ )( f ) := λ ·∂ ( f ).
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3.3.2 The case of Euclidean spaces

When M = Ω is an open in Rm (endowed with the canonical smooth structure), p∈Ω , then the operation of taking
the usual partial derivatives at p, (

∂

∂xi

)
p

: C ∞(U)→ R, f 7→ ∂ f
∂xi

(p),

are derivations at p- hence they can be interpreted as vectors(
∂

∂x1

)
p
, . . . ,

(
∂

∂xm

)
p
∈ T deriv

p Ω .

As it will follow from the discussion below, they form a basis of T deriv
p Ω .

Similarly, for any manifold M, a chart χ : U → Ω ⊂ Rm of M around p induces partial derivatives at p w.r.t.
the chart χ ,

∂ f
∂ χi

(p) :=
∂ fχ

∂xi
(χ(p)),

where fχ = f ◦χ−1 : Ω → R. And then vectors

(
∂

∂ χ1

)
p
, . . . ,

(
∂

∂ χm

)
p
∈ T deriv

p M (3.3.2)

which form a basis of T deriv
p M- but that is still to be proven; here we take care of the case M = Rm:

Proposition 3.16. For any p ∈ Rm, the vectors (3.3.2) form a basis of T deriv
p Rm.

Proof. For notational simplicity we assume that p = 0. For the linear independence we assume that λ1, . . . ,λm ∈R
are scalars with the property that

λ1·
(

∂

∂x1

)
0
+ . . .+λm·

(
∂

∂xm

)
0
= 0

and we have to prove that each λi vanishes. For that one applies the left hand side of the previous equality (a
derivation at p!) to the coordinate function x 7→ xi and we obtain that, indeed, λi = 0.

We still have to check that any derivation at 0,

∂ : C ∞(Rm)→ R,

is a linear combination of the standard partial derivatives at 0:

∂ = ∑
i

λi

(
∂

∂xi

)
0

with λi ∈ R.

We will show that λi := ∂ (xi) ∈R do the job. To show this, we use the fact that any f ∈ C ∞(Rm) can be written as

f (x) = f (0)+∑
i

xigi(x), with gi ∈ C ∞(Rm) (3.3.3)

(see below). Using the Leibniz identity (which also implies that ∂ is 0 on constant functions) we obtain

∂ ( f ) = ∑
i

λigi(0),

while ∂ f
∂xi

(0) = gi(0). Hence we are left with proving that any f can be written in the form (3.3.3). For this we use
the identity
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h(1)−h(0) =
∫ 1

0

dh
dt

(t)dt

for all smooth functions h : [0,1]→ R; of course, we want to choose h such that h(1) = f (x) and h(0) = f (0).
Choose then h(t) = f (tx) and we obtain the desired identity (3.3.3) with

gi =
∫ 1

0

∂ f
∂xi

(tx)dt.

3.3.3 Speeds of curves

Let us point out, right away, that also this model for tangent spaces serves the original purpose: we can make sense
of speeds

γ̇(0) ∈ T deriv
p M.

Here we use the notation γ̇(0) instead of dγ

dt (0) to (temporarily) avoid overlaps with the previous section. The actual
definition should be clear: just consider the variation of functions along γ (at t = 0):

∂γ̇(0) : C ∞(M)→ R, ∂γ̇(0)( f ) :=
d
dt

∣∣∣∣
t=0

f (γ(t)).

Of course, one can use the derivative at any t on the domain of γ , giving rise to

∂γ̇(t) ∈ T deriv
γ(t) M.

3.3.4 Differentials

Let us also explain show how smooth maps induce differentials at the level of tangent spaces as in TW2 above.
This is based on a simple remark: any smooth map F : M→ N between two manifolds induces a map at the level
of smooth functions,

F∗ : C ∞(N)→ C ∞(M), g 7→ F∗(g) := g◦F,

that is compatible with the algebraic structures. It follows that if

∂ : C ∞(M)→ R

is a derivation of M at a point p ∈M then

∂ ◦F∗ : C ∞(N)−→ R, g 7→ ∂ (F∗(g)) = ∂ (g◦F)

is a derivation of N at F(p). Denoting this derivation by

(dF)p(∂ ) ∈ T deriv
F(p) N,

one obtains the desired differential (of F at p)

(dF)p : T deriv
p M→ T deriv

F(p) N, ∂ 7→ (dF)p(∂ ) = ∂ ◦F∗.

Exercise 3.17. Fill in the missing details and prove that this construction has the desired properties from TW2
above (including the chain rule).
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3.3.5 Extra-for the interested student: the algebraic nature of the construction

It is clear that the model for the tangent space provided by T deriv
p M is more algebraic. Let us make this a bit more explicit. This

discussion fits in very well with the previous discussions on the algebra of smooth functions (Remark 2.104), going back all the way
to the ”Gelfand-Naimark philosophy” (see also Remark 1.10).

Looking at the definition of T deriv
p M and remembering that evaluation at p can be seen as a character χp of C ∞(M), there is a clear

way one can proceed in general: for any algebra A and any character χ on A we introduce the notion of χ-derivation on A, by which
we mean a linear map χ : A→ R satisfying the derivation identity:

∂ (ab) = χ(a)∂ (b)+∂ (a)χ(b)

for all a,b ∈ A. We denote by Derχ (A) the (vector) space of all such derivations. Intuitively, this may be interpreted as ”the tangent
space of X(A) at χ”.

When applied to A = C ∞(M), while we know (when M is compact) that any character on A is necessarily of type χp for some p
(unique), the corresponding derivations give

Derχp (C
∞(M)) = T deriv

p M.

For this reason, for a general algebra A, one may think of its characters as ”points”, while for a character χ one may think of Derχ (A)
as ”the tangent space of X(A) at χ”.

Exercise 3.18. When A = R[X1, . . . ,Xm] is the algebra of polynomials in m variables show that any character is the evaluation χx at
some point x ∈ Rm, and then show that Derχx (A) is a finite dimensional vector space and exhibit a basis.

Then consider another A: the algebra of polynomial functions on the circle S1. And, again, consider the characters χp for p ∈ S1 and
compute Derχp (A).

One warning however: while when looking at characters/points it does not make a difference whether we use the algebra C ∞(M) or
the one of continuous functions, the situation is dramatically different when it comes to tangent vectors:

Exercise 3.19. Show that Derχp (C (M)) = 0. (Hint: the proof is much shorter than the bla-bla preceeding the exercise)

3.3.6 The local nature

We now discuss another aspect that T deriv
p M reveals: the local nature of derivations.

Lemma 3.20. Any derivation of M at p, ∂ ∈ T deriv
p M, has the following local property: for f1, f2 ∈ C ∞(M) one

has:
f1 = f2 in a neighborhood of p =⇒ ∂ ( f1) = ∂ ( f2).

Proof. Let f = f1− f2. We know that f = 0 in a neighborhood U of p and we want to prove that ∂ ( f ) = 0. We
may assume that U is chosen so that it is diffeomorphic to a ball B(0,ε) ⊂ Rm, by a diffeomorphism that takes
p to 0. As we have already noticed, one can find a smooth function on Rm that is supported inside B(0,ε) and is
non-zero at 0 (e.g. take x 7→ g( 1

ε2 ||x||2), where g : R→R is the function from Exercise 1.28). Moving from B(0,ε)
to U , and extending by zero outside U , we find a function η ∈C∞(M) which is supported inside U and η(p) 6= 0.
Then η f = 0, and applying the Leibinz identity for η f we find η(p)∂ ( f ) = 0 hence, since η(p) 6= 0, one must
have ∂ ( f ) = 0.

Assume that U ⊂ M is an open containing p. Then any derivation ∂ ∈ T deriv
p U gives a derivation ∂̃ ∈ T deriv

p M
simply by

∂̃ ( f ) := ∂ ( f |U ).

Of course, the resulting map
T deriv

p U → T deriv
p M, ∂ 7→ ∂̃

is just the map induced (cf. Exercise 3.17 above) by the inclusion U ↪→M.

Lemma 3.21. Given p ∈U ⊂M with U open, the canonical map T deriv
p U → T deriv

p M is a linear isomorphism.

Proof. For injectivity, let ∂ : C ∞(U)→ R be a derivation at p such that ∂ ( f̃ |U ) = 0 for all f̃ ∈ C ∞(M); we must
show that ∂ = 0. This follows immediately from the following:



3.3 Tangent vectors as directional derivatives 83

• ∂ ( f ) depends only on f in an arbitrarily small neighborhood of p. This is the content of the previous lemma.
• for any f ∈ C ∞(U), there exists f̃ ∈ C ∞(M) s.t. f = f̃ in some neighborhood of p.

To prove the last item, we take f̃ := η · f where η ∈ C ∞(M) is supported inside U (so that f̃ is defined and smooth
on the entire M) and η = 1 in some (smaller) neighborhood of p. The existence of η is a local problem- therefore
it suffice to build a smooth function η on Rm that is supported in the ball B(0,1) and is 1 in a neighborhood of 0
(say on B(0, 1

3 )); for that one takes again η of type η(x) = g(||x||2) where g : R→ R is any smooth function that
is 1 when |t|< 1

3 and is 0 when t ≥ 1
2 .

For the surjectivity, we start with ∂̃ : C ∞(M)→R and we want to build ∂ . By now the definition should be clear:
or f ∈C ∞(U), choose any f̃ ∈C ∞(M) that coincides with f near p (possible by the first part) and set ∂ ( f ) := ∂̃ ( f̃ ).
The previous lemma shows that the definition of ∂ ( f ) does not depend on the choice of f̃ . And this can used also
to check that ∂ is still a derivation at p. E.g., for the Leibniz identity, choosing extensions f̃ or f and g̃ or g, then
use the extension f̃ g̃ or f g and use the Leibniz identity for ∂̃ ( f̃ g̃).

Remark 3.22 (Extra- for the interested student). Lemma 3.20 can be packed into a more conceptual conclusion: any derivations ∂ at p
descends to the quotient space

C ∞
p (M) := C ∞(M)/Ip =C∞(M)/∼p .

where Ip is the space of functions that vanish around p and ∼p is the associated equivalence relation:

f1 ∼p f2⇐⇒ f1 = f2 in a neighborhood of p.

For f ∈ C ∞(M), its equivalence class is denoted
germp( f ) ∈ C ∞

p (M)

and is called the germ of f at p. The space of germs at p, i.e. our quotient C ∞
p (M), is still an algebra (since Ip is an ideal of C ∞(M));

explicitly, the operations are induced from C ∞(M):

germp( f +g) = germp( f )+germp(g), etc.

The locality property from the previous lemma can now be interpreted as an isomorphism

T deriv
p M ∼= Derp(C

∞
p (M))

between the tangent space and the space of all derivations of C ∞
p (M) with respect to the evaluation at p; note that the main difference

with the similar discussion using C ∞(M) is that, this time, C ∞
p (M) has a unique character (the evaluation at p). �

3.3.7 Comparing with the previous definition of tangent spaces

There is also a very natural interaction (which turns out to be an isomorphism) with the tangent space from the
previous section. The starting remark is that any v ∈ TpM gives rise to a derivation at p, ∂v. To define ∂v( f ), we fix
a chart χ : U →Ω ⊂Rm of M around p; then we can use the representation of f with respect to χ , fχ : Ω →R, as
well as the one of v, vχ ∈ Rm and set:

∂v( f ) :=
∂ fχ

∂vχ
(χ(p)) = (d fχ)χ(p)(v

χ).

Similar to previous arguments, using the chain rule one checks that this quantity actually does not depend on the
choice of χ . Therefore we obtain

∂v : C ∞(M)→ R;

it should be clear that it is a derivation of M at p, hence

∂v ∈ T deriv
p M.

This defines a linear map
IM
p : TpM→ T deriv

p M, v 7→ ∂v.
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Remark 3.23 (getting some more insight into IM
p ). To get a better feeling about this map, note that:

• It sends the speeds of curves in the sense of the previous section (i.e. v = dγ

dt (0)) to the speeds of curves as
discussed in this section (subsection 3.3.3):

IM
p

(
dγ

dt
(0)
)
= γ̇(0).

• For a chart χ around p, IM
p sends the induced basis induced by χ as discussed in the previous section, i.e. (3.2.3),

to the similar vectors (3.3.2) discussed in this section.
• This construction is also compatible with the differentials: if F : M→ N is a smooth map and we consider the

differential of F defined on TpM as in the previous section (subsection 3.2.4) and the one defined on T deriv
p M as

in this scetion (subsection 3.3.4) one has

TpM

IM
p

��

(d F)p // TF(p)N

IN
F(p)

��
T deriv

p M
(d F)p

// T deriv
F(p) N

, (d F)p ◦ Ip = IF(p) ◦ (d F)p

.

Exercise 3.24. Check/prove these assertions.

Theorem 3.25. The map IM
p : TpM→ T deriv

p M is a linear isomorphism.

Note that we could have discussed this theorem earlier on and then transfer, via I, all the properties/constructions
that we knew for TpM to T deriv

p M. Giving the proof of this theorem earlier would not have been completely trivial;
however, the main reason for not doing that is that it was instructive to look at T deriv

p M independently and check
that it does satisfy the properties that we want. In particular, that revealed the advantages of T deriv

p M as well as the
further nature of tangent spaces.

Proof (Proof of Theorem 3.25). 1 Fix a chart χ : U →Rm around p that takes p to 0 ∈Rm. Since the induced basis
of TpM (of Definition 3.2.3) are sent by Ip into the similar vectors

(
∂

∂ χ

)
p

of this section (see Example 3.2.3), it

suffices to show that the last ones form a basis of T deriv
p M. Or, by the previous lemma, of T deriv

p U . But the chart χ

takes T deriv
p U isomorphically into T deriv

0 Ω (this follows using e.g. the chain rule- see Exercise 3.17) and, o course,

takes our vectors into
(

∂

∂xi

)
0
∈ T deriv

0 Ω . Using again the previous lemma, it suffices to show that(
∂

∂xi

)
0

: C ∞(Rm)→ R

form a basis of T deriv
p Rm. But that was done in Proposition 3.16.

1 to revise
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3.4 Tangent spaces: conclusions

Let us put together the main conclusions on tangent spaces.

3.4.1 Via charts, or as derivations

For any m-dimensional manifold M, p ∈M, we have two ways of looking at the tangent space TpM:

• T1: its elements v ∈ TpM can be represented w.r.t. any chart χ around p by vectors vχ ∈ Rm; the passing from
one chart to the other was given by

vχ ′ = (d c)χ(p)(v
χ), where c = cχ ′

χ = χ
′ ◦χ

−1.

• T2: its elements v ∈ TpM can be interpreted as derivations on C ∞(M) at p.

The equivalence between the two is given by the isomorphism

Ip : TpM→ T deriv
p M

of Theorem 3.25. From now on we will identify the two (via Ip) and use only the notation TpM. The upshot is that,
when describing a vector v ∈ TpM we have the choice to describe it w.r.t. a chart, or as a derivation at p.

3.4.2 Speeds

Most importantly, any curve γ ∈ Curvesp(M) has a speed

dγ

dt
(0) ∈ TpM

Explicitly:

• T1-description: w.r.t. a chart χ , it is dγχ

dt (0) ∈ Rm.
• T2-description: as a derivation at p it sends a smooth function f to d f◦γ

dt (0).

(and, with the same descriptions, one has dγ

dt (t) ∈ Tγ(t)M for any t in the domain of γ).

And this gives the best way to think (and even to work with) tangent spaces:

• T0: TpM = { dγ

dt (0) : γ ∈ Curvesp(M)}, where we know that two such curves have the same speed at t = 0 if and
only if that happens for their representations w.r.t. a/any chart.



86 3 Tangent spaces

3.4.3 Basis with respect to a chart

The tangent space is an m-dimensional vector space- hence isomorphic to Rm. Each chart χ around p gives rise to
a basis of TpM (hence to a specific isomorphism with Rm):(

∂

∂ χ1

)
p
, . . . ,

(
∂

∂ χm

)
p
∈ TpM,

called the canonical basis w.r.t. χ:

• T1-description: w.r.t. χ ,
(

∂

∂ χi

)
p

corresponds to ei ∈ Rm.

• T2-description: as derivations, they are given by the partial derivatives w.r.t. χ:

∂ f
∂ χi

(p) :=
∂ fχ

∂xi
(χ(p)). (∗)

• T0-description: as speeds,
(

∂

∂ χi

)
p

are induced by the paths

t 7→ χ
−1(χ(p)+ tei).

The way that these vectors change when we change the chart is easiest read off from the point of view of [T1],
which gives the formula (3.2.4). Or, using the partial derivatives given by the point of view of [T2], we have the
more compact formula:(

∂

∂ χi

)
p
=

m

∑
j=1

∂c j

∂ χi
(χ(p))

(
∂

∂ χ
′
j

)
p

=
m

∑
j=1

∂ χ
′
j

∂ χi
(p)

(
∂

∂ χ
′
j

)
p

(where c = χ
′ ◦χ

−1).

Or, if one denotes by x and y the charts χ and χ ′, respectively, and c by y but interpreted as a function of x, one
come across the more compact (but a bit sloppy) formula:

∂

∂xi
= ∑

j

∂y j

∂xi

∂

∂y j
.

3.4.4 Differentials

One can talk about the differential

(dF)p : TpM→ TF(p)N for any smooth map f : M→ N.

Again, this can described from the three points of view:

• T0-description: It sends the speed (at t = 0) of γ ∈ Curvesp(M) to the one of F ◦ γ ∈ CurvesF(p)(N).
• T1-description: For v ∈ TpM represented w.r.t. χ by vχ , (dF)p(v) is represented w.r.t. a/any chart χ ′ around

f (p) by the image of vχ by (dFχ ′
χ )χ(p) .

• T2-description: (dF)p(v), as a derivation, acts on a function g ∈ C ∞(M) by acting with v on g◦F .

Or, if we want to write down (dF)p w.r.t. bases induced by charts χ around p and χ ′ around F(p):(
∂

∂ χi

)
p

(dF)p7−−−−−−−→
m

∑
j=1

dFχ ′, j
χ

dxi
(χ(p))

(
∂

∂ χ
′
j

)
F(p)

,
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where we use the representation Fχ ′
χ = χ ′ ◦F ◦χ−1 of F w.r.t. the two bases and add the superscript j to pick out its

j-th component. Or, in other words, the matrix corresponding to (dF)p w.r.t. the two bases is precisely the matrix

of the partial derivatives of Fχ ′
χ at χ(p).

And we should also keep in mind the characterization of immersions/submersions from Proposition 3.11:

F is an immersion/submersion at p⇐⇒ (d F)p is injective/surjective,

and this should be the way to think about immersions/submersions from now on!

3.4.5 Submanifolds

Let us restrict for simplicity to embedded submanifolds. Given such a submanifold N ⊂M of a manifold M, the
inclusion i : N ↪→M is an immersion, therefore, for each p ∈ N,

(di)p : TpN→ Ti(p)M

is an injection. In the same way that we do not write i(p) but p, this injection will be viewed as an inclusion

TpN ⊂ TpM.

This inclusion can be described using any of the three viewpoints:

• T0-description: this is completely clear/tautological: since any curve in N is also one in M, the speed dγ

dt (0) ∈
TpN is now identified with dγ

dt (0) ∈ TpM (we do not even have a notation to distinguish the two!).
• T1-description: for v ∈ TpN, when viewed in TpM it is the unique tangent vector with the property that, w.r.t.

any chart χ of M adapted to N, the representation of v w.r.t. χ is the representation of v ∈ TpN w.r.t. χ|N .
• T2-description: as derivations, if v ∈ TpN, it acts on f ∈ C ∞(M) by acting with v on f |N .

In this way tangent spaces give us (linear) information on the way that N sits inside M (near p).
Finally, here is the full version of the regular value theorem proven in Chapter 2 (Theorem 2.77 there), this time

with exra-information on the tangent spaces. Recall that a regular value of f : M→ N is any q with the property
that f is a submersion at all points p ∈ f−1(q).

Fig. 3.6 The regular value theorem visualized for the case of the pair of pants manifold P, together with the map h : P→R that assigns
to each point its height over the ground. For the regular value q, the level set h−1(q) is an embedded submanifold of codimension one.
The tangent space at p ∈ h−1(q) consists exactly of Ker(dh)p, i.e. those directions in P that get smashed together by h. After all, small
movement in these directions does not change the value of h, so we remain in h−1(q). The set h−1(q′) fails to be a manifold since h is
not a submersion at p′ (so q′ is not a regular value).
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Theorem 3.26 (the regular value theorem- with tangent spaces). If q ∈ N is a regular value of a smooth
map

F : M→ N,

then the fiber above q, F−1(q), is an embedded submanifold of M of dimension

dim(F−1(q)) = dim(M)−dim(N)

and the tangent spaces Tp
(
F−1(q)

)
, as subspaces of TpM, coincide with the kernel of the differential (dF)p :

TpM→ TF(p)N:
Tp
(
F−1(q)

)
= Ker(dF)p ((for all p ∈ F−1(q)).

Proof. Nice exercise (hint: just look back at our reminder on Analysis).

3.4.6 Back to Euclidean spaces and their embedded submanifolds

Back to Analysis, i.e. for a manifold of type Rm (or an open inside it), the general/abstract theory of this chapter
tells us that the tangent spaces TpRm come with a canonical basis(

∂

∂x1

)
p
, . . . ,

(
∂

∂xm

)
p
, (3.4.1)

which, again, can be looked at using the three view-points:

• T0-description: as speeds, they correspond to the curves parallel to the coordinate axes, t 7→ p+ tei.

• T1-description: with respect to the identity chart, they are represented by the canonical basis e1, . . . ,em of Rm.

• T2-description: as derivations, they are the usual partial derivatives at p.

One obtains an isomorphism that will be treated from now on as an identification:

TpRk = Rk,

but we will still keep the notation (3.4.1) for the canonical basis. This is in order to indicate that we are thinking
about/using tangent vectors.

Exercise 3.27. Check that, via this identification, the speeds dγ

dt (t) discussed in this chapter are identified with the
standard ones from Analysis.

As in the previous exercise for curves, we have a similar problem for embedded submanifolds:

Exercise 3.28. For an embedded submanifold M ⊂ Rn, p ∈M we have the corresponding tangent spaces

TpM ⊂ TpRn = Rn

that can now be described using the three view-points (T0), (T1), (T2). Show that this coincides with the tangent
spaces from the Analysis reminder, trying to find as many different arguments as you can; e.g. one using the
previous exercise, one using the regular values theorem, etc.
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By now, it should also be clear that for smooth maps between embedded submanifolds of Euclidean spaces, the
differential discussed in this chapter becomes (identified with) the one from Analysis (e.g. as recalled in Section
1.2 from Chapter 1, Exercise 1.48).

Exercise 3.29. With the identification above, whenever we have a smooth map f : M → Rk, we talk about its
differentials as maps (d f )p : TpM→ Rk.

For f ∈ C ∞(M) and v ∈ TpM, check that the action of v (as a derivation) on f is precisely

∂v( f ) = (d f )p(v).

3.5 Vector fields

We now discuss vector fields. The brief philosophy is:

While for embedded submanifolds M ⊂Rk each single tangent space TpM ⊂Rk was interesting (e.g. because
it reflects the position of M inside Rk near p), for a general manifold M this is less so. Instead, it is the entire

family {TpM}p∈M that is interesting. I.e. not one single tangent vector, but a family {vp}p∈M of vectors (of
course, ”varying smoothly” with respect to p). I.e. vector fields.

Looking back at the previous sections of this chapter, we see that we insisted in making sense of TpM as vector
spaces independently of the way that M may sit in some larger Euclidean space. Now, just as a vector space,
TpM is rather boring: it is isomorphic to Rm. And the same is true for any finite dimensional vector space V ;
however, one should keep in mind that, for a bare m-dimensional vector space V , realizing an explicit isomorphism
with Rm amounts to extra choices (namely a basis of V ). In particular, for the tangent spaces TpM, we obtained
identifications with Rm once we fixed a chart χ (and these identifications work for p in the domain of χ only!).
Actually this is a ”problem” (or better: ”interesting phenomena”) not only for general Ms, but even for embedded
submanifolds M ⊂ Rk: while isomorphisms

Rm ∼= TpM ⊂ Rk

can be chosen for each p, often cannot be chosen so that they depend smoothly on p∈M. The ”hairy ball theorem”
implies that this is the case already for M = S2 ⊂ R3:

Exercise 3.30. Assume that for each p ∈ S2 one can find a linear isomorphism

Φp : R2→ TpS2 ⊂ R3

so that the Φps vary smoothly with respect to p, in the sense that the map

Φ : S2×R2→ R3, (p,v) 7→Φp(v)

is smooth. Show that there exists a nowhere vanishing vector field on S2, i.e. a smooth map

X : S2→ R3,

nowhere vanishing, such that X(p) ∈ TpS2 for all p ∈ S2. Try now to construct such an X! Then state the ”hairy
ball theorem”.
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More generally, for an embedded submanifold M ⊂ Rk, a vector field on M is a function

M 3 p 7→ X(p) ∈ TpM ⊂ Rk

which, when interpreted as a function with values in Rk, is smooth. What if an embedding into some Euclidean
space is not fixed (or if we use a different one)?

3.5.1 Smooth vector fields

Continuing the last discussion, for general manifolds M: first of all, we can still look at maps

X : M 3 p 7→ Xp ∈ TpM

(interpreted also as families X = {Xp}p∈M). These will be called set-theoretical vector fields on M. To make sense

of their smoothness, we use charts χ : U → Ω ⊂ Rm of M. Recall that any such chart induces a basis
(

∂

∂ χi

)
p

of

TpM hence any set-theoretical vector field X can be written as

Xp =
m

∑
i=1

X i
χ(χ(p))

(
∂

∂ χi

)
p

(3.5.1)

for all p ∈M, where each X i
χ is a function

X i
χ : Ω → R.

These will be called the coordinate functions of X w.r.t. the chart χ .

Fig. 3.7 Let M be the Euclidean plane drawn here with the identity chart Id = (x1,x2). The vector field X assigns a vector Xp to every

point p. The components of Xp with respect to the basis vectors
(

∂

∂xi

)
p

of the identity chart are its coordinate functions X i
Id.

Definition 3.31. A vector field on a manifold is any set-theoretical vector field X ,

X : M 3 p 7→ Xp ∈ TpM,
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with the property that its coordinate functions X i
χ w.r.t any chart χ are smooth.

We denote by X(M) the set of all vector fields on M.

Exercise 3.32. Show that, for the smoothness condition, it is enough to check it only for charts in a/any atlas of M
inducing the smooth structure of M.

Note the algebraic structure on X(M) that is present right away:

• it is a vector space, with the addition + and multiplication by scalars · defined pointwise:

(X+Y )p := Xp +Yp, (λ ·X)p := λ ·Xp.

• it is a C ∞(M)-module, i.e. there is an operation of multiplication of vector fields by smooth functions,

C ∞(M)×X(M)→ X(M), ( f ,X) 7→ f ·X .

Again, this is defined pointwise by the obvious formula:

( f ·X)p := f (p) ·Xp.

Example 3.33. (in Rm) Of course, considering the standard basis (3.4.1) at each point one obtains the correspond-
ing standard vector fields on Rm:

∂

∂x1
, . . . ,

∂

∂xm
∈ X(Rm); (3.5.2)

and, using the basic operations described above, one obtains vector fields

f1 ·
∂

∂x1
+ . . .+ fm ·

∂

∂xm
∈ X(Rm)

for any smooth functions fi on Rm. And the fact that the standard basis (3.4.1) is actually a basis implies that any
vector field on Rm is of this type. In a more algebraic language: (3.5.2) forms a basis of X(Rm) as a C∞(Rm)-
module. Of course, the same discussion applies to any open Ω ⊂ Rm.

Remark 3.34 (the chart representation). The discussion from the previous example allows one to slightly re-
interpret the coordinate functions of a vector field X ∈ X(M) w.r.t. a chart χ : U → Ω discussed above: they
will be precisely the coefficients of a vector field Xχ on Ω obtained by pushing forward X (restricted to U) via Ω :

χ∗(X) ∈ X(Ω), χ∗(X)x := (dχ)p(Xp) ∈ TxΩ where p = χ
−1(x).

This deserves the name of the representation of X in the chart χ . More on ”push-forwards” will be discussed in
subsection 3.5.6.

Exercise 3.35. In R2 we consider the vector fields

X :=
∂

∂x
, Y =

∂

∂y
, E := x · ∂

∂x
+ y · ∂

∂y
∈ X(R2).

And we also consider the polar coordinates chart χ : (x,y) 7→ (r,θ) where

r = r(x,y) ∈ R>0, θ = θ(x,y) ∈ (0,2π)

are determined by the usual formulas:
x = r · cosθ , y = r · sinθ

on U = R2 \{0}. Compute the representation of X ,Y and E in the chart χ . (since the outcome are vector fields in
R>0× (0,2π) where we use r and θ for the coordinates, please use the notations ∂

∂ r and ∂

∂θ
for the standard basis

there).
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Example 3.36. (on submanifolds M ⊂ Rn) When working in an embedded submanifold M ⊂ Rn it is, of course,
natural to use the coordinates (x1, . . . ,xn) that are there anyway, from the ambient space. Actually, there may even
no be any other coordinates available without any extra-choices (think e.g. of the spheres).

Similarly, since TpM ⊂ TpRn, it is natural to write the tangent vector to M as

Xp = f1(p) ·
(

∂

∂x1

)
p
+ . . .+ fn(p) ·

(
∂

∂xn

)
p
.

But one should be aware that the vectors ∂

∂xi
are, in general, not tangent to M. Actually only some expressions of

this type are tangent to M (also, in principle, the functions fi are defined only for p ∈M).
A very good example is the one of the spheres Sm ⊂ Rm+1. To have actual manifold coordinates one needs

to choose some smooth chart (e.g. stereographic projection), but one also use the coordinates (x0, . . . ,xm) of the
ambient space. And then, when looking at tangent vectors (and vector fields) one deals with expressions

λ0 ·
(

∂

∂x0

)
x
+ . . .+λm ·

(
∂

∂xm

)
x

and remembers that such a vector is tangent to the sphere if and only if

λ0 · x0 + . . .+λm · xm = 0.

Exercise 3.37. Show that the following defines a smooth vector field on S1:

V(x,y) :=−y
∂

∂x
+ x

∂

∂y
.

And make a picture. And try to see the relationship with complex numbers.

Exercise 3.38. Show that the following defines a smooth vector field V on S3:

V(x,y,z,t) :=−y
∂

∂x
+ x

∂

∂y
− t

∂

∂ z
+ z

∂

∂ t
.

Hence a ”hairy ball theorem” does not hold on S3. Can you go further and find two more, similar and equally
interesting vector fields on S3? (hint: rebaptise V to I, and call the other two J and K.)

Exercise 3.39. In the last two exercises, in principle, to show that those vector fields are smooth you applied the
definition and looked into charts. However, isn’t there something more general going on? What if M ⊂ N is an
embedded submanifold and X ∈ X(N) has the property that Xp ∈ TpM for all p ∈M?

Exercise 3.40. On Sm consider the stereographic projection w.r.t. the north pole:

χ : Sm \{pN}→ Rm, (x0, . . . ,xm) 7→ (u1, . . . ,um)

with
u1 =

x0

1− xm
, . . . , um =

xm−1

1− xm
.

Find a vector field X ∈ X(Sm) which, represented in this chart, becomes

Xχ = u1 ·
∂

∂u1
+ . . .+um ·

∂

∂um
.
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3.5.2 Vector fields as derivations

Next, we look for alternative ways to characterize the smoothness of vector fields; as a bonus, these will reveal
more of the structure that vector fields carry. First of all, while tangent vectors could be interpreted as derivations
(at given points p∈M), for any X ∈X(M) and f ∈C∞(M) one has ∂Xp( f )∈R for each p∈M, therefore a function

LX ( f ) : M→ R, p 7→ ∂Xp( f ) = (d f )p(Xp).

This is called the Lie derivative of f along the vector field X . Of course, we expect that LX ( f ) is again smooth.

Proposition 3.41. A set-theoretical vector field X on M is smooth if and only if

LX ( f ) ∈C∞(M) for all f ∈C∞(M).

Proof. Assume first that X is smooth in sense of the definition. For f ∈ C∞(M), we can check the smoothness
of LX ( f ) locally: for an arbitrary chart χ we have to make sure that LX ( f ) ◦ χ−1 is smooth. But applying the
definitions, we see that this expression is precisely

∑
i

X i
χ

∂ fχ

∂xi

and then smoothness follows.
For the converse, by the type of arguments we have already seen, it suffices to show that for any point p ∈ M

there exists a chart around p such that the coefficients X χ

i are smooth. For an arbitrary chart χ : U → Ω ⊂ Rm

around p, we choose fi ∈ C ∞(M) such that, in a smaller neighborhood U0 ⊂ U of p, fi coincides with χi. By
hypothesis, LX ( fi) is smooth; but over U0, this function is precisely X χ

i . Hence taking χ0 := χ|U0 , the coefficients

X χ0
i will be smooth.

Hence each vector field X gives rise to an operation

LX : C ∞(M)→ C ∞(M).

The interpretation of tangent vectors at p as derivations at p can be pushed further to a similar characterization
of vector fields. The algebraic objects are derivations of C ∞(M), by which we mean maps

L : C ∞(M)→ C ∞(M)

which are linear and satisfy the derivation low (Leibniz identity):

L( f g) = L( f )g+ f L(g) for all f ,g ∈ C ∞(M).

We denote by Der(C ∞(M)) the (vector) space of such derivations.

Note: again, this is a purely algebraic construction, that applies to any algebra.

Theorem 3.42. For any X ∈ X(M), the Lie derivative along X,

LX : C ∞(M)→ C ∞(M), f 7→ LX ( f )

is a derivation. Moreover,
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I : X(M)→ Der(C ∞(M)), X 7→ LX

is an isomorphism of vector spaces.

Proof. The fact that LX is a derivation follows right away from the similar property of the ∂Xps. The injectivity of
I follows from the fact that, if a tangent vector vp ∈ TpM is non-zero, there exists a smooth function f on M such
that ∂vp( f ) 6= 0 (why?).

For the surjectivity of I, let L be a derivation. Then, for each p ∈M,

Xp : C ∞(M)→ R, f 7→ L( f )(p)

is a derivation at p, hence defines a tangent vector Xp ∈ TpM. Since LX ( f ) = L( f ) is smooth for any smooth f , the

previous proposition implies that X is smooth.

Exercise 3.43. For the vector field X ∈ X(S2) that you found in Exercise 3.40, compute LX ( f ) for the function

f : S2→ R, f (x,y,z) = x+ y2 + z3.

Again, you will probably use here the fact that, although we make reference to f only as a function on S2, you will
be using its extension to the entire ambient space R3. Is there something more general to learn from this?

Exercise 3.44. Consider the vector field V ∈ X(S3) from Exercise 3.38, the Hopf map h : S3→ S2 (Exercise 2.65)
and denote by h1,h2 and h3 its components. Show that LV kills all these components. Can you reformulate this
without referring to the components of h, but to h itself?

3.5.3 The Lie bracket

And here is one clear advantage of the point of view of derivations: the presence of yet another structure on X(M).
More precisely, given two derivations on C ∞(M), necessarily of type LX and LY , their composition

LX ◦LY : C ∞(M)→ C ∞(M)

is not a derivation anymore. Indeed, what we have is:

(LX ◦LY )( f g) = (LX ◦LY )( f )g+ f (LX ◦LY )(g)+LX ( f )LY (g)+LY ( f )LX (g),

i.e. a ”defect term” LX ( f )LY (g)+LY ( f )LX (g) which spoils the Leibniz identity. However, the other composition
LY ◦LX comes with the same ”defect term”; therefore, their difference

[LX ,LY ] := LX ◦LY −LY ◦LX : C ∞(M)→ C ∞(M)

is again a derivation.

Definition 3.45. Given X ,Y ∈ X(M), we denote by [X ,Y ] ∈ X(M), called the Lie bracket of X and Y , the
(unique) vector field on M with the property that

L[X ,Y ] = LX ◦LY −LY ◦LX .
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The following exercise should convince you of the advantage of the point of view of derivations.

Exercise 3.46. Compute the coordinate functions of [X ,Y ] with respect to a chart χ , in terms of the coordinates
functions of X and Y defined by (3.5.1).

Exercise 3.47. In this exercise we point out the main properties of the Lie bracket operation [·, ·] on X(M).
First of all, the way it interacts with the other structure present on on X(M)- show that:

• w.r.t. the vector space structure: it is a bilinear and skew-symmetric operation

[·, ·] : X(M)×X(M)→ X(M).

• w.r.t. the C ∞(M)-module structure: it satisfies the derivation rule:

[X , f ·Y ] = f · [X ,Y ]+LX ( f ) ·Y,

for all X ,Y ∈ X(M), f ∈ C ∞(M).

And then a property that [·, ·] has on its own- the Jacobi identity:

[[X ,Y ],Z]+ [[Y,Z],X ]+ [[Z,X ],Y ] = 0 for all X ,Y,Z ∈ X(M).

Exercise 3.48. On R3 we consider the vector fields

X1 = z
∂

∂y
− y

∂

∂ z
, X2 = x

∂

∂ z
− z

∂

∂x
, X3 = y

∂

∂x
− x

∂

∂y
.

Show that:
[X1,X2] = X3, [X2,X3] = X1, [X3,X1] = X2

in two different ways:

• using the definition of the Lie bracket via commutators of derivations.
• using the properties of the Lie bracket described in Exercise 3.47 (and the fact that the Lie bracket between any

two of the standard vector fields ∂

∂x , ∂

∂y and ∂

∂ z is zero).

Exercise 3.49. Consider the following three vector fields on the sphere S3:

V 1
(x,y,z) :=

1
2

(
−y

∂

∂x
+ x

∂

∂y
+ t

∂

∂ z
− z

∂

∂ t

)
,

V 2
(x,y,z) :=

1
2

(
−z

∂

∂x
− t

∂

∂y
+ x

∂

∂ z
+ y

∂

∂ t

)
,

V 3
(x,y,z) :=

1
2

(
−t

∂

∂x
+ z

∂

∂y
− y

∂

∂ z
+ x

∂

∂ t

)
.

Compute [V 1,V 2], [V 2,V 3] and [V 3,V 1]. As a test, please also check the Jacobi identity for V 1,V 2 and V 3.
(But please be aware that we ask you for a computation with vector fields on S3; so just working formally with

symbols may require some explanations- e.g. because simple vector fields like ∂

∂x are not tangent to S3. We are not
saying the result is not correct at the end, but please explain why what you do is correct. Any way, you should be
getting [V 1,V 2] =V 3, [V 2,V 3] =V 1, [V 3,V 1] =V 2.)
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3.5.4 The tangent bundle

Back to the the very definition of vector fields and of X(M), here is another way to characterize smoothness. The
idea is to put all the spaces TpM (disjointly) in one big space

T M := tp∈MTpM = {(p,vp) : p ∈M,vp ∈ TpM}

and make this into a manifold, so that the smoothness of a set-theoretical vector field X is the same as the smooth-
ness of X viewed as a map between manifolds:

X : M→ T M, p 7→ Xp.

Fig. 3.8 Visualization of the tangent bundle T M of a manifold M (here: an interval). Note that points in T M correspond to vectors
in M. The vertical projection map π : T M→M assigns to every vector v ∈ TpM the point p at which it is based. Each tangent space
TpM is therefore the preimage π−1(p) and also called the fiber over p. A vector field can be seen as a map X : M→ T M such that
π ◦X = IdM (we say it is a section of T M). A canonical example of this is the zero section 0 : M→ T M that sends each p ∈M to the
zero vector based at p.

To put a smooth structure on T M, i.e. to exhibit charts, we need to understand how to parametrize the points of
T M by coordinates. Of course, we should start from a chart

χ : U →Ω ⊂ Rm

for M. The point is that such a chart also allows us to parametrize tangent vectors vp ∈ TpM, for p ∈ U , by

coordinates χ̂i(vp) w.r.t. to the induced basis
(

∂

∂ χi

)
p

of TpM: just decompose vp as

vp = ∑
i

λi

(
∂

∂ χi

)
p

and set χ̂i(vp) := λi. (3.5.3)

Therefore, on the subset TU ⊂ T M, we have a natural ”chart”:

χ̃ : TU →Ω ×Rm ⊂ R2m,

χ̃(p,vp) = (χ1(p), . . . ,χm(p), χ̂1(vp), . . . , χ̂m(vp)).
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Proposition 3.50. T M can be made into a manifold in a unique way so that, for any chart (U,χ) of M, (TU, χ̃) is
a chart of T M.

Moreover, this is also the unique smooth structure with the property that a set-theoretical vector field X on M is
smooth if and only if it is smooth as a map X : M→ T M.

Proof. We first compute the change of coordinates between charts of type (TU, χ̃). We start with two charts (U,χ)
and (U ′,χ ′) for M, with change of coordinates c = χ ′ ◦ χ−1. We want to compute c̃ := χ̃ ′ ◦ χ̃−1. Hence we try to
write χ̃ ′(p) as a function depending on χ̃(p). While the first m coordinates are c(χ(p)), we need to understand the
last m. For that we use: (

∂

∂ χi

)
p
= ∑

j

∂c j

∂xi
(χ(p))

(
∂

∂ χ
′
i

)
p

.

(see (3.2.4)). Then, for a tangent vector p ∈M, replacing this in (3.5.3), we find that

χ̂
′

j(vp) = ∑
i

χ̂i(vp)
∂c j

∂xi
(χ(p)).

Denoting by (x, x̂) the coordinates in R2m = Rm×Rm, we find that

c̃(x, x̂) = (c(x),∑
i

x̂i
∂c
∂xi

(x).

Hence the changes of coordinates is smooth.
However, strictly speaking, to show that T M is a manifold, there are still a few things to be done. First of all, we

should have made it into a topological space. But, as pointed out in Remark 2.24 from Chapter 2, the topology can
actually be recovered from an atlas. Let us give the details, independently of our earlier discussion. Given

a chart χ : U →Ω for M, Ω̃ −open in Ω ×Rm (3.5.4)

we would like
χ̃
−1(Ω̃)⊂ T M

to be open in M. We denote by B the collection of subsets of T M of this type. We will declare a subset D ⊂ T M
to be open if for each (p,vp) ∈ D there exists B ∈B such that

(p,vp) ∈ B⊂ D.

Of course, what is happening here is that B is a topology basis, and we consider the associated topology (hence
one can also say that a subset of T M is open iff it is an union of members of B).

It should be clear that the resulting topology is Hausdorff. For 2nd countability, note that, in (3.5.4), we can
restrict ourselves to χ belonging to an atlas inducing the smooth structure on M and, for each χ , to Ω̃ belonging
to a basis of the Euclidean topology on Ω ×Rm. As long as the domains of the charts from A for a basis for the
topology of M, the resulting B would still be a topology basis for the topology we defined on T M. Since M and
the Ω ×Rms are 2nd countable, we are able to produce a countable basis for the topology on T M.

The fact that a set-theoretical vector field is smooth if and only if it is smooth as a map X : M→ T M should be
clear (one just has to check it locally, and then it is really the definition of the smoothness of X). The uniqueness is
left as an exercise for the interested student.

Note the object that results from this discussion: T M. It is now a manifold that relates to M by an obvious
”projection map”

π : T M→M, (p,vp) 7→ p.

And the fibers π−1(p) are vector spaces (precisely the tangent spaces of M). This is precisely what vector bundles
are- but we will return to them later on.
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3.5.5 Extra-for the interested student: cool stuff with vector fields

Here are some very simple questions about vector fields whose answer is non-trivial question but very exciting. Let us start from the
”hairy ball theorem” which can be seen as an interesting property of the two-sphere S2: it does not admit a nowhere vanishing vector
field. The first question in our list is now obvious:

Question: Which manifolds admit a nowhere vanishing vector field?

It is worth looking at this question even for the spheres Sm ⊂ Rm+1. Then the question becomes pretty elementary: does there exist
a smooth function

X : Sm→ Rm+1 \{0}
with the property that

x0 ·X0(x)+ x1 ·X1(X)+ . . .+Xm ·Xm(x) = 0 ∀ x = (x0,x1, . . . ,xm) ∈ Sm+1?

For S1 the answer is clearly yes (think on the picture!) and, as we have already mentioned, for S2 the answer is no. What about S3?
Well, using quaternions as in Example 2.114 we see that the answer is yes. More precisely, viewing S3 ⊂ H ∼= R4, the multiplication
by i, j and k provide three nowhere vanishing (and even linearly independent!) vector fields on S3:

X i(x) = i · x, X j(x) = j · x, Xk(x) = k · x.

(why are these vector fields on spheres?).
It turns out that, among the spheres, it is precisely the odd dimensional ones that do admit such vector fields.
For general manifolds the answer to the previous question is closely related to the topology of M- namely to the Euler number

χ(M) of M. We will briefly discuss the Euler number later on when we will introduce DeRham cohomology and we will see that
χ(Sm) = 1+(−1)m. For now, let us mention that this number is, in principle, easy to compute using a triangulation of M, by the Euler
formula

χ(M) = #vertices−#edges+#faces− . . . .

(using this you should convince yourself that, indeed, χ(Sm) = 1+(−1)m). The answer to the previous question is: a compact manifold
M admits a no-where vanishing vector field if and only χ(M) = 0!

What about more than one no-where vanishing vector fields? Of course, the question is interesting only if we look for linearly
independent ones- and then the number of such vector fields will be bounded from above by the dimension of the manifold. E.g., on
S3, there are at most three such; and the vector field X i, X j and Xk described above show that the upper bound can be achieved. More
generally:

Question: An m-dimensional manifold M is said to be parallelizable if it admits m vector fields which, at each point, are linearly
independent.

For instance, we already know that S1 and S3 are parallelizable. One possible explanation for this is the fact that both S1 as well as
S3 are Lie groups (and they are the only spheres that can be made into Lie groups- see Example 2.114 from Chapter 2). More precisely:

Exercise 3.51. Show that all Lie groups are parallelizable. Here is how to do it. Let G be a k-dimensional Lie group. Consider its
tangent space at the identity, g := TeG (a k-dimensional vector space). For v ∈ g, we define the vector field

→
v on G by

→
v g:= (dLg)e(v)

where Lg : G→ G is given by Lg(h) = gh and (dLg)e : g→ TgG is its differential.
Show that if {v1, . . . ,vk} is a basis of the vector space g, then

→
v 1, . . . ,

→
v k are k-linearly independent vector fields on G.

While the only spheres that can be made into Lie groups are S0,S1 and S3, are there any other spheres that are parallelizable? Can
one reproduce the argument that we used for S3 so that it applies to other spheres Sm? We see that we need some sort of ”product
operation” on Rm+1, so that we can define vector fields X l by

X l(x) = el · x, l ∈ {1, . . . ,m}

where {e0,e1, . . . ,em} is the canonical basis. We end up again with the question mentioned in Example 2.114 from Chapter 2, of
whether Rm+1 can be made into a normed division algebra. And, as we mentioned there, the only possibilities were R,R2 and R4 for
associative products, and also R8(octonions) in full generality. However, while the failure of associativity was a problem in making the
corresponding sphere into a Lie group, it is not difficult to see that it does not pose a problem in producing the desired vector fields.
Therefore: yes, the arguments that used H works also for octonions, hence also S7 is parallelizable.

And, as you may expect by now, it turns out that S0,S1,S3 and S7 are the only spheres that are parallelizable!
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So far we have looked at the extreme cases: one single nowhere vanishing vector field, or the maximal number of linearly indepen-
dent vector fields. Of course, the most general question is:

Question: Given a manifold M, what is the maximal number of linearly independent vector fields that one can find on M?

Already for the case of the spheres Sm, this deceivingly simple question turns out to be highly non-trivial. The solution (found half
way in the 20th century) requires again the machinery of Algebraic Topology. But here is the answer: write m+1 = 24a+rm′ with m′

odd, a≥ 0 integer, r ∈ {0,1,2,3}. Then the maximal number of linearly independent vector fields on Sm is

r(m) = 8a+2r−1.

Note that r(m) = 0 if m is even- and that corresponds to the fact that there are no nowhere vanishing vector fields on even dimensional
spheres. The parallelizability of Sm is equivalent to r(m) = m, i.e. 8a+2r = 24a+rm′, which is easily seen to have the only solutions

m = 1, a = 0, r ∈ {0,1,2,3},

giving m = 0,2,4,8. Hence again the spheres S0,S1,S3 and S7.

3.5.6 Push-forwards of vector fields

We now discuss how vector fields can be pushed forward from one manifold to another. The best scenario is when
we start with a diffeomorphism F : M→ N between two manifolds; then it induces a push-forward operation:

F∗ : X(M)→ X(N), X 7→ F∗(X)

where, for X ∈ X(M), F∗(X) ∈ X(N) is defined by describing how it acts on functions f ∈ C ∞(N):

LF∗(X)( f ) := LX ( f ◦F)◦F−1 for all f ∈ C ∞(N). (3.5.5)

Or, with a bit more insight: F induces a pull-back operation on functions

F∗ : C ∞(N)→ C ∞(M), f 7→ f ◦F ;

this works for any smooth F but, for diffeomorphisms, this is an isomorphism (which is the inverse?). And then
one can just use it to transport derivations on C ∞(M) to derivations on C ∞(N)

C ∞(M)
LX // C ∞(M)

C ∞(N)

F∗

OO

LF∗X

// C ∞(N)

F∗

OO

And that is precisely what formula (3.5.5) does; and you check yourself that the resulting dotted arrow is, indeed,
a derivation, i.e. (3.5.5) does define a vector field F∗(X) ∈ X(N). A more explicit description of F∗(X) (that gives
F∗(X)q ∈ TqN for each q ∈ N) is obtained using the formula LY (g)(p) = (dg)p(Yp) for vector fields Y and smooth
functions g.

Exercise 3.52. Deduce that, for all q ∈ N,

F∗(X)q = (dF)p(Xp) where p = F−1(q). (3.5.6)

Also show that, if G : N→ P is another diffeomorphism, then (G◦F)∗ = G∗ ◦F∗.

Proposition 3.53. The push forward operation preserves the Lie bracket of vector fields: for any X1,X2 ∈ X(M),
one has

F∗([X1,X2]) = [F∗(X1),F∗(X2)].
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Fig. 3.9 Consider a map F : R2→ B2 that diffeomorphically compresses R2 into the open disc B2. The push-forward of the canonical
coordinate vector field ∂

∂x1
along F is exactly the vector field that intuitively gets compressed along with the surrounding space. Can

you choose an explicit map F and calculate the components of F∗( ∂

∂x1
) with regard to the canonical identity chart of B2 ⊆ R2?

Proof. We start with the definition of [F∗(X1),F∗(X2)]:

L[F∗(X1),F∗(X2)]( f ) = LF∗(X1)

(
LF∗(X2)( f )

)
−LF∗(X2)

(
LF∗(X1)( f )

)
(for all f ∈ C ∞(N), in which we plug in the definition of F∗(Xi) to obtain

LF∗(X1)

(
LX2( f ◦F)◦F−1)− the similar one = LX1 (LX2( f ◦F))◦F−1− the similar one ;

using again the formula defining [X1,X2], and then the one for F∗, the last expression is

L[X1,X2]( f ◦F)◦F−1 = LF∗([X1,X2])( f ).

Exercise 3.54. By similar arguments define also a pull-back operation F∗ : X(N)→ X(M). And show that this
makes sense not only for diffeomorphisms F : M → N, but for all local diffeomorphisms. Also: is it true that
(G◦F)∗ = G∗ ◦F∗?

The construction of push-forwards cannot be extended for arbitrary smooth maps F : M→ N. Instead, one can
talk about a vector field X ∈ X(M) being ”related via F” to a vector field Y ∈ X(N):

Definition 3.55. Given a smooth map F : M→ N, we say that X ∈ X(M) is F-projectable to Y ∈ X(N) if

(dF)p(Xp) = YF(p) for all p ∈M.

Note that, when F is a diffeomorphism, this corresponds precisely to Y = F∗(X). However, in general, there may
be different vector fields on M that are F-projectable to the same vector field on N (think e.g. of the case when N is
a point) or there may be vector fields on M that are not projectable to any vector field on N. However, Proposition
3.53 still has a version that applies to this general setting:

Exercise 3.56. For any smooth map F : M→ N, if Xi ∈ X(M) are F-projectable to Yi ∈ X(N) for i ∈ {1,2}, then
[X1,X2] is F-projectable to [Y1,Y2]. (Hint: proceed locally and remember the formula that you obtained when you
solved Exercise 3.46).
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Fig. 3.10 Consider the maps α,γ : S1 → S1× S1 and β : S1× S1 → S1 defined by α(s) = (s, t0), β (s, t) = s and γ(t) = (s0, t). The
depicted vector field X on S1 is α-projectable to Y , and conversely Y is β -projectable to α . Is it possible to find a vector field on S1

that is γ-projectable to Y ?

Exercise 3.57. Exercise 3.48 and Exercise 3.49 give you three vector fields X i on S2, and V i on S3, respectively;
you have surely noticed that, mysteriously enough, they satisfy the same types of formulas for their Lie brackets.
How are they related?

Well, here is one more piece of data: to move from S3 to S2 you can use the Hopf map h from Exercise 2.65. Do
some computations and explain what is going on.
(warning: not to get confused by the symbols, better use different letter for the coordinates in the two spheres- e.g.
(x,y,z, t) in S3 and (u,v,w) in S2; in particular, the vector fields from Exercise 3.48 will be V 1 = w ∂

∂v − v ∂

∂w etc.)
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3.5.7 Application: the Lie algebra of a Lie group

We now discuss the infinitesimal counterpart of Lie groups.

Definition 3.58. A Lie algebra is a vector space a endowed with an operation

[·, ·] : a×a→ a

which is bi-linear, antisymmetric and which satisfies the Jacobi identity:

[[u,v],w]+ [[v,w],u]+ [[w,u],v = 0 for all u,v,w ∈ a.

Example 3.59 (commutators of matrices). The space Mn(R) of n× n matrices, together with the commutator
of matrices,

[A,B] := AB−BA

is a Lie algebra. More generally, for any vector space V , the space Lin(V,V ) of linear maps from V can be made
into a Lie algebra by the same formula (just that AB becomes the composition of A and B).

Example 3.60 (vector fields). As we have already pointed out, for any manifold M, the space of vector fields
X(M) endowed with the Lie bracket of vector fields becomes a (infinite dimensional) Lie algebra.

Exercise 3.61. What is the relationship between the previous two examples?

We now explain how a Lie group G gives rise to a finite dimensional Lie algebra g. As a linear space, it is defined
as the tangent space of G at the identity element e ∈ G:

g := TeG.

For the Lie bracket, we will related g to vector fields on G, and then use the Lie bracket of vector fields. Hence, as
a first step, we note that any v ∈ g gives rise to a vector field

→
v∈ X(G).

defined as follows. For g ∈ G, to define
→
v g∈ TgG, we use the left translation by g:

Lg : G→ G, Lg(h) = gh.

This is smooth (and even a diffeomorphism!) and make use of its differential at e, (dLg)e : g→ TgG. Define then

→
v g:= (dLg)e(v) ∈ TgG.

Exercise 3.62. Show that, indeed,
→
v is smooth.

Proposition 3.63. With the same notations as above (a Lie group G and g := TeG), for any u,v ∈ g, the Lie bracket
[
→
u ,
→
v ] ∈ X(G) is again of type

→
w for some w ∈ g. Denoting the resulting w by [u,v] ∈ g, we obtain an operation

[·, ·] : g×g→ g

that makes g into a Lie algebra.

Proof. Note that the map
j : g→ X(G), v 7→→v (3.5.7)
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is injective. That is simply because
→
v e= v. This implies the uniqueness of w; and it also indicates how to define it:

w := [
→
u ,
→
v ]e.

We still have to show that [
→
u ,
→
v ] =

→
w. For that we note that

(La)∗(
→
v ) =

→
v

for all a∈G and all v∈ g, where we use the push-forward as defined in subsection 3.5.6. Indeed, using the formula
(3.5.6) for the push-forward and then the definition of

→
v :

(La)∗(
→
v )g = (dLa)a−1g

(
(dLa−1g)e(v)

)
and then, using the chain rule and La ◦La−1g = Lg, we end up with

→
v g.

Since (La)∗(
→
v ) =

→
v and similarly for u, Proposition 3.53 implies that [

→
u ,
→
v ] = (La)∗([

→
u ,
→
v ]). Evaluating this at

a ∈ G and using again formula formula (3.5.6) (where F = La,q = a so that p = L−1
a (a) = e):

[
→
u ,
→
u ]a = (dLa)e([

→
u ,
→
u ]e) = (dLa)e(we) =

→
wa .

To fact that the resulting operation [·, ·] on g is a bilinear and skew-symmetric is immediate. For the Jacobi
identity, since the map j from (3.5.7) is injective and satisfies j([v,w]) = [ j(v), j(w)], it suffices to remember that
the Lie bracket of vector fields does satisfy the Jacobi identity.

Definition 3.64. The Lie algebra of the Lie group G is defined as g = TeG endowed with the Lie algebra
structure from the previous proposition.

We now compute some examples.

Example 3.65. We start with the general linear group GLn(R), and we claim that its Lie algebra is just the algebra
Mn(R) of n×n matrices endowed with the commutator bracket.

Proof. As we already mentioned, Mn(R) is seen as a Euclidean space; we denote coordinates functions by

xi
j : Mn(R)→ R

(sending a matrix to the element on the position (i, j)). We also remarked already that, while GLn = GLn(R) sits
openly inside Mn(R), its tangent space at the identity matrix I (and similarly at any point) is canonically identified
with Mn(R): any X ∈Mn(R) is identified with the speed at t = 0 of t 7→ (I + tX). After left translating, we find
that the corresponding vector field

→
X∈ X(GLn) is given, at an arbitrary point A ∈ GLn, by

→
X A=

d
dt

∣∣∣∣
|t=0

A · (I + tX) ∈ TAGLn. (3.5.8)

Let X ,Y ∈Mn(R) and let [X ,Y ] ∈Mn(R) be the Lie algebra bracket- hence defined by
−→

[X ,Y ]= [
→
X ,
→
Y ], where the

last bracket is the Lie bracket of vector fields on GLn. To compute it, we use the defining equation for the Lie
bracket of two vector fields:

L
[
→
X ,
→
Y ]
(F) = L→

X
L→

Y
(F)−L→

Y
L→

X
(F) (3.5.9)

for all smooth functions
F : GLn→ R.
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From the previous description of
→
X we deduce that

L→
X
(F)(A) =

d
dt

∣∣∣∣
t=0

F(A · (I + tX)) = ∑
i, j,k

∂F
∂xi

j
(A)Ai

kXk
j .

In particular, applied to a coordinate function F = xi
j, we find

L→
X
(xi

j)(A) = ∑
k

Ai
kXk

j

or, equivalently, L→
X
(xi

j) = ∑k xi
kXk

j . Therefore

L→
Y
(L→

X
(xi

j)) = ∑
k

L→
Y
(xi

k)X
k
j = ∑

k,l
xi

lY
l
k Xk

j = ∑
l

xi
l(Y ·X)l

j,

which is precisely L−→
Y ·X

(xi
j). Since this holds for all coordinate functions, we have

L→
Y
◦L→

X
= L−→

Y ·X
;

we deduce that [
→
X ,
→
Y ] =

−→
Y ·X −

−→
X ·Y and then that [X ,Y ] is X ·Y −Y ·X , i.e. the usual commutator of matrices.

Example 3.66. In section 2.5 of Chapter 2 we have looked at several classical Lie groups G ⊂ GLn and we have
computed their tangent spaces at the identity matrix I, as subspaces of TIGLn = Mn(R):

• for O(n) and SO(n) we obtained

o(n) = {X ∈Mn(R) : X +XT = 0}.

• for SLn(R) we obtained
sln(R) = {A ∈Mn(R) : Tr(X) = 0}.

• U(n) we obtained
u(n) = {X ∈Mn(C) : X +X∗ = 0}.

• for SU(n) we obtained
su(n) = {X ∈Mn(C) : X +X∗ = 0,Tr(X) = 0}.

We claim that the resulting Lie brackets on these subspaces of Mn(R) are still given by the commutators of
matrices (just for fun, you should check that, indeed, all these subspaces are closed under taking commutators).

Of course, all these examples can be treated at once: given G ⊂ GLn which is a Lie subgroup (i.e. a subgroup
and an embedded submanifold), the resulting Lie algebra structure on g = TIG ⊂ TIGLn = Mn(R) is just the
commutator bracket.

Proof. Note that for X ∈ g we have two induced vector fields: one on G, denoted as above by
→
X∈ X(G) and then,

since g ⊂Mn(R) we will have a similar one on GLn; to distinguish the two we will denote the second one by
�
X∈ X(GLn). Note that, denoting by i : G ↪→ GLn the inclusion, we are in the situation of Definition 3.55:

→
X is

i-projectable to
�
X . Hence, by Exercise 3.56, [

→
X ,
→
Y ] is i-projectable to [

�
X ,

�
Y ] (for all X ,Y ∈ g). By the previous

example, the last expression is
�

[X ,Y ]comm where, for clarity, we denote by [X ,Y ]comm the commutator bracket of
the matrices X and Y . Hence, for the Lie bracket of X and Y as elements of the Lie algebra g of G we find

[X ,Y ] = [
�
X ,

�
Y ]I =

(
�

[X ,Y ]comm

)
I
= [X ,Y ]comm.
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Remark 3.67 (For the interested students: Lie’s fundamental theorems). The Lie algebra g of a Lie group G contains (almost) all the
information about G! This may sound surprising at first, since g is only ”the linear approximation” of G and only around the identity
e ∈ G. The fact that it is enough to consider only the identity e can be explained by the fact that, using the group structure (and the
resulting left translations) one can move around from e to any other element in g. The fact that ”the linear approximation” contains
(almost) all the information is more subtle and the real content of this is to be found on the Lie bracket structure of g.

And here is what happens precisely:

• As we have seen, any Lie group has an associated (finite dimensional) Lie algebra.
• Any finite dimensional Lie algebra g comes from a Lie group.
• For any finite dimensional Lie algebra g there exists and is unique a Lie group G(g) whose Lie algebra is g and which is 1-

connected (i.e. both connected as well as simply-connected). The Lie group G(g) can be constructed explicitly out of g. And any
other connected Lie group which has g as Lie algebra is a quotient of G(g) by a discrete subgroup.

• Explanation for the 1-connectedness condition: starting with a Lie group G, the connected component of the identity element, is
itself a Lie group with the same Lie algebra as G. And so is the universal cover of G. I.e. one can always replace G by a Lie group
that is 1-connected without changing its Lie algebra.

• the construction G 7→ g gives an equivalence between (the category of) 1-connected Lie groups and (the category of) finite dimen-
sional Lie algebras. At the level of morphisms even more is true: while a morphism of Lie groups F : G→ H induces a morphism
of the corresponding Lie algebras, f : g→ h, if G is 1-connected (but H is arbitrary), then F can be recovered from f (i.e.: any
morphism f of Lie algebras comes from a unique morphism F of Lie groups!). That is remarkable since f is just the linearization
of F at the identity f = (dF)e.

3.6 The flow of a vector field

The brief philosophy is:

If you live on a manifold M (... not necessarily the sphere) and your are sitting at a point p, then a tangent
vector Xp ∈ TpM gives you a direction in which you can start walking. A vector field however gives you an
entire path to walk on. In the ideal situation (no friction etc), and if you think of a vector field as describing

the wind blowing, its integral curve at p is the trajectory that you will follow, blown by the wind.

Fig. 3.11 Wind speeds as a vector field together with an integral curve γ passing through the Uithof p.
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3.6.1 Integral curves

We first make precise what it means for ”a trajectory (path) to follow a vector field”.

Definition 3.68. Given a vector field X ∈ X(M), an integral curve of X is any curve γ : I→M defined on
some open interval I ⊂ R (I = R not excluded) such that

dγ

dt
(t) = Xγ(t) for all t ∈ I.

We say that γ starts at p if 0 ∈ I and γ(0) = p.

Example 3.69. Consider M = R2 and the vector field X given by

X =
∂

∂x
+

∂

∂y
.

Then a curve in R2, written as γ(t) = (x(t),y(t)), is an integral curve if and only if

ẋ(t) = 1, ẏ(t) = 1.

Hence we find that the integral curves of X are those of type

γ(t) = (t +a, t +b)

with a,b ∈ R constants. Prescribing the starting point of γ is the same thing as fixing the constants a and b (and
then we have a unique integral curve).

A more interesting vector field is:

X = y
∂

∂x
− x

∂

∂y
.

Then the equations to solve are ẋ = y and ẏ = −x. Hence ẍ = −x from which one can deduce (or guess, and then
use the uniqueness recalled below) that

x(t) = acos t +bsin t, y(t) = bcos t−asin t,

for some (arbitrary) constants a,b ∈ R (and, again, prescribing the starting point of γ is the same thing as fixing
the constants a and b).

Note that in both examples the integral curves that we were obtaining are defined on the entire I = R. However,
this need not always be the case. For instance, for

X =−x2 ∂

∂x
− y

∂

∂y
,

starting with any constants a,b ∈ R one has the integral curve given by

γ(t) =
(

a
at +1

, be−t
)

;

but, for a > 0, the largest interval containing 0 on which this is defined is (− 1
a ,∞). However, still as above, for any

point p = (a,b) ∈ R2, one finds an integral curve that starts at p.

Of course, in the previous examples, the existence of integral curves starting at a given (arbitrary) point is no
accident:
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Proposition 3.70 (local existence and uniqueness). Given a vector field X ∈ X(M):

1. for any p ∈M there exists an integral curve γ : I→M of X that starts at p.
2. any two integral curves of X that coincide at a certain time t0 must coincide in a neighborhood of t0.

Since this is a local statement, we just have to look in a chart. Then, as we shall see, what we end up with is a
system of ODEs and the previous proposition becomes the standard local existence/uniqueness result for ODEs.
Here are the details. Fix a chart χ : U →Ω ⊂M of M around p. Then, as in (3.5.1), X can be written on U as

Xp =
m

∑
i=1

X i
χ(χ(p))

(
∂

∂ χi

)
p

with the coordinate functions X i
χ of X w.r.t. χ being smooth functions on Ω . Also, a curve γ in U becomes, via χ ,

a curve γχ in Ω . Since γ(t) = χ−1(γχ(t)), its derivatives becomes

dγ

dt
(t) =

dγ i
χ

dt
(t)
(

∂

∂ χi

)
γ(t)

.

Hence the integral curve condition becomes the system of ODEs:

dγ i
χ

dt
(t) = X i

χ(γ
1
χ(t), . . . ,γ

m
χ (t)) i ∈ {1, . . . ,m}

or, more compactly,
dγχ

dt
(t) = Fχ(γχ(t)),

where Fχ = (X1
χ , . . . ,X

m
χ ) : Ω → Rm. And here is the standard result on such ODEs:

Theorem 3.71. Let F : Ω → Rm be a smooth function. Then, for any x ∈ Ω , the following ordinary differential
equation with initial condition:

dγ

dt
(t) = F(γ(t)), γ(0) = x (3.6.1)

has a solution γ defined on an open interval containing 0 ∈ R, and any two such solutions must coincide in a
neighborhood of 0.

Furthermore, for any x0 ∈Ω there exists an open neighborhood Ω0 of x0 in Ω , ε > 0 and a smooth map

φ : (−ε,ε)×Ωx0 →Ω ,

such that, for any x ∈Ω0, φ(·,x) : (−ε,ε)→Ω is a solution of (3.6.1).

We see that this the first part of the theorem immediately implies (well, it is actually the same as) the previous
proposition. For a more global version of the proposition, we have to look at maximal integral curves.

Definition 3.72. Given a vector field X ∈X(M), a maximal integral curve of X is any integral curve γ : I→
M which admits no extension to a strictly larger interval Ĩ and which is still an integral curve of X .

With this, the local result implies quite easily the following one, with a more global flavour.

Corollary 3.73. Given a vector field X ∈ X(M), for any p ∈M there exists a unique maximal integral curve
of X γp : Ip→M that starts at p.
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Proof. The main remark is that if γ1 and γ2 are two integral curves defined on intervals I1 and I2, respectively, then
the set I of points in I1∩ I2 on which the two coincide is closed in I1∩ I2 (because it is defined by an equation) and
open by the second part of the previous proposition. Hence, since I1∩ I2 is connected, if I 6= /0 (i.e. the two coincide
at some t), then I = I1∩ I2 (i.e. the two must coincide on their common domain of definition). Therefore, to obtain
Ip and γp we can just put together all the integral curves that start at p.

The best possible scenario is:

Definition 3.74. We say that X ∈ X(M) is complete if all the maximal integral curves are defined on the
entire R.

As we shall see below, all the vector fields that are compactly supported (i.e. which vanish outside a compact
subset of M) are complete. In particular, when M is compact, all vector fields on M are complete.

Fig. 3.12 Take M to be the open unit disc in R2 and consider the vector fields ∂

∂x1
and F∗( ∂

∂x1
), where F is as in Figure 3.9. Note

that the marked maximal integral curves γ1 and γ2 with respect to each of these fields have the same image, but must be parametrized
differently: γ1 moves at constant (unit) speed and is defined on a finite open interval, while γ2 is defined on all of R and moves slower
and slower as one tends towards the boundary (within the ambient R2) of M. Since we can’t extend γ1, ∂

∂x1
is not a complete vector

field while F∗( ∂

∂x1
) is. As pushing a vector field along a diffeomorphism preserves completeness, ∂

∂x1
is complete when regarded as

a vector field on all of R2. Intuitively, a vector field is complete when following it forwards or backwards never leads you out of the
manifold in a finite time. But be careful, you can find an incomplete vector field on R2 even though it apparently stretches infinitely -
can you construct one using F?

Exercise 3.75. Consider the vector field on the sphere X ∈ X(S2) given by

X(x,y,z) = y
∂

∂ z
− z

∂

∂y
.

Draw it in a picture. Then compute all its integral curves and show them in the picture as well. Is there something
more general happening (with the integral curves) at points where a vector field vanishes?

Exercise 3.76. If γ : R→M is an integral curve of a vector field X ∈X(M) such that there exists t0, t1 ∈R distinct
such that γ(t0) = γ(t1), show that γ is periodic, i.e. there exists T ∈ R>0 such that γ(t +T ) = γ(t) for all t ∈ R.
(Hint: uniqueness of integral curves).

Exercise 3.77. In this exercise γ : R→M is an integral curve of a vector field X ∈ X(M) and we assume that γ is
periodic, in the sense that there exists T ∈ R>0 such that γ(t +T ) = γ(t) for all t ∈ R. Such a T will be called a
period of γ .
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1. Show that any closed subgroup Γ of (R,+), different from R, must be of type Z · r0 for some r0 ∈ R.
2. Show that one can talk about ”the period of γ”, i.e. there exists a smallest period T0 of γ .
3. With T0 as above, show that

γ : S1→M, ei·θ 7→ γ

(
T ·θ
2π

)
is an embedding of S1 in M.

Exercise 3.78 (from the 2019 exam). Which of the following subsets of R2 can be the image of an integral curve
of a vector field X ∈ X(R2). (Explanation: subset 1 is a circle, subset 2 is an open part of a circle, subset 4 is an
infinite line, subset 6 describes a spiral approaching a circle. Please explain you answer; but when you describe a
vector field, you do not have to write down a formula- just draw it on the picture)

Exercise 3.79 (from the 2019 exam). On the 2-sphere we consider the following curve:

γ : R→ S2, γ(t) =
(

t√
1+ t2

,
cos t√
1+ t2

,
sin t√
1+ t2

)
.

(a) draw a picture of γ .
(b) find a vector field X on S2 (explicit formulas!) for which γ is an integral curve.
(c) did you check how smooth your vector field is? please do!

3.6.2 Flows

We now put together all the maximal integral curves in one object: the flow of X . Therefore, we define:

• the domain of the flow of X as

D(X) := {(p, t) ∈M×R : t ∈ Ip} ⊂M×R.

• the flow of X is defined as the resulting map

φX : D(X)→M, φX (p, t) := γp(t).

For complete vector fields one has D(X) = M×R. What we can say in general is that

M×{0} ⊂D(X)⊂M×R.

and D(X) is open in M×R. Actually, applying the second part of the Theorem 3.71, we deduce:
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Fig. 3.13 Take the open unit square M = (0,1)2 and define on it the vector field X =−∂/∂x of unit length and orientation as depicted.
Convince yourself that the maximal domain of an integral curve γp that starts at p = (x,y) must then be Ip = (x− 1,x). Taking the
unions over all {p}× Ip yields a flow domain D(X) in the shape of a sheared cube. The flow φX sends any (p, t) ∈D(X) to γp(t), the
result of letting p flow along X for the time t.

Corollary 3.80. For any X ∈ X(M), the domain D(X) is open in M×R and the flow φX is a smooth map.

One of the main uses of the flow of a vector field X comes from the maps one obtains whenever one fixes a time
t; we will use the notation:

φ
t
X (·) := φX (·, t)

The best scenario is when X is complete, when each φ t will be defined on the entire M:

Theorem 3.81. If X ∈ X(M) is complete then φ t
X : M×R→M satisfy:

φ
t
X ◦φ

s
X = φ

t+s
X , φ

0
X = Id

(for all t,s ∈ R). In particular, each φ t
X is a diffeomorphism and(

φ
t
X
)−1

= φ
−t
X .

Proof. Fixing x ∈M and s ∈ R, the two curves

t 7→ φ
t+s
X (p), t 7→ φ

t
X (φ

s
X (p))

are both integral curves of X and they coincide at t = 0- hence they coincide everywhere. That φ 0
X is the identity is

clear; we see that the last part follows by taking s =−t in the first part.

For general (possibly non-complete) vector fields one has to be a bit more careful.

Definition 3.82. For X ∈ X(M) and t ∈ R, define the flow of X at time t as the map
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φ
t
X : Dt(X)→M, p 7→ φ

t
X (p) := φX (p, t) = γp(t),

defined on:
Dt(X) := {p ∈M : t ∈ Ip}.

Theorem 3.83. For any X ∈ X(M):

1. for any t ∈ R, the domain Dt(X) of φ t
X is open in M, φ t

X takes values in D−t(X), and

φ
t
X : Dt(X)→D−t(X)

is a diffeomorphism.
2. For t,s ∈ R one has

φ
t ◦φ

s = φ
t+s

in the sense that, for each p ∈ M on which the left hand side is defined, also φ t+s(p) is defined and the two
expressions coincide.

Proof. The fact that Dt(X) is open and φ t
X is smooth follows right away from the previous the standard local result

(Theorem 3.71). For the last part we consider again the two curves from the proof of Theorem 3.81; this time we
have to be more careful with their domain of definition. Hence we fix p ∈M, s ∈ I(p) and we look at the curves:

a :−s+ I(p)→M, a(t) = φ
t+s
X (p),

b : I(φ s
X (p))→M, b(t) = φ

t
X (φ

s
X (p)).

Note that both a and b are integral curves of X , and their are both maximal (the second one is maximal from its
very definition; for the first one, if ã was an extension to J ⊃ −s+ I(p), then s+ J 3 t 7→ ã(t − s) would be an
integral curve defined on s+ J ⊃ I(p), and starting at p). We then obtain the last part of the theorem together with
the equality

I(φ s
X (p)) = I(p)− s

for all s. Since 0 ∈ I(p) we find that −s ∈ I(φ s
X (p)), hence

φ
s
X (Ds)⊂D−s

and, for p ∈ Ds, φ
−s
X (φ s

X (p)) = p. We still have to show that, in the previously centered inclusion, equality holds.
Using the inclusion for −s instead of s and applying φ s

X we obtain

φ
s
X
(
φ
−s
X (D−s)

)
⊂ (φ s

X (Ds);

but the first term equals to φ 0
X (D−s) = D−s, hence we obtain the reverse inclusion and this finishes the proof.

Exercise 3.84. Show that after multiplying a vector field X ∈ X(M) by a real number λ , one has

D(λ ·X) = {(x, t) ∈M×R : (x,λ t) ∈D(M)}, φλ ·X (x, t) = φX (x,λ · t).

Exercise 3.85. For the vector field X ∈ X(S2) that you found in Exercise 3.40, compute its flow. Again, you will
probably use the ambient space R3 to carry out some of the computations (e.g. you may end up computing flows
in R3 and then noticing that they do not leave the sphere). So, again: is there something more general to learn from
this?

Exercise 3.86. Consider the vector field V from Exercise 3.38 and the Hopf map h : S3→ S2 from Exercise 2.65.
Do the following:

(a) Compute the flow of V .
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(b) If you did not do it already, write the flow making use of the fact that S3 ⊂ R4 = C2.
(c) Check that h is constant on the integral curves of V , i.e. h(φ t

V (p)) = h(p) for all p ∈ S2 and all t ∈ R.
(d) Derive now the main conclusion of Exercise 3.44: that the differential of h kills V .
(e) What can you say about the fibers of the Hopf map h (for each q ∈ S2 one talks about the fiber of h above q

which is simply the pre-image h−1(p) = {p ∈ S3 : h(p) = q})?
Exercise 3.87. If you want more computations of flows as for V in the previous exercise: look also at the vector
fields V 1, V 2 and V 3 from Exercise 3.49.

Exercise 3.88 (from the 2018 exam). This is about vector fields on R3. Do the following:

(a) find a vector field X for which γ(t) = (e2t ,et sin t,et cos t) is an integral curve.
(b) find one more such vector field, but different from X .
(c) for one of the vector fields you found, compute its flow.

Exercise 3.89. Do again 3.76, but using now the properties of the flow φ t
X .

3.6.3 Completeness

The notion of completeness was already mentioned before as ”the best possible scenario”: X ∈ X(M) is complete
if all the maximal integral curves are defined on the entire R or, equivalently, the domain of its flow is the entire
M×R:

D(X) = M×R.

Theorem 3.90. If M is compact then any vector field X ∈X(M) is complete. More generally, for any M, any
X ∈ X(M) that is compactly supported (i.e. is zero outside some compact subset of M) is complete.

Proof. When M is compact, since D(X) is an open in M×R containing M×{0}, the tube lemma implies that
there exists ε > 0 such that:

M× (−ε,ε)⊂D(X). (3.6.2)

(proof: for any p ∈ M, using that φX is continuous at (p,0) and that D(X) is open, find εp > 0 and Up open
containing p with Up× (−εp,εp) ⊂ D(X). Then {Up : p ∈M} is an open cover of M hence, by compactness, M
is covered by a finite number of them, say the ones corresponding to p1, . . . , pk ∈M; set ε as the smallest of the
epsilons corresponding to the points pi.)

We claim that the existence of ε such that the inclusion (3.6.2) holds implies (without further using the compact-
ness of M!) that X is complete. Indeed, we would have that φ t

X (p) is defined for all t ∈ (−ε,ε) and all p ∈M. But
then so would be φ t

X (φ
t
X (p)), hence φ 2t

X (p), hence (3.6.2) holds also with 2ε instead of ε . Repeating the process,
we find that R×M ⊂D(X), hence X must be complete.

For the last part (M general and X is compactly supported) it is enough to remark that an inclusion of type (3.6.2)
can still be achieved: if X is zero outside the compact K then the tube lemma implies that (−ε,ε)×K ⊂D(X) for
some ε > 0, while all the points (t, p) with p /∈ K are clearly in D(X) since X vanishes at p (hence the integral
curve of X starting at p is simply γ(t) = p, defined for all t).

For latter reference, let us also cast the last part of the argument into:

Corollary 3.91. If X ∈ X(M) has the property that M× (−ε,ε)⊂D(X) for some ε > 0, then X is complete.

Exercise 3.92. Let F : M→ N be a smooth function. If X ∈ X(M) is F-projectable to Y ∈ X(N) (see Definition
3.55) show that, for any t ∈ R one has

F(Dt(X))⊂Dt(Y )

and, on Dt(X),
F ◦φ

t
X = φ

t
Y ◦F.
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3.6.4 Lie derivatives along vector fields

The general philosophy of taking Lie derivatives LX along vector fields is rather simple:

for any ”type of objects” ξ on manifolds M (functions, vector fields, etc etc), which are natural (in the sense
that a diffeomorphism φ : M→ N allows one pull-back the objects from N to ones on M), the Lie derivative

LX (ξ ) of ξ along X measures the variation of ξ along the flow of X:

LX (ξ ) :=
d
dt

∣∣∣∣
t=0

(φ t
X )
∗(ξ ) = lim

t→0

(φ t
X )
∗(ξ )−ξ

t
. (3.6.3)

This is a very general principle that is applied over and over in Differential Geometry, depending on the ”type
of objects” one is interested in. Here we illustrate this principle for functions and vector fields, and compute the
outcome. For functions, there is an obvious pull-back operation associated to any smooth function F : M → N
(diffeomorphism or not):

F∗ : C ∞(N)→ C ∞(M), F∗( f ) = f ◦F.

Therefore, when F = φ t
X : M→M is the flow of a complete vector field, the guiding equation (3.6.3) for ξ = f ∈

C ∞(M) makes sense pointwise as

LX ( f )(p) :=
d
dt

∣∣∣∣
t=0

f (φ t
X (p)). (3.6.4)

Even more, written in this way, the completeness of X is not even necessary for this formula to make sense (indeed,
we only need φ t

X (p) to be defined for t near 0, which is always the case).

Exercise 3.93. For the vector field X ∈ X(S2) from Exercise 3.40 you have computed its flow in Exercise 3.85.
Take f (x,y,z) = x+y2 + z3 interpreted as a smooth function on S2 and compute now LX ( f ). Did you get the same
result as in Exercise 3.43?

Proposition 3.94. For X ∈ X(M) and f ∈ C ∞(M), LX ( f ) defined by (3.6.4) is precisely LX ( f ) ∈ C ∞(M).

Proof. The expression in the right hand side of (3.6.4) is precisely

(d f )p

(
d
dt

∣∣∣∣
t=0

φ
t
X (p)

)
= (d f )p(Xp) = LX ( f )(p).

The discussion is similar for vector fields. In this case, a diffeomorphism F : M→ N allows one to pull-back
vector fields on N to vector fields on M,

F∗ : X(N)→ X(M)

where, for Y ∈ X(N), its pull-back F∗(Y ) ∈ X(M) is defined by

F∗(Y )p := (dF−1)F(p)(YF(p)).

With this, when F = φ t
X : M→M is the flow of a complete vector field, the guiding equation (3.6.3) for ξ = Y ∈

X(M) makes sense pointwise as
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LX (Y )(p) :=
d
dt

∣∣∣∣
t=0

(dφ
−t
X )φ t

X (p)(Yφ t
X (p)). (3.6.5)

And, as for functions, this formula makes sense without any completeness assumption on X .

Proposition 3.95. For X ∈ X(M) and any other Y ∈ X(M), LX (Y ) defined by (3.6.5) is precisely the Lie bracket
[X ,Y ] ∈ X(M).

Proof. Let Z = LX (Y ). For f ∈ C ∞(M) we compute LZ( f )(p) = (d f )p(Zp) and we find

d
dt

∣∣∣∣
t=0

(d f )p

(
(dφ

−t
X )φ t

X (p)(Yφ t
X (p))

)
=

d
dt

∣∣∣∣
t=0

d
(

f ◦φ
−t
X
)

φ t
X (p)

(
Yφ t

X (p)

)
.

Note that f ◦Φ
−t
X is f at t = 0 and has the derivative w.r.t. t at t = 0 equal to −LX ( f ), hence

f ◦Φ
−t
X = f − tLX ( f )+ t2·?, (3.6.6)

where ? is smooth. Continuing the computation started above, we find

d
dt

∣∣∣∣
t=0

(d f − td (LX ( f )))
φ t

X (p)

(
Yφ t

X (p)

)
=

d
dt

∣∣∣∣
t=0

(d f )φ t
X (p)

(
Yφ t

X (p)

)
− (dLX ( f ))(Yp) =

d
dt

∣∣∣∣
t=0

LY ( f )(φ t
X (p))−LY (LX ( f ))(p) = LX (LY ( f ))(p)−LY (LX ( f ))(p),

i.e. LZ( f )(p) = L[X ,Y ]( f )(p) for all p and f . This implies that Z = [X ,Y ].

We obtain the following characterization of the commutation relation [X ,Y ] = 0; for simplicity, we restrict here
to the case of complete vector fields.

Corollary 3.96 (pairwise commuting vector fields). For X ,Y ∈ X(M) complete, one has:

[X ,Y ] = 0 ⇐⇒ Φ
t
X ◦Φ

s
Y = Φ

s
Y ◦Φ

t
X ∀ t,s ∈ R.

Exercise 3.97. Returning to Exercise 3.48 compute [X1,X2] in yet another way, now using flows (that you have to
compute!).

Exercise 3.98. Using the previous Proposition and Exercise 3.92 prove again that if F : M → N is smooth and
X1,X2 ∈ X(M) are F-projectable to Y1 and Y2 ∈ X(N), respectively, then [X1,X2] is F-projectable to [Y1,Y2].

3.6.5 Application: the exponential map for Lie groups

Proposition 3.99. Let G be a Lie group with Lie algebra g. For any u ∈ g, the vector field
→
u is complete and its

flow φ t
→
u

satisfies

φ
t
→
u
(ag) = aφ

t
→
u
(g).

In particular, the flow can be reconstructed from what it does at time t = 1, at the identity element of G, i.e. from

exp : g→ G, exp(u) := φ
1
→
u
(e),

by the formula
φ

t
→
u
(a) = aexp(t u).
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Moreover, the exponential is a local diffeomorphism around the origin: it sends some open neighborhood of the
origin in g diffeomorphically into an open neighborhood of the identity matrix in G.

Proof. For the first part the key remark is that if γ : I→ G is an integral curve of
→
u defined on some interval I, i.e.

if
dγ

dt
(t) =

→
u (γ(t)) ∀ t ∈ I

then, for any a ∈ G, the left translate a · γ : t 7→ a · γ(t) is again an integral curve (of the same
→
u ); this follows by

writing a ·γ = La ◦γ and using the chain rule. Hence, if γg is the maximal integral curve starting at g ∈G then a ·γg
will be the one starting at a ·g- and that proves the first identity (for as long as both terms are defined). And we also
obtain that Ig = Iag for all a,g ∈G, hence Ig = Ie for all g ∈G. Using Corollary 3.91, we obtain that

→
u is complete.

We are left with the last part. For that it suffices to show that (d exp)0 is an isomorphism. But

(d exp)0 : g→ TeG = g

sends u ∈ g to
d
dt

∣∣∣∣
t=0

exp(tu) =
d
dt

∣∣∣∣
t=0

φ
t
→
u
(e) =

→
u e= u,

i.e. the differential is actually the identity map.

Example 3.100. In Example 3.65 we have seen that the Lie algebra of the general linear group GLn(R) is just the
algebra Mn(R) of n× n matrices endowed with the commutator bracket. We claim that the resulting exponential
map is just the usual exponential map for matrices:

Exp : Mn(R)→ GLn(R), X 7→ eX :=
∞

∑
k=0

Xk

k!

(where we work with the conventions that X0 = I the identity matrix and 0! = 1). Let us compute exp(X) for an
arbitrary X ∈Mn(R) = TIGLn; according to the definition, it is γ(1), where γ is the unique path in GLn satisfying

γ(0) = I,
dγ

dt
(t) =

→
X (γ(t)).

The last equality takes place in Tγ(t)GLn, which is canonically identified with Mn(R) (as in Example 3.65 , Y ∈
Mn(R) is identified with the speed at ε = 0 of ε 7→ γ(t) + εY ). By this identification, dγ

dt (t) goes to the usual

derivative of γ (as a path in the Euclidean space Mn(R)) and
→
X (γ(t)) goes to γ(t) ·X . Hence γ is the solution of

γ(0) = I, γ
′(t) = X · γ(t),

which is precisely what t 7→ etX does. We deduce that exp(X) = eX .

3.6.6 Extra-for the interested student: application to closed subgroups of GLn

As an application of the exponential map we present here, for the curious students, a proof of Theorem 2.111 from Chapter 2; actually,
of an improved version of it.

Theorem 3.101. Any closed subgroup G of GLn is an embedded Lie subgroup of GLn (i.e. an embedded submanifold which, together
with the resulting smooth structure, becomes a Lie group). Moreover, it Lie algebra is

g := {X ∈Mn(R) : etX ∈ G ∀ t ∈ R} ⊂Mn(R)

(endowed with the commutator bracket).
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Proof. For the first part we have to prove that G is an embedded submanifold of GLn; for simplicity, assume we work over R. We will
show that g is a linear subspace of Mn(R); then we will choose a complement g′ of g in Mn(R) and we show that one can find an open
neighborhood V of the origin in g, and a similar one V ′ in g′, so that

φ : V ×V ′→ GLn,φ(X ,X ′) = eX · eX ′

is a local diffeomorphism onto an open neighborhood of the identity matrix and so that

G∩φ(V ×V ′) = {φ(v,0) : v ∈V}. (3.6.7)

This means that the submanifold condition is verified around the identity matrix and then, using left translations, it will hold at all
points of G. Note also that the differential of φ at 0 (with φ viewed as a map defined on the entire g×g′) is the identity map:

(dφ)0 : g×g′→ TIGLn = Mn(R),(X ,X ′) 7→ d
dt t=0

etX etX ′ = X +X ′.

In particular, φ is a indeed a local diffeomorphism around the origin. Hence the main condition that we have to take care of is (3.6.7),
i.e. that if X ∈V , X ′ ∈V ′ satisfy eX · eX ′ ∈ G, then X ′ = 0. Hence it suffices to show that one can find V ′ so that

X ′ ∈V ′,eX ′ ∈ G =⇒ X ′ = 0

(then just choose any V small enough such that φ is a diffeomorphism from V ×V ′ into an open neighborhood of the identity in GLn).
For that we proceed by contradiction. If such V ′ would not exist, we would find a sequence Yn → 0 in g′ such that eYn ∈ G. Since Yn
converges to 0, we find a sequence of integers kn → ∞ such that Xn := knYn stay in a closed bounded region of g′ not containing the
origin (e.g. on {X ∈ g′ : 1 ≤ ||X || ≤ 2}, for some norm on g′); then, after eventually passing to a subsequence, we may then assume
that Xn → X ∈ g′ non-zero. In particular, X cannot belong to g. Setting tn = 1

kn
, we see that etnXn = eYn ∈ G, and then the desired

contradiction will follow from:

Lemma 3.102. Let Xn→ X be a sequence of elements in gln and tn→ 0 a sequence of non-zero real numbers. Suppose etnXn ∈ G for
all n: then etX ∈ G for all t, i.e., X ∈ g.

For a proof of this Lemma, please see the book by Sternberg on Differential Geometry (Lemma 4.2, Chapter V). This Lemma can
also be used to prove the claim we made (and used) at the start of the argument: that g is a linear subspace of Mn(R). The R-linearity
follows immediately from the definition. Assume now that X ,Y ∈ g and we show that X +Y ∈ g. Write now

etX etY = e f (t), with lim
t→0

f (t)
t

= X +Y

(exercise: why is this possible?). Taking tn a sequence of real numbers converging to 0 and Xn =
f (tn)
tn

in the lemma, to conclude that
X +Y ∈ g.

This closes the proof of the fact that G is a submanifold of GLn (hence also a Lie group). It should now also be clear that g is the

Lie algebra of G since φ |V×{0} is precisely the restoration of the exponential map e to the open neighborhood V of the origin in g.

Exercise 3.103. In particular, it follows that g is closed under the commutator bracket of matrices:

X ,Y ∈ g=⇒ [X ,Y ] ∈ g.

However, prove this directly, using the previous Lemma, by an argument similar to the one we used to prove that g is a linear subspace
of gln.

3.6.7 Extra-exercises

Exercise 3.104. (exercise in the 2019-2020 retake) On R2 compute the Lie bracket [X ,Y ] of the following vector
fields:

X = x
∂

∂x
+ y

∂

∂y
, Y = x

∂

∂y
− y

∂

∂x
.

Exercise 3.105 (part of the 2019/2020 retake exam). The 2019/2020 retake exam consisted on 20 questions on
the 2-torus

T2 := S1×S1
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(equipped with the product manifold structure). Here one considers the vector field ∂

∂θ1
given by(

∂

∂θ1

)
(z1,z2)

:=
d
dt

∣∣∣∣
t=0

(ei·t · z1,z2) ∈ T(z1,z2)T
2,

and similarly we define ∂

∂θ2
. For any smooth function f : T2 → R, we use the notations ∂ f

∂θi
for the resulting Lie

derivatives (again functions on the torus):

∂ f
∂θ1

(z1,z2) =
d
dt

∣∣∣∣
t=0

f (ei·t · z1,z2), etc.

We will also consider the more general vector fields on the torus:

X f :=
∂

∂θ1
+ f · ∂

∂θ2
∈ X(T2). (∗)

defined for any smooth function f on T2.
Recall also that for any R > r > 0, one has a ”concrete model” of T2:

T 2
R,r := {(x,y,z) ∈ R3 : (

√
x2 + y2−R)2 + z2 = r2},

which is the image of the map

F : T2→ R3, (eiθ1 ,eiθ2) 7→ ((R+ r · cosθ1) · cosθ2,(R+ r · cosθ1) · sinθ2,r · sinθ1) .

You may assume (e.g. from Topology) that you know already that F is a homeomorphism between T2 and T 2
R,r.

Here are eight questions from the exam:

1. For i ∈ {1,2} compute (dF)p(
∂

∂θi
) at arbitrary points p = (ei·θ1 ,ei·θ2) ∈ T2 and show that F is an immersion

at each point.
2. Deduce that F is a diffeomorphism between T2 and T 2

R,r.
3. We want to compute the vector fields ∂

∂θ1
and ∂

∂θ2
by moving them to T 2

R,r (via F) and decomposing them w.r.t.

the basis ∂

∂x , ∂

∂y , ∂

∂ z of the tangent spaces of R3. In other words, we want to compute F∗
(

∂

∂θ1

)
and F∗

(
∂

∂θ2

)
.

Show that

F∗

(
∂

∂θ2

)
q
=−y

∂

∂x
+ x

∂

∂y
, for all q = (x,y,z) ∈ T 2

R,r,

and find a similar formula for F∗
(

∂

∂θ1

)
.

4. Compute the flows of ∂

∂θ1
and ∂

∂θ2
and then deduce that [ ∂

∂θ1
, ∂

∂θ2
] = 0.

5. Looking at the vector fields of type (∗), show that for any two smooth functions f ,g on T2, there exists another
smooth function h such that ∂

∂θ1
+[X f ,Xg] = Xh.

6. For each real number λ ∈R consider the vector field Xλ (i.e. (∗) obtained when f is the constant function λ ).
Compute the maximal integral curve γ of Xλ starting at (1,1) ∈ T2.

7. With γ as above (and λ arbitrary constant) show that:

• the image of γ is always an immersed submanifold of T2

• but, if λ is irrational, then that image is not an embedded submanifold of T2.

13. Show that there do not exist smooth functions f ,g on T2 such that ∂g
∂θ1
− ∂ f

∂θ2
= 1.

Exercise 3.106. Is the sum of two complete vector fields on Rm again complete? Or the multiplication of a com-
plete vector field by an arbitrary smooth function?





Chapter 4
Differential forms

4.1 Differential forms of degree one (1-forms)

4.1.1 Cotangent vectors

For a (real) vector space V , its dual V ∗ is the vector space consisting of all linear maps ξ : V → R. While the
elements of V are vectors of V , the elements of V ∗ are thought of as ”covectors of V ”. And vectors and covectors
pair via the evaluation map

〈·, ·〉 : V ∗×V → R, (ξ ,v) 7→ 〈ξ ,v〉 := ξ (v).

Moreover, the equations
〈ei,e j〉= δ

i
j

show how to produce a basis e1, . . . ,em of V ∗ from a basis e1, . . . ,em of V (and the other way around).
Differential 1-forms on a manifold M arise similarly, in duality with vector fields. First of all, for each p ∈M,

we define the cotangent space of M at p as the dual of the tangent space

T ∗p M := (TpM)∗.

The elements of T ∗p M are called cotangent vectors at p.

Example 4.1. For any smooth function f : M→ R its differential at any point p ∈M,

(d f )p : TpM→ R

can now be interpreted as a cotangent vector at p,

(d f )p ∈ T ∗p M.

Of course, for this to make sense we only need f to be defined on an open containing p.

While a chart χ around p gives rise to a basis of TpM, it will also give rise to a basis of T ∗p M: just apply the
previous example to the components χi : U → R of χ to obtain cotangent vectors at p

(dχ1)p, . . . ,(dχm)p.

To see that this is a basis one can just remark that this is dual to the similar basis of TpM; more precisely, it follows
right away from the definitions of all the term involved that, for all i and j,

119
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(dχi)p,

(
∂

∂ χ j

)
p

〉
= δ

i
j.

4.1.2 Differential 1-forms

Similar to set-theoretical vector fields on M (subsection 3.5.1) we can now talk about set-theoretical cotangent
vector fields on M, by which we mean maps

ω : M 3 p 7→ ωp ∈ T ∗p M.

To make sense of their smoothness one proceeds like for vector fields: for any chart χ : U→Ω ⊂Rm, we can write

ωp = ∑
i

ω
i
χ(χ(p))(dχi)p,

with ω i
χ : Ω → R; these will be called the coordinate functions of ω w.r.t. the chart χ .

Definition 4.2. A differential 1-form on M is any map

ω : M 3 p 7→ ωp ∈ T ∗p M

whose coordinate functions w.r.t. any chart are smooth.
We denote by Ω 1(M) the vector space of all such 1-forms (with the vector space structure defined by

(ω +ω
′
)p = ωp +ω

′
p, etc).

Example 4.3 (differentials of functions). Continuing the previous example, we see that for any function f ∈
C ∞(M) its differential now becomes a 1-form

d f ∈Ω
1(M)

(why is it smooth?). In this way, the differentiation of R-valued functions becomes a linear operator

d : C ∞(M)→Ω
1(M).

Exercise 4.4. Show that, for a 1-form ω ∈Ω 1(M) to be exact, i.e. to be of type d f for some smooth function f , a
necessary (but not sufficient) condition is that

ω([X ,Y ]) = LX (ω(Y ))−LY (ω(X)) for all X ,Y ∈ X(M).

Example 4.5 (expressions of type ∑ fidgi). As for vector fields, 1-forms ω can be multiplied by smooth functions
f to produce a new 1-form f ·ω (whose value at p ∈M is f (p) ·ωp). More abstractly, one has an operation

C ∞(M)×Ω
1(M)→Ω

1(M), ( f ,ω) 7→ f ·ω

which makes the space of 1-forms into a C∞(M)-module.
Combining with differentials of functions, we see see that expressions of type

k

∑
i=1

fi ·dgi
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now make sense as 1-forms. Actually, any 1-form is locally representable by such an expression; on the other hand
such representations are not unique- e.g. because of the derivation property of d:

Exercise 4.6. Show that, for any f ,g ∈C∞(M), one has:

d( f g) = f ·dg+g ·d f .

Moving to Rm (which we do anyway when we look in a chart), it should be clear that any 1-form ω on Rm can
be uniquely written as

ω = ∑ fi ·dxi (4.1.1)

with fi ∈ C ∞(Rm), and where xi are the coordinate functions interpreted as elements of C ∞(Rm).

Exercise 4.7. Show that:

(a) For any function f ∈ C ∞(Rm), one has

d f = ∑
i

∂ f
∂xi
·dxi.

(b) Show that the 1-form on R2 given by
ω = ydx− xdy

is not exact, i.e. cannot be written as d f for some smooth function f .

Exercise 4.8. Show that for any f ∈ C ∞(M) and any chart (U,χ) one has, on U ,

d f = ∑
i

∂ f
∂ χi
·dχi.

Deduce that for any two coordinate charts (U,χ) and (U ′,χ ′) one has, on U ∩U ′,

dχ
′
i = ∑

j

∂ χ
′
i

∂ χ j
·dχ j. (4.1.2)

Then, using the duality between ∂

∂ χi
and dχi, show again that, over U ∩U ′, one has:

∂

∂ χi
= ∑

∂ χ
′
j

∂ χi
· ∂

∂ χ
′
j
.

(here we are also using the notation introduced in subsection 3.4.3 - see the formula (*) there).

Exercise 4.9. Show that there is a unique 1-form on S1, denoted by dθ , such that p∗dθ = dt ∈Ω 1(R), where

p : R→ S1, t 7→ eit .

Then try to prove that, despite the notation that we use, dθ is actually not exact.
(the most elegant argument for the last part is via Stokes theorem, to be discussed later).

4.1.3 Pull-backs of 1-forms

And here is one very nice feature of 1-forms: unlike vector fields, 1-forms can be pulled-back along any smooth
map. We start here with the simplest instance of this operation: the restriction to submanifolds.
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Example 4.10 (restrictions to submanifolds). For a submanifold M⊂N, dual to the inclusions TpM⊂ TpN, there
is a restriction operation of 1-forms on N to 1-forms on M,

restr : Ω
1(N)→Ω

1(M), ω 7→ ω|M,

where ω|M is defined by
(ω|M)p (Xp) := ωp(Xp)

for all Xp ∈ TpM. Note that the right hand side makes sense precisely because TpM ⊂ TpN.

This operation is particularly useful when M is an embedded submanifold of a Euclidean space Rk =: N: one
can produce 1-forms on M by starting with 1-forms on Rk (necessarily of type (4.1.1)); and, although it is not
completely obvious, one can prove that any 1-form on M arises in this way. In other words, one can ”represent”
1-forms on M by 1-forms (4.1.1) on Rk. E.g., for M = S2, we can now talk about

(x2 + y) ·dx+dy+ xyz ·dz on S2,

by which we mean the restriction of (x2 + y) ·dx+dy+ xyz ·dz from R3 to S2 ⊂ R3.

However, one should be aware that different forms on Rk may give the same restriction to M. E.g., for S2 ⊂ R3,
there are expressions that look like being non-zero (and they are non-zero as 1-forms on R3) but which represent
the zero form on S2. For instance,

x ·dx+ y ·dy+ z ·dz on S2

is zero. Indeed, viewing it as a 1-form on S2, it means we evaluate it only on vectors tangent to S2; and, for
p = (x,y,z) ∈ S2 and an arbitrary tangent vector

Vp = a
(

∂

∂x

)
p
+b
(

∂

∂y

)
p
+ c
(

∂

∂ z

)
p
∈ TpS2

one has
(x ·dx+ y ·dy+ z ·dz)(Vp) = ax+by+ cz = 0

since V was tangent to S2. In other words,

(x ·dx+ y ·dy+ z ·dz)|S2 = 0.

Exercise 4.11. Prove this last formula by starting from x2 + y2 + z2 = 1 on S2 and using the derivation property
from Exercise 4.6.

Exercise 4.12. Show that, conversely, if M ⊂ R3 is a compact and connected submanifold with the property that

(xdx+ ydy+ zdz)|M = 0,

then M is one of the spheres centred at the origin.

Exercise 4.13. For the torus TR,r as in (2.3.3), show that the restrictions of the standard 1-forms dx, dy, dz from R3

to T 2
R,r satisfy:

x ·dx+ y ·dy+ z ·dz =
R√

x2 + y2
(x ·dx+ y ·dy) (on T 2

R,r).

Exercise 4.14 (part of the 2019/2020 exam). Do now the last part of the exam Exercise 2.86:

(d) give an example of a 1-form θ on S3, different from the zero form, such that θ |M0 = 0.

Exercise 4.15. Show that, for the 1-form dθ on S1 discussed in Exercise 4.9

dθ = (ydx− xdy) |S1 .
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Exercise 4.16. Which one of the following 2-forms on S2:

θ1 = xdy− ydx+ zdz, θ2 = xdy+ ydx+ zdz (restricted to S2)

is closed? But exact?

And, as we already mentioned, the restriction operation is a particular case of pull-backs, corresponding to
inclusions i : M ↪→ N. To explain this, we start with an arbitrary smooth map F : M→ N and ω ∈Ω 1(N). Then at
each point p ∈M we can apply the differential (dF)p : TpM→ TF(p)N followed by ωF(p) : TF(p)N→ R to obtain
a covector on M at p:

TpM 3 Xp 7→ ωF(p) ((dF)p(Xp)) ∈ R

(compare with vector fields!). The resulting 1-form on M is denoted by

F∗(ω) ∈Ω
1(M)

and is called the pull-back of ω by F . Therefore, any smooth map F : M→ N gives rise to a pull-back operation

F∗ : Ω
1(N)→Ω

1(M).

Exercise 4.17. Show that:

(a) indeed, F∗(ω) is smooth.
(b) if G : N→ P is another smooth map, (G◦F)∗ = F∗ ◦G∗.
(c) when M ⊂ N and F is the inclusion F∗(ω) = ω|M .

Exercise 4.18. Show that for any F : M→ N smooth, the following diagram is commutative:

C ∞(N)
d //

F∗

��

Ω 1(N)

F∗

��
C ∞(M)

d // Ω 1(M)

.

Exercise 4.19. Since Pn does not sit canonically in any Euclidean space, the principle of representing 1-forms on
Pn by 1-forms on Euclidean spaces (via restrictions) does not work right away. However, one can relate Pn to a
nicer space, namely to the sphere, via the canonical map

H : Sn→ Pn

which sends a point x ∈ Sn to the line lx through the origin and x. In this way, any 1-form ω ∈ Ω 1(Pn) can be
”lifted” to a form on Sn:

ω̃ := H∗(ω) ∈Ω
1(Sn).

We will also make use of the map
τ : Sn→ Sn, τ(x) =−x.

Show that:

(a) for such forms ω̃ , one has τ∗(ω̃) = ω̃ . In other words, the pull-back ω̃ always belongs to the subspace of
Ω 1(Sn) consisting of τ-invariant 1-forms,

Ω
1(Sn)τ :=

{
η ∈Ω

1(Sn) : τ
∗
η = η

}
.

(b) Conversely, any τ-invariant 1-form on the sphere, η ∈Ω 1(Sn)τ , is necessarily of type ω̃ for some ω ∈Ω 1(Pn).
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(c) Conclude that one obtains a bijection

H∗ : Ω
1(Pn)

∼−→Ω
1(Sn)τ .

4.1.4 1-forms as C∞(M)-linear functionals eating vector fields

While covectors of a vector space V take vectors to real numbers, 1-forms take vector fields to smooth functions:
given ω as above and X ∈ X(M), evaluating ωp on Xp for each p ∈M we obtain a smooth function

ω(X) ∈ C ∞(M);

(why smooth?). When we vary X it is clear that the resulting map, still denoted by ω ,

ω : X(M)→ C ∞(M)

is C∞(M)-linear, i.e. it is linear and

ω( f ·X) = f ·ω(X) for all f ∈ C ∞(M),X ∈ X(M).

We denote by
HomC ∞(X(M),C ∞(M))

the space of all C ∞(M)-linear maps from X(M) to C ∞(M).

Theorem 4.20. Interpreting any ω ∈Ω 1(M) as a map X(M)→ C ∞(M), we obtain an isomorphism

Ω
1(M)∼= HomC ∞(X(M),C ∞(M)).

Proof. Note first that, by the same arguments as in Proposition 3.41 from Chapter 3, for a set-theoretical 1-form ω

its smoothness is equivalent to the fact that ω(X) is a smooth function on M for all X ∈ X(M).
Another ingredient that we need in the proof is the fact that, for each p ∈M, the evaluation of vector fields at p,

evp : X(M)→ TpM, X 7→ Xp,

is surjective. To show this, we start with an arbitrary tangent vector v ∈ M (p is fixed now). Using a coordinate
chart around p, we find a vector field Y defined on an open neighborhood U of p such that Yp = v. As in the proof
of Lemma 3.20 from Chapter 3, choose a smooth function η on M, supported inside U and with η(p) = 1. Then
X := η ·Y is well-defined and smooth on M and Xp = η(p) · v = v.

We now move to the actual proof. For the injectivity of the map we have to show that, if ωp(Xp) = 0 for all
X ∈ X(M) and all p ∈M, then ωp = 0 for all p ∈M. But this clearly follows from the surjectivity of evp.

We now prove the surjectivity of the map in the statement. Let A : X(M)→ C ∞(M) be a C ∞(M)-linear map. We
fix p ∈M arbitrary and we define

ωp : TpM→ R, ωp(v) := A(Y )(p)

where A is any vector field with Yp = v. If we check that this definition does not depend on the choice of Y then we
are done: linearity of each ωp follows right away, while the resulting set-theoretical 1-form is also smooth since,
by construction, ω(X) = A.

To see that A(Y )(p) does not depend on the choice of Y , assume that Y ′ is another vector field with Y
′
p = v. Then

X :=Y −Y ′ vanishes at p and we have to show that A(X)(p) = 0. Using the C ∞(M)-linearity of A, this will follow
from the following:
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Lemma 4.21. If a vector field X ∈ X(M) vanishes at a point p ∈M, then we can write

X =
k

∑
j=0

f j ·X j

with k ≥ 1 integer, X j ∈ X(M) and f j smooth functions that vanish at p.

Proof. We first look in a coordinate chart (U,χ) around p which sends p to χ(p) = 0 ∈ Rm. Then writing

X |U =
m

∑
i=1

Fi ·
∂

∂ χi
,

the coefficients Fi are smooth functions on U that vanish at p. By the the proof of Theorem 3.25 from Chapter 3
applied to Fi ◦χ−1, we see that each Fi can be written as a finite sum ∑ j χ j ·g j

i with g j
i : U → R smooth. From this

we immediately deduce that we can find some smooth functions f1, . . . , fk on U and vector fields Y1, . . . ,Yk (on U)
such that

X |U =
k

∑
j=1

f j ·Y j.

To go from U to the entire M, the main idea is to write X = η ·X +(1−η) ·X , for some carefully chosen smooth
function η .

Note that, after eventually making U smaller, we may assume that fi = f̃i|U for some smooth function f̃i ∈
C ∞(M); to see this, just use the second dotted item in the proof of Lemma 3.21 from Chapter 3. Furthermore, as in
that proof, we choose a smooth function η ∈C∞(M) which is supported inside U and is 1 in some neighborhood
V of p. Since η is supported inside U , each η |U ·Y j ∈ X(U) can be promoted to a vector field X j ∈ X(M) by
declaring it to be zero outside U . With the inspiration from the ”main idea” mentioned above, we now remark that

X = (1−η) ·X +
k

∑
j=1

f̃ j · X̃ j

on the entire M. Indeed, at p ∈U the right hand side is

(1−η(p)) ·Xp +η(p) ·
k

∑
j=1

f j(p) ·X j
p = (1−η(p)) ·Xp +η(p) ·Xp = Xp,

while at p outside U we obtain (1−0) ·Xp +∑ j f̃ j(p) ·0 = Xp.

Therefore the desired decomposition is achieved if we take f0 = 1−η and X0 = X .

And, still as in the case of tangent vectors, one can form the cotangent bundle

T ∗M := tp∈MT ∗p M = {(p,ωp) : p ∈M,ωp ∈ T ∗p M}

and put a smooth structure on T ∗M so that the smoothness of a set-theoretical 1-form ω is equivalent to the
smoothness of ω as a map from M to T ∗M.

Exercise 4.22. Fill in the details, i.e. state and prove a version of Proposition 3.50 but for T ∗M instead of T M.



126 4 Differential forms

4.2 Differential forms of arbitrary degree

4.2.1 The relevant linear algebra

The passage from 1-forms to arbitrary k-forms is basically a passage from linear maps TpM→ R to k-multilinear
skew-symmetric maps. Here we discuss the linear algebra involved.

Definition 4.23. Given a vector space V and k ∈ N a natural number, a k-covector on V is any map

ω : V × . . .×V︸ ︷︷ ︸
k times

→ R

that is multilinear (i.e. linear in each argument). We say that ω if a linear k-form on V if

ω(vσ(1), . . . ,vσ(k)) = sign(σ)ω(v1, . . . ,vk)

for any v1, . . . ,vk ∈V and any permutation σ ∈ Sk. We denote by Λ kV ∗ the (vector) space of all such linear k-forms
on V .

Exercise 4.24. Show that ω is skew-symmetric if and only if the expression ω(v1, . . . ,vk) changes sign whenever
two entries vi and v j are interchanged.

Although our interest is Λ kV ∗, it will be useful to consider more general k-multilinear maps (without being
skew-symmetric); we denote the space of such by T kV ∗. Note that, while

Λ
kV ∗ ⊂ T kV ∗,

there is also a skew-symmetrization map going the other way,

Alt : T kV ∗→Λ
kV ∗

where for ω ∈ T kV ∗, Alt(ω) is given by

Alt(ω)(v1, . . . ,vk) :=
1
k! ∑

σ∈Sk

sign(σ)ω(vσ(1), . . . ,vσ(k)).

Exercise 4.25. Show that, for ω ∈ T kV ∗, one has:

ω ∈Λ
kV ∗⇐⇒ Alt(ω) = ω.

The main operation on forms is that of wedge-product. Before giving the precise definition/formula, note first
that there a pretty obvious operation involving the spaces T kV ∗, namely:

T kV ∗×T lV ∗→ T k+lV ∗, (ω,η) 7→ ω •η ,

where ω •η is given by

(ω •η)(v1, . . . ,vk+l) := ω(v1, . . . ,vk) ·η(vk+1, . . . ,vk+l).

Exercise 4.26. Do the following:

1. If ω ∈ T 2V ∗ is symmetric and η ∈ T lV ∗ is arbitrary, show that Alt(ω •η) = 0.
2. Prove the same but now assuming that ω ∈ T kV ∗ satisfies Alt(ω) = 0.
3. Deduce that for any ω ∈ T kV ∗ and η ∈ T lV ∗ one has Alt(ω •η) = Alt(Alt(ω)•η).
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However, if ω and η are skew-symmetric, ω •η may fail to be skew-symmetric. Therefore, to obtain a skew-
symmetric element, we will apply the skew-symmetrization map Alt. To avoid un-necessary coefficients in the
final formula we will do a small rescaling (see also below):

Definition 4.27. Given ω ∈Λ kV ∗ and η ∈Λ lV ∗, define the element

ω ∧η ∈Λ
k+lV ∗,

called the wedge product of ω and η , by

ω ∧η =
(k+ l)!
k! · l!

Alt(ω •η).

Remark 4.28. When computing Alt(ω ·η), the fact that ω and η are skew-symmetric will be reflected in the fact
that many of the terms will repeat. When we avoid repetitions, we get sums not over all permutations σ ∈ Sk+l but
only over those with the property that

σ(1)< .. . < σ(k), σ(k+1)< .. . < σ(k+ l).

Such permutations will be called (k, l)-shuffles and we denote by Sk,l ⊂ Sk+l the resulting set. All together, we find
the following explicit formula for the wedge product:

(ω ∧η)(v1, . . . ,vk+l) := ∑
σ∈Sk,l

sign(σ)ω(vσ(1), . . . ,vσ(k))η(vσ(k+1), . . . ,vσ(k+l)).

For instance, for ω,η ∈V ∗ one obtains ω ∧η ∈Λ 2V ∗ given by

(ω ∧η)(v,w) = ω(v)η(w)−ω(w)η(v).

Or, for ω,∈Λ 2V ∗,η ∈V ∗,

(ω ∧η)(u,v,w) = ω(u,v)η(w)+ω(v,w)η(u)−ω(u,w)η(v).

The reason for the coefficients k! used in the definition of the wedge was precisely obtain such formulas without
coefficients (incidentally, let us point out that the resulting formula now makes send over any field, not necessarily
of characteristic zero). Actually, replacing k! by any coefficients ck would still produce (modified) wedge-products
with similar properties (see the next proposition) but, in some (precise) sense, they are all ”isomorphic”. However,
simple choices of cks, such as ck = 1, would produce uglier final formulas.

In this way we obtain operations
·∧ · : Λ

kV ∗×Λ
lV ∗→Λ

k+lV ∗.

Here are the main properties of these operations:

Proposition 4.29. The wedge operation is bilinear, and:

1. graded-commutativity: for any ω ∈Λ kV ∗ and η ∈Λ lV ∗,

η ∧ω = (−1)kl
ω ∧η .

2. associativity: for any linear forms ω , η and ζ one has

(ω ∧η)∧ζ = ω ∧ (η ∧ζ ).
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Proof. For graded-commutativity, we look at η ∧ω(v1, . . . ,vk+l). The sum defining it has expressions of type

sign(σ)η(vσ(1), . . . ,vσ(l)) ·ω(vσ(l+1), . . . ,vσ(l+k))

where σ is an (l,k)-shuffle. Now, any such σ defines another permutation σ̂ by

σ̂(1) = σ(l +1), . . . , σ̂(k) = σ(l + k), σ̂(k+1) = σ(1), . . . , σ̂(k+ l) = σ(l)

which is a (k, l)-shuffle. A moment of reflection shows that

sign(σ̂) = (−1)klsign(σ).

All these clearly imply the graded-commutativity.
For associativity, up to a constant that is the same on both sides, we have to show that

Alt(Alt(ω •θ)•ζ ) = Alt(ω •Alt(θ •ζ )) .

Using the last part of Exercise 4.26 to rewrite the left hand side, and the similar argument for the right hand side,
what we have to prove becomes:

Alt((ω •θ)•ζ ) = Alt(ω • (θ •ζ )) .

This follows right away since the operation • is clearly associative.

Example 4.30. For any linear 1-forms ξ1, . . . ,ξk ∈V ∗, one obtains a k-form

ξ1∧ . . .∧ξk ∈Λ
kV ∗.

As we shall soon see, any linear k-form can be written as a sum of expressions of this type. Even more, this
operation allows us to produce an explicit basis for the vector space Λ kV ∗ by starting with a basis

e1, . . . ,em ∈V

of V . First of all, we consider the dual basis
e1, . . . ,em ∈V ∗.

Then we start taking wedges of such elements; to obtain k-forms, we need to use k such (co)vectors. Given the
graded commutativity of the wedge-operations, we can always re-order the indices in an increasing fashion. There-
fore, we will consider sets of increasing indices

I = (i1, . . . , ik), with1≤ i1 < .. . < ik ≤ m;

the set of such Is will be denoted by Ordk(m). And, for I ∈ Ordk(m), consider

eI := ei1 ∧ . . .∧ eik ∈Λ
kV ∗.

Lemma 4.31. The vectors eI , with I ∈ Ordk(m), form a basis of Λ kV ∗. In particular, for k ≤ m (where m is the
dimension of V ) one has

dim(Λ kV ∗) = Card(Ordk(m)) =
m!

k!(m− k)!
,

while for k > m one has Λ kV ∗ = 0.

Proof. Note that, for any I as above and any other J = ( j1, . . . , jk) ∈ ordk(M) one has

eI(e j1 , . . . ,e jk) = δ
I
J

(i.e. 1 when I = J and zero otherwise). From this we deduce right away that the eIs are linearly independent: if
∑I λIeI = 0 with λI ∈ R, evaluating on (e j1 , . . . ,e jk) we find that λJ = 0 for all J.
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To see that our family spans the entire Λ kV ∗, it suffices to show that, for any ω ∈Λ kV ∗),

ω = ∑
I∈Ordk(m)

ω(ei1 , . . . ,eik) · e
I .

To check this equality, we first note that the difference of the two sides, call it η ∈ Λ kV ∗, is zero when evalu-
ated on all elements of type (ei1 , . . . ,eik). But this is easily seen to imply that η = 0: for an arbitrary expression
η(v1, . . . ,vk), decomposing each vi with respect to the basis {e1, . . . ,em} and using the multilinearity of η and then
the antisymmetry, we obtain a sum of expressions of type η(ei1 , . . . ,eik).

4.2.2 Differential forms

We now pass to differential forms on an arbitrary m-dimensional manifold M. As for 1-forms, one first talks about
set-theoretical k-forms, by which we mean maps

ω : M 3 p 7→ ωp ∈Λ
kT ∗p M. (4.2.1)

And, still as for 1-forms, one makes sense of their smoothness using charts (U,χ): any such chart gives rise to the
basis (

∂

∂ χ1

)
p
, . . . ,

(
∂

∂ χm

)
p

of TpM, the dual basis
(dχ1)p, . . . ,(dχm)p

of T ∗p M and then, using Lemma 4.31, to the basis of Λ kT ∗p M given by

(dχ)I
p = (dχi1)p∧ . . .∧ (dχik)p

with I ∈ Ordk(1, . . . ,m). Therefore, we can write our ω as

ωp = ∑
I∈Ordk(m)

ω
I
χ(χ(p))(dχ)I

p,

where each coefficient ω I
χ is a function on the codomain of the chart.

Definition 4.32. A differential k-form on M, or a differential form of degree k on M, is any set-theoretical
k-form (4.2.1) that is smooth in the sense that its coordinate functions ω I

χ w.r.t. any chart χ are smooth.
We denote by Ω k(M) the resulting space of all such k-forms.

It should be clear now that Ω k(M) is a vector space, and it comes with a structure of C ∞(M)-module,

C ∞(M)×Ω
k(M)→Ω

k(M), ( f ,ω) 7→ f ·ω.

While, point-wise (at some p∈M), ω takes k tangent vectors (at p) to produce numbers, globally (when varying
p), it takes k vector fields and produces a function. More explicitly, for X1, . . . ,Xk ∈X(M), one obtains the function

ω(X1, . . . ,Xk) : M→ R, p 7→ ωp(X1
p , . . . ,X

k
p).

In other words, ω can be re-interpreted as a map
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ω : X(M)× . . .×X(M)︸ ︷︷ ︸
k−times

→ C ∞(M).

Exercise 4.33. Check that the smoothness of ω is equivalent to the fact that ω(X1, . . . ,Xk) is smooth for any
X1, . . . ,Xk ∈ X(M).

Of course, with the case k = 1 already discussed in Theorem 4.20, the following does not come as a surprise.

Theorem 4.34. The previous interpretation of k-forms gives a 1-1 correspondence between k-forms on M
and multilinear maps

ω : X(M)× . . .×X(M)︸ ︷︷ ︸
k−times

→ C ∞(M)

with the following two properties:

• ω is skew-symmetric.
• ω is C ∞(M)-linear in each argument Xi:

ω(X1, . . . ,Xi1 ,Xi +X
′
i ,Xi+1, . . . ,Xk) = ω(X1, . . . ,Xi1 ,Xi,Xi+1, . . . ,Xk)+

+ω(X1, . . . ,Xi1 ,X
′
i ,Xi+1, . . . ,Xk),

ω(X1, . . . ,Xi1 , f ·Xi,Xi+1, . . . ,Xk) = f ·ω(X1, . . . ,Xk).

Proof. For the moment, let denoted by ω̂ the version of ω that acts on vector fields. It is clear that it is skew-
symmetric and C ∞(M)-multilinear. For the converse, let

A : X(M)× . . .×X(M)︸ ︷︷ ︸
k−times

→ C ∞(M)

a map with the same properties and we want to show that A = ω̂ for some differential k-form ω . As in the previous
sections, for p ∈M we define ωp on tangent vectors v1

p, . . . ,v
k
p ∈ TpM by:

ωp(v1
p, . . . ,v

k
p) := A(X1, . . . ,Xk)(p),

where X i ∈ X(M) are chosen so that, at p, they give back the vectors vi
p. The main issue is, as for the similar

discussion for 1-forms, to see that this definition does not depend on the choice of the X is. But that follows exactly
as for 1-forms (or one could even use that result inductively). The rest should be clear.

Example 4.35. In Exercise 4.4 we have seen that, for a 1-form ω ∈Ω 1(M) to be exact one would need in particular
that the expression

−ω([X ,Y ])+LX (ω(Y ))−LY (ω(X))

to be zero for all X ,Y ∈X(M). Looking at the expression above one can check right away that it is skew-symmetric
and C ∞(M)-bilinear in X and Y . Therefore it defines a 2-form on M- that is usually denoted by

dω ∈Ω
2(M);

as we have seen, it arises as the obstruction to ω being exact.
Note that, in this way, we extended the differential of functions to 1-forms:

C ∞(M) = Ω
0(M)

d→Ω
1(M)

d→Ω
2(M).

This, and its further continuation will be discussed in more detail in the next section (”De Rham differential”).



4.2 Differential forms of arbitrary degree 131

Next, the wedge-product discussed in the previous section, applied at each point p ∈ M, gives rise to similar
operations

·∧ · : Ω
k(M)×Ω

l(M)→Ω
k+l(M), (ω,η) 7→ ω ∧η ,

i.e. defined by
(ω ∧η)p := ωp∧ηp.

Or, using the interpretation of k-forms as in the previous proposition,

(ω ∧η)(X1, . . . ,Xk+l) = ∑
σ∈Sk,l

sign(σ)ω(Xσ(1), . . . ,Xσ(k))η(Vσ(k+1), . . . ,Vσ(k+l)).

Of course, one still has:

Proposition 4.36. The wedge operation is bilinear, and:

1. graded-commutativity: for any ω ∈Ω k(M) and η ∈Ω l(M),

η ∧ω = (−1)kl
ω ∧η .

2. associativity: for any differential forms ω , η and ζ on M one has

(ω ∧η)∧ζ = ω ∧ (η ∧ζ ).

Proof. Just apply point-wise the similar linear algebra result.

And, still as for 1-forms, forms of arbitrary degree can be pulled-back via any smooth map F : M→ N, giving
rise to operations:

F∗ : Ω
k(N)→Ω

k(M).

Explicitly, for ω ∈Ω k(N), the pull-back of ω by F , F∗ω ∈Ω k(M), is given by

F∗(ω)p(X1
p , . . . ,X

k
p) := ωF(p)

(
(dF)p(X1

p), . . . ,(dF)p(Xk
p)
)
.

Exercise 4.37. Show that the pull-back operation preserves the wedge-products: if F : M→ N is smooth then, for
any ω and η differential forms on N, one has

F∗(ω ∧η) = F∗(ω)∧F∗(η).

Again, when M is a submanifold of N and F is the inclusion map, the pull-back of ω via the inclusion will be
denoted by

ω|M ∈Ω
k(M)

and will be called the restriction of ω to M. And of particular interest is the case when M is a submanifold of
some Euclidean space Rd ; then:

• k-forms on Rd are always of type

∑
1≤i1<...<ik≤d

fi1,...,ik ·dxi1 ∧ . . .∧dxik
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with fi1,...,ik smooth functions on Rd .
• one obtains k-forms on M by restricting such k-forms on Rd to M.
• with the same warning as for 1-forms: different forms on Rk may give the same restriction to M.

Exercise 4.38. On the following subspace of the 2-sphere

N := {(x,y,z) ∈ S2 : z 6= 0}

consider the restriction of 1
z ·dx∧dy to N:

σ0 :=
1
z
·dx∧dy

∣∣∣∣
N
.

Show that σ0 can be extended to the entire S2, i.e. there exists a (smooth) 2-form σ ∈Ω 2(S2) such that σ |N = σ0.

Exercise 4.39. Consider the so-called volume form of S2,

σ := (xdy∧dz+ ydz∧dx+ zdx∧dy) |S2 ∈Ω
2(S2).

Since xdx+ydy+ zdz = 0 on S2, on the part z 6= 0 of S2 the 1-forms dz can be expressed in terms of dx and dy and,
therefore, σ can be written as f ·dx∧dy for some function f . Compute f .

Exercise 4.40. Show that Exercise 4.19 works exactly the same for forms of arbitrary degree, so that k-forms on
Pn are, via the pull-back to Sn, in 1-1 correspondence to τ-invariant k-forms on Sn:

Ω
k(Sn)τ :=

{
η ∈Ω

k(Sn) : τ
∗
η = η

}
.

Remark 4.41 (The graded world). It is customary to formally put together all the spaces Ω k(M) and consider

Ω
•(M) :=

⊕
k

Ω
k(M).

The notation ”•” is to indicate that we deal with a graded object; its elements are (finite) sums of homogeneous ones (the ones that live
in one single degree). With this, the wedge product becomes now (after extending bi-linearly) a product

·∧ · : Ω
•(M)×Ω

•(M)→Ω
•(M)

making Ω(M) into a (graded) algebra. Note the similarity with the algebra of polynomials in several variables, where each polynomial
is a sum of homogeneous ones. And, as there, on sums of homogeneous elements, the wedge product is:

(ω0 +ω1 + . . .)∧ (η0 +η1 + . . .) = (ω0∧η0)+(ω0∧η1 +ω1∧η0)+(ω0∧η2 +ω1∧η1 +ω2∧η0)+ . . .

And here is one very useful slogan/principle when working with graded objects:

The sign rule: looking at an expression involving elements that have a degree, when interchanging two such elements, say of degrees
k and l, the expression changes sign by (−1)kl .

E.g., graded commutativity becomes precisely the one from Proposition 4.36.

4.2.3 The exterior (DeRham) differential

In Example 4.3 we mentioned the differential of functions (0-forms) as 1-forms, while in Example 4.35 we indi-
cated a similar operation on from 1-forms to 2-forms. We now extend those to arbitrary degrees, i.e. a sequence of
operators d:

Ω
0(M)

d−→Ω
1(M)

d−→ . . .
d−→Ω

k(M)
d−→Ω

k+1(M)
d−→ . . .
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or, equivalently, an operator on the full algebra of differential forms (cf. Remark 4.41),

d : Ω
•(M)→Ω

•+1(M)

which rises the degrees by 1 (as indicated by the notation •+ 1”). From the graded point of view (Remark 4.41)
one should think of the symbol d as having degree 1 (and this will dictate some signs later on).

There are quite a few different ways to proceed to introduce d. But, before anything, let us point out the properties
that we may want to be satisfied by d; we will see that some of them already force what d should be, or at least its
uniqueness. Already at the start, we have to decide whether we want to discuss d (properties, definitions, existence,
etc) on a fixed manifold M, or for all manifolds at once.

Of course, first of all we want:

DeRham-0: d is R-linear and, on 0-forms (functions), it is the usual differential of functions.

Next, by thinking about the behaviour of d on the product of functions, we would like a similar Leibniz identity
w.r.t. the wedge product ω ∧η :

DeRham-1: d satisfies the (graded) Leibniz identity:

d(ω ∧η) = d(ω)∧η +(−1)k
ω ∧d(η).

for all ω ∈Ω k(M), η ∈Ω l(M).

For an explanation of the sign, please see the sign rule from Remark 4.41 and remember that the symbol d is
assigned degree 1.

One way to come across d is by applying inductively the reasoning described in Example 4.35: if d was defined
on forms up to degree k− 1, and we wonder when a k-form ω ∈ Ω k(M) is exact (i.e. of the type dη for some
η ∈ Ω k−1(M)), looking for ”the natural conditions” that ω must satisfy, one discovers an expression dω whose
non-vanishing is an obstruction to ω being exact; this will be d on the k-forms. Of course, underlying the entire
idea is one very simple property that d will have:

DeRham-2: d ◦d = 0 .

Example 4.42. On M =Rm, if we assume these properties for d, we already know how to compute d on arbitrary
forms. E.g., for

ω = (x2 + yz)dx∧dy,

applying the Leibinz rule we find

dω = d(x2 + yz)∧dx∧dy+(x2 + yz)d(dx∧dz).

For the term d(x2 + yz) we get, using ”DeRham-0”, 2xdx+ ydz+ zdy. The term d(dx∧ dz) is, by Leibniz and
d2 = 0, zero. We obtain

dω = 2xdx∧dx∧dy+ ydz∧dx∧dy+ zdy∧dx∧dy.

Remembering that dx∧ dx = 0 (by graded commutativity of the wedge), and similarly zdy∧ dx∧ dy = 0, we are
left with

dω = ydz∧dx∧dy,

or, to keep the natural order of the variables,

dω = ydx∧dy∧dz.
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Actually, a similar reasoning forces the definition of d on all k-forms on Rm: any k-form is a sum of forms of type

f dxi1 ∧ . . .∧dxik

and, by the same arguments as above,

d( f dxi1 ∧ . . .∧dxik) = ∑
i

∂ f
∂xi

dxi∧dxi1 ∧ . . .∧dxik .

The fact that the d defined in this way does indeed satisfy (DeRham-1) and (DeRham-2) is now a simple check
forms of this type.

Of course, exactly the same applies to any open subset U ⊂Rm or to any domain U of a coordinate chart (U,χ)
in any manifold M (we would use then the 1-forms dχi instead of dxi); given the uniqueness of d satisfying the
axioms, it follows that d doesn’t even depend on the actual χ that we use to write down the formulas.

Corollary 4.43. If M is a manifold, then for any U ⊂M that is the domain of a coordinate chart, there is and is
unique an operator

dU : Ω
•(U)→Ω

•+1(U)

satisfying (DeRham-0), (DeRham-1) and (DeRham-2). It is given by

dU ( f dχi1 ∧ . . .∧dχik) = ∑
i

∂ f
∂ χi

dχi∧dχi1 ∧ . . .∧dχik

where χ : U →Ω ⊂ Rm is any coordinate chart defined on U (but independent of the actual χ).

Therefore, an obvious way to proceed to define d on a general M is to ”proceed locally”. That would mean that
we would be looking for operators d that are local in the following sense:

DeRham-3: Locality: if U ⊂M is open and ω ∈Ω •(M) is supported inside U, then so is dω .

As for functions, the support of ω is the closure of the set of points p ∈M at which ωp 6= 0.

Exercise 4.44. Show that a linear operator d : Ω •(M)→Ω •+1(M) is local if and only if for any open U ⊂M there
is a linear operator d|U : Ω •(U)→Ω •+1(U) with the property that

(d ω)|U = d|U (ω|U ) for all ω ∈Ω
•(U).

Ω •(M)
d //

restr
��

Ω •+1(M)

restr
��

Ω •(U)
d|U // Ω •+1(U)

.

Then show that, given two local operators d and d′, d = d′ if and only if M can be covered by opens U on which
d|U = d

′ |U .

Corollary 4.45. On any manifold M there exists and is unique an operator d : Ω •(M)→Ω •+1(M) which is local
and so that for any domain U of a coordinate chart, d|U coincides with dU from the previous corollary. Moreover,
d will automatically satisfy (DeRham-0), (DeRham-1) and (DeRham-2).

Proof. The definition is forced: for p ∈M, choosing a coordinate chart (U,χ) around p we must have

(dω)p = (dU ω|U )p.

Given the uniqueness property of the dU s it follows that the right hand side does not depend on the coordinate chart
that we use, hence it can be used to define dω unambiguously. Since the conditions (DeRham-1) and (DeRham-2)
are local and they hold for the dU s, it follows that they hold for d as well.
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It is interesting to note that locality can be obtained from the rest of the axioms:

Lemma 4.46. On a manifold M, if a linear map D : Ω •(M)→Ω •+1(M) satisfies the condition that

D( f ·ω) = f D(ω)+d f ∧ω for all f ∈ C ∞(M),ω ∈Ω
•(M)

(in particular if D satisfies (DeRham-0) and (DeRham-1)) then D is local.

Proof. We fix ω , we denote by A its support and we claim that the support of dω is inside A. Note that A is the
largest closed subset of M outside which ω vanishes. Therefore suffices to show that d(ω) vanishes outside A. Let
p ∈M \A; since A is closed, M \A is open, hence we find a smooth function η ∈ C ∞(M) that is zero on A and is 1
in a neighborhood of p. But then ω = (1−η) ·ω and, using the condition from the statement we obtain

dω = (1−η)dω−dη ∧dω.

Evaluating at the point p we obtain that dω vanishes at p.

In particular,

Corollary 4.47. On any manifold M there exists and is unique an operator d : Ω •(M)→Ω •+1(M) which satisfies
(DeRham-0) , (DeRham-1) and (DeRham-2).

Proof. One just needs to remark that, if d satisfies (DeRham-1) and (DeRham-2) then so do all its restrictions d|U ;
for domains U of coordinate charts, due to the uniqueness of dU , we obtain that d|U = dU .

Definition 4.48. The resulting operator d : Ω •(M)→ Ω •+1(M) is called the DeRham operator on M (or
the exterior differential).

While so far we concentrated on building d = dM on a given manifold M, one can proceed slightly differently
and handle all the manifolds at once; then the natural axiom to impose is the behaviour of dM when we change the
manifold, i.e. its compatibility with pull-backs. In low degree this was seen in Exercise 4.18. It means that, for any
smooth map F : M→ N one has a commutative diagram

Ω •(N)
dN //

F∗

��

Ω •+1(N)

F∗

��
Ω •(M)

dM // Ω •+1(M)

,

i.e. DeRham differentials commute with pull-backs:

F∗ ◦dN = dM ◦F∗.

Note that this condition forces automatically that each d is local. Therefore:

Corollary 4.49. If we are looking for operators dM : Ω •(M)→Ω •+1(M), one for each manifold M, such that they
are compatible with pull-backs, we have uniqueness and existence under any of the following requirements:

1. on Rm, dRm is the operator previously discussed.
2. all dM satisfy (DeRham-0) and (DeRham-1).

Of course, for any manifold M, dM will be precisely the DeRham operator.
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And here is another way to introduce the DeRham operator: just right away, by explicit formulas. One way to
find those formulas would be by returning to the previous idea of proceeding like in Example 4.35 inductively, by
looking for the natural conditions for a form to be exact.

Proposition 4.50. One has the following explicit formula for the DeRham operator on any manifold M:
for ω ∈Ω k(M), dω ∈Ω k+1(M) is given by

dω(X0, . . . ,Xk) =
k

∑
i=0

(−1)iLXi(ω(X0, . . . , X̂i, . . . ,Xk)) (4.2.2)

+ ∑
i< j

(−1)i+ j
ω([Xi,X j],X0, . . . , X̂i, . . . , X̂ j, . . .Xk))

where the elements under the hat are deleted.

Proof. Note that the previous formula is skew-symmetric and C ∞(M)-multilinear (check that!). Hence it defines
an operator dM for each M. Looking back at the previous corollary, we see that all that is used is the compatibility
with pull-backs by diffeomorphisms and by inclusions of opens inside manifolds. That is clearly true for the dMs.
Hence we are left with checking that, for Rm, this formula gives back the standard DeRham operator. Moreover, a
simple check shows that d( f ·ω) = f ·dω +d f ∧ω for any function f , hence it suffices to restrict our attention to
forms on Rm of type ω = dxi1 ∧ . . .∧dxik and we are left with showing that

dRm(dxi1 ∧ . . .∧dxik) = 0

(where recall that dRm now denotes the operator from the statement). This can be done in several ways:

• direct computation (straightforward but not so nice).
• check it first for k = 1 (obvious) and then check the Leibniz identity on expressions of form ω ∧η where ω is

a 1-form (and this computation is not that ugly and can easily be carried out on a general manifold M).

Exercise 4.51. Check by direct computation that, defining d by the formula (4.2.2), then it satisfies the Leibniz
identity on expressions of form ω ∧η where ω is a 1-form.

Exercise 4.52 (from the 2019/2020 exam). Let θ ∈Ω 1(M) be a closed 1-form and define

dθ : Ω
k(M)→Ω

k+1(M), dθ (ω) := dω +θ ∧ω.

Show that dθ ◦dθ = 0 if and only if θ is closed.

Exercise 4.53 (from the 2018/2019 exam). Let θ1, . . . ,θn ∈Ω 1(M) be n = dimM one-forms on M which are dual
to a set {X1, . . . ,Xn} of vector fields on M, in the sense that

θ
i(X j) = δ

j
i (1 if i = j and 0 otherwise).

(a) show that all the 1-forms θ1, . . . ,θn are closed if and only if the vector fields X1, . . . ,Xn are pairwise commut-
ing, i.e. [Xi,X j] = 0 for all i and j.

(b*) show that for any family of vector fields X1, . . . ,Xn that are pairwise commuting and which are linearly inde-
pendent at some point x0 ∈M, there exists a chart (U,χ) near x0 such that

X1
x =

(
∂

∂ χ1

)
x
, . . . , Xn

x =

(
∂

∂ χn

)
x

for all x ∈U .

(c) Deduce that if {θ1, . . . ,θn} is a set of closed 1-forms on the n-dimensional manifold M, that are linearly
independent at some point x0 ∈M, then there exists a chart (U,χ) of M around x0 such that θi|U = dχi on U ,
for all i ∈ {1, . . . ,n}.
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4.2.4 Cartan’s magic formula diX + iX d = LX

We first discuss the Lie derivative of forms ω ∈Ω •(M) along vector fields V ∈ X(M), giving rise to operations

LV : Ω
•(M)→Ω

•(M).

These Lie derivatives fit in the general philosophy explained and illustrated in Section 3.6.4 of the previous chapter:

Definition 4.54. For ω ∈Ω k(M) and V ∈ X(M) define the Lie derivative of ω along V as

LV (ω) :=
d
dt

∣∣∣∣
t=0

(φ t
V )
∗
ω ∈Ω

k(M).

As before, when V is not complete, one has to look at each p ∈M and note that the resulting formula

LV (ω)(X1
p , . . . ,X

k
p) =

d
dt

∣∣∣∣
t=0

ωφ t
V (p)

(
(dφ

t
V )p(X1

p), . . . ,(dφ
t
V )p(Xk

p)
)

(4.2.3)

makes sense independent of whether V is complete or not.
Not also that, from the graded point of view, the operation LV has degree 0 (because it does not change the

degree of the forms).

Proposition 4.55. For any vector field V ∈ X(M):

1. LV : Ω •→Ω •(M) is a degree zero derivation, i.e. it is linear and satisfies

LV (ω ∧η) = LV (ω)∧η +ω ∧LV (η)

for any two differential forms ω and η .
2. LV commutes with d: LV ◦d = d ◦LV .
3. LV is the only degree zero derivation on Ω •(M) which commutes with d and which, on functions, it is the

usual derivative LV .

Moreover, it can be described by the explicit formula:

LV (ω)(X1, . . . ,Xk) = LV (ω(X1, . . . ,Xk))−
k

∑
i=1

ω(X1, . . . ,Xi−1, [V,Xi],Xi+1, . . . ,Xk).

Proof. The derivation identity follows from the standard one and the fact that (φ t
V )
∗ is compatible with the wedge

operation:

d
dt

∣∣∣∣
t=0

(φ t
V )
∗(ω ∧η) =

d
dt

∣∣∣∣
t=0

(
(φ t

V )
∗
ω ∧ (φ t

V )
∗
η
)
=

(
d
dt

∣∣∣∣
t=0

(φ t
V )
∗
ω

)
∧η +ω ∧

(
d
dt

∣∣∣∣
t=0

(φ t
V )
∗
η

)
.

That LV commutes with d follows from the similar property of the pull-backs (φ t
V )
∗.

For the uniqueness in (3), assume that D is another operators with the same properties. It follows that LV (d f ) =
dLV ( f ), and we obtain that D(ω) = LV (ω) on differential forms of type

ω = ∑
i

fi∧dg1
i ∧ . . .∧dgk

i .

It would suffices to show that any k-form can be written in this way. This is true and it would follow for instance if
we proved that M can be embedded in some Euclidean space (why would that be enough?). To avoid using such a
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result, one can first restrict to manifolds on which it is certainly true: domain of coordinate charts. In more detail:
due to the Leibniz identity it follows (as in the discussions about d) that D is local, we can talk about D|U and, on
domains of coordinate charts, D|U still has the same properties as D. Hence D|U = LV |U , and then D = LV .

For the final formula, we start from the explicit formula (4.2.3) and we use that d
dt |t=0(φ

t
V )
∗(X) = [V,X ] (Propo-

sition 3.95 in the previous chapter). Or, equivalently,

d
dt

∣∣∣∣
t=0

(dφ
−t
V )φ t

V (p)(Xφ t
V (p)) = [V,X ]p

for all X . Similar to (3.6.6 ) (and for the same reasons)

(dφ
−t
V )φ t

V (p)(Xφ t
V (p)) = Xp + t[V,X ]p +o(t2)

for t near 0, and then
(dφ

t
V )p(Xp) = Xφ t

V (p)− t[V,X ]φ t
V (p)+o(t2).

Inserting this in (4.2.3) and using also Proposition 3.94 from the previous chapter (applied to V and f =

ω(X1, . . . ,Xk) we find the formula from the statement.

Another interesting operators induced by a vector field V ∈ X(M), but simpler this time, is the interior product:

Definition 4.56. For ω ∈ Ω k(M) and V ∈ X(M) define the interior product ω by V , denoted iV (ω) as the
differential form of degree k−1 given by

iV (ω)(X1, . . . ,Xk−1) = ω(V,X1, . . . ,Xk1).

This defines an operator

iV : Ω
•(M)→Ω

•−1(M);

since it lowers the degree by 1, we say it is of degree −1.

Proposition 4.57. For any vector field V ∈ X(M),iV is a degree −1 derivation, i.e. it is linear and satisfies

iV (ω ∧η) = iV (ω)∧η +(−1)k
ω ∧ iV (η)

for any two differential forms ω ∈ Ω k(M) and η . Actually, it is the only degree −1 derivation on Ω •(M) which,
on 1-forms, is the evaluation on V .

Proof. The derivation formula is a completely straightforward computation. For the uniqueness, one can just imi-
tate the arguments used for the uniqueness of LV , just that it is a bit simpler now (being degree −1, it kills of the
function, and the condition from the statement prescribes iV on 1-forms hence, by the Leibniz identity, on all the
sums of wedges of 1-forms. One can either show that any differential form can be written as such a sum, or just
provide a local argument completely similar to that for LV .

Next: the Cartan magic formula, which says that LV is the graded commutator of d and iV ; given that d has
degree 1 and iV has degree −1, that means:

Theorem 4.58. For any vector field V ∈ X(M) one has

LV = d ◦ iV + iV ◦d.



4.2 Differential forms of arbitrary degree 139

Proof. A simple computation using the Leibinz identities for d and iV (with special care at the signs involved)
shows that d ◦ iV + iV ◦d is a derivation of degree zero. Since d ◦d = 0, we see that it also commutes with d. More-
over, on functions f it gives iV d( f ) = LV ( f ). Hence, by the uniqueness from Proposition 4.55, it must coincide
with LV .

Exercise 4.59 (from the 2018/2019 exam). Let M be a manifold, and X ,Y ∈ X(M) two vector fields. We look at

LX ◦ iY − iY ◦LX : Ω
k(M)→Ω

k−1(M) (for all k ≥ 0).

Show that:

(a) on 1-forms θ ∈Ω 1(M), it coincides with i[X ,Y ].
(b) it satisfies a Leibniz-type identity that you have to write down yourself.
(c) LX ◦ iY − iY ◦LX = i[X ,Y ].

Exercise 4.60. Consider the sphere S2 ⊂ R3 and we use (x,y,z) to denote the standard coordinates in R3. We
consider the following vector field tangent to the sphere

X = x
∂

∂y
− y

∂

∂x
∈ X(S2)

as well as the volume form on the sphere:

σ = x ·dy∧dz+ y ·dz∧dx+ z ·dx∧dy ∈Ω
2(S2)

(as before, while the previous formula defines a 2-form on R3, σ is the restriction to S2).

(a) Compute iX (σ) and d(iX (σ)).
(b) Compute dσ and iX (dσ)).
(c) Compute LX (σ) in two ways: one using the Cartan formula, and one using the properties of LX (being a

derivation, and commuting with d).
(d) Compute the flow φ t of X .
(e) Show that (φ t)∗σ = σ for all t ∈ R.

Exercise 4.61. Consider the following 1-form on R3:

θ = (z2 +2xy) ·dx+(x2 +2yz) ·dy+(y2 +2zx) ·dz.

Do the following:

1. compute θ ∧dy∧dz (i.e. write it as ? ·dx∧dy∧dz, with ? to be computed).
2. show that dθ = 0.
3. find a smooth function f ∈C∞(R3) such that θ = d f .
4. for φ : R3→ R3, φ(x,y,z) = (y,z,x) show that φ ∗(θ) = θ .
5. show that for any smooth map ψ : R3→ R3, the 2-form θ ∧ψ∗(θ) is closed.
6. For the vector field X = x · ∂

∂x + y · ∂

∂y + z · ∂

∂ z compute iX (θ) and LX (θ).
7. Compute the flow φ t

X of X .
8. With the formula for the φ t

X and LX (θ) that you found at the previous two points check directly that, indeed,

LX (θ) =
d
dt

∣∣∣∣
t=0

(φ t
X )
∗(θ).

9. show that θ |S2 6= 0.
10. Find/describe a 2-dimensional submanifold M ⊂ R3 such that θ |M = 0.

Exercise 4.62. As a continuation of Exercise 3.105:
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8. Show that there exist, and they are unique, two 1-forms dθ1 and dθ2 on T2 with the property that

dθi

(
∂

∂θ j

)
= δi, j (1 if i = j and 0 otherwise).

9. Show that for any smooth function f on T2 one has

d f =
∂ f
∂θ1
·dθ1 +

∂ f
∂θ2
·dθ2.

10. In contrast with what the notation may suggest, dθ1 and dθ2 are not exact forms. To see this, you are asked to
prove something a bit more general: on any compact manifold M, any 1-form that is exact must vanish at at
least one point in M.

11. However, show that dθ1 and dθ2 are both closed.

Exercise 4.63. Consider the following three 1-forms on the sphere S3:

θ
1 := 2(−ydx+ xdy+ tdz− zdt) ,

θ
2 := 2(−zdx− tdy+ xdz+ ydt) ,

θ
3 := 2(−tdx+ zdy− ydz+ xdt) .

Show that:

(a) the differentials of these 1-forms satisfy:

dθ1 =−θ2∧θ3, dθ2 =−θ3∧θ1, dθ3 =−θ1∧θ2

(b) that, for all f ∈ C ∞(S3), one has:

d f = LV 1( f ) ·θ1 +LV 2( f ) ·θ2 +LV3( f ) ·θ3,

where V 1, V 2 and V 3 are the vector fields from Exercise 3.49.
(c) For the vector field V from Exercise 3.38 one has

LV θ1 = LV θ2 = LV θ3 = 0.

Exercise 4.64. Let us first show that, in the previous exercise, all that matters are the main properties of the vector
fields involved (one doesn’t even know that we are working on the sphere). More precisely, assume that M is a con-
nected 3-dimensional manifold, and V,V 1,V 2,V 3 ∈ X(M) are vector fields on M with the property that V 1

p ,V
2
p ,V

3
p

form a basis of TpM for all p ∈M and

[V 1,V 2] =V 3, [V 2,V 3] =V 1, [V 3,V 1] =V 2.

[V,V1] = [V,V2] = [V,V3] = 0.

Let θ1,θ2,θ3 ∈Ω 1(M) be the 1-forms that are dual to V 1,V 2,V 3, i.e. satisfying

θi(V j) = δ
i
j (1 if i = j and 0 otherwise).

Show that:

(a) for any f ∈ C ∞(M) one has

d f = LV 1( f ) ·θ1 +LV 2( f ) ·θ2 +LV 3( f ) ·θ3.

(b) the 1-forms θi satisfy
dθ1 =−θ2∧θ3, dθ2 =−θ3∧θ1, dθ3 =−θ1∧θ2.
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LV θ1 = LV θ2 = LV θ3 = 0.

On the other hand, despite the apparent greater generality of the setting, we are actually getting closer to ... the
Hopf fibration. More precisely, defining

h1 = iV (θ1), h2 = iV (θ2), h3 = iV (θ3),

show that:

(c) the differentials of these functions satisfy:

dh1 = h2 ·θ3−h3 ·θ2,

dh2 = h3 ·θ1−h1 ·θ3,

dh3 = h1 ·θ2−h2 ·θ1

(d) the function
h = (h1,h2,h3) : M→ R3

takes values in a sphere S2
r (of some radius r > 0).

(e) furthermore, h must be a submersion.
(f) What happens when M = S3 and V,V 1,V 2 and V 3 are the vector fields from Exercise 3.38 and Exercise 3.49?
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