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Chapter 1
Reminders on Topology and Analysis

1.1 Reminder 1: Topology; topological manifolds

Here is a very brief reminder on the basic notions from Topology. For those which are not so familiar with these
basics, one may skip the later parts of this section (most notably the part on partitions of unity) and return to it later
on, when necessary.

1.1.1 The objects of Topology

First of all, the main objects of Topology: a topological space is a set X endowed with a topology, i.e. a collection
T of subsets of X (called the opens of the topological space, or simply opens in X) such that /0 and X are open
in X , arbitrary unions of opens are open and finite intersections of opens are open. We usually omit T from the
notations, and we simply say that X is a topological space; hence that means that X is a set and we can talk about
the subsets of X that are open (in X).

A topology on X allows us to make sense of the central phenomena of Topology: ”two points being close to each
other”. First of all we can make sense of neighborhoods in a topological space X : given x ∈ X , a neighborhood
(in X) of x is any subset V ⊂ X that contains at least an open neighborhood of x, i.e. an open U with x ∈U . In turn,
this allows us to talk about convergence: a sequence (xn)n≥1 of elements of X converges (in the topological space
X) to x ∈ X if for any neighborhood V of x there exists an integer nV such that xn ∈V for all n≥ nV .

The notion of neighborhoods also allows to talk also about an important property one requires on topological
spaces in order to exclude pathological examples- Hausdorffness: a topological space X called Hausdorff if for
any x,y ∈ X distinct, there are neighborhoods U of x and V of y such that U ∩V = /0. Hence, intuitively, this means
that ”if two are distinct, then they cannot be too close to each other” (yes, not having this sounds pathological but,
since this condition is not automatic, it is often imposed precisely to avoid ”strange/pathological spaces).

1.1.2 The morphisms/isomomorphisms of Topology

The relevant maps (the only ones that really matter) in Topology are the continuous ones: a map f : X→Y between
topological spaces is called continuous if for any U-open in Y , its pre-image f−1(U) is open in X . ”Isomorphism”
between topological spaces are known under the name of homeomorphisms: they are the bijections f : X → Y
with the property that both f as well as f−1 are continuous.

In the language of ”Category Theory”, Topology is the category whose objects are topological spaces, and whose
morphisms (between objects) are the continuous maps.

Remark 1.1. Note that, while proving that two topological spaces are homeomorphic (i.e there exists a homeomor-
phism between them) is relatively easy in principle (one just has to produce ONE single homeomorphism between
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2 1 Reminders on Topology and Analysis

them- and for that it is often enough to follow ones intuition), proving that two spaces are not homeomorphic is
much harder. One way to proceed is by understanding the specific ”topological properties” of the spaces under
discussion (such as Hausdorffness, compactness, etc); if one of them has such a topological property and the other
one does not, then they cannot be homeomorphic. A more advanced approach consists of constructing topological
invariants of algebraic nature (such as numbers, groups, etc)- and that is what Algebraic Topology is about.

1.1.3 Metric topologies; bases

One of the largest class of topological spaces are metric spaces (X ,d): any metric d : X×X→R induces a topology
Td on X : a subset U ⊂ X is open iff for any x ∈U there exists r > 0 such that U contains the d-ball of center x and
radius r:

Bd(x,r) := {y ∈ X : d(x,y)< r}. (1.1.1)

In general, a topological space X is called metrizable if there is a metric d on X such that the original topology
on X coincides with Td (note also that, if such a d exists, in general it is far from being unique; e.g. already
2d, 3d, d

d+1 would do the same job). One of the most interesting questions about topological spaces is to decide
whether they are metrizable or not; metrizability theorems aim at finding simple topological conditions that imply
metrizability.

Considering the Euclidean metric d on Rm, or on any subset A⊂Rm, we see that A is endowed with a canonical
topology- called the Euclidean topology on the subset A⊂Rm (exercise: show that also the square metric induces
the same topology). Note that, in this case, the resulting notion of convergence (and continuity) coincides with the
one from Analysis.

Remark 1.2. Continuing the previous remark, let us point out that showing that two Euclidean spaces Rm and Rn

of different dimensions m 6= n are not homeomorphic is non-trivial. When m = 1, this can be done using the notion
of connectedness but, for m,n≥ 2, one has to appeal to tools from Algebraic Topology.

We now return to general metric spaces. A metric d on X allows us to talk about the open balls Bd(x,r) for x∈ X ,
r ∈ R+ (see (1.1.1)), giving rise to the collection of open balls induced by d:

Bd = {Bd(x,r) : x ∈ X ,r ∈ R+}.

This is not a topology on X , but Td is the smallest topology containing Bd .
Recall also (simple exercise) that any family B of subsets of X gives rise to a topology T (B) on X , defined as

the smallest one containing B. It is called the topology generated by B. In general, the members of T (B) are
arbitrary unions of finite intersections of members of T .

Depending on the properties of B, the members of T (B) may have simpler descriptions. The most common
case is when B is a topology basis, i.e. satisfies the following axioms: any x ∈ X is contained in at least one
member B of B and, for any B1,B2 ∈B and any x ∈ B1∩B2, there exists B ∈B containing x with B⊂ B1∩B2. In
this case, for U ⊂ X , the following are equivalent:

(0) U belongs to T (B).
(1) for any x ∈U there exists B ∈B s.t. x ∈ B⊂U .
(2) U is a union of members of B.

For instance, for any metric d on X , the collection Bd is a topology basis, and (1) is precisely the original definition
of Td .

One can change a bit the point of view and, starting with a topology T on X , look for collections B generating
T , i.e. such that T =T (B). Of course, one possibility is to take B =T , but this is the least interesting one. The
more interesting choices are the ones for which B is smaller- e.g. countable. And here is the precise terminology:
given a topological space X , a basis for the topological space X is any collection B of subsets of X with the
property it is a topology basis and T = T (B). As above, for a collection B of subsets of X , the following are
equivalent:
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(0) B is a basis for the space X .
(1) for any open U in X and any x ∈U there exists B ∈B s.t. x ∈ B⊂U .
(2) any open in X is a union of members of B.

(in particular, each of the conditions (1) and (2) imply that B is a topology basis).
Repeating what we said before, but with a slightly different wording, we have that for any metric d on X , the

metric topology admits Bd as basis. Another possible basis for the space X (endowed with the topology Td),
slightly smaller, is

Bd = {Bd(x,
1
n
) : x ∈ X ,n ∈ N}.

For the Euclidean metric dEucl on Rm we can do even better:

BQ := {BdEucl(q,
1
n
) : q ∈Qm,n ∈ N}

is still a basis for the Euclidean topology on Rm, but it it ”much smaller”: it is countable.
In general, one says that a topological space X is second countable if it admits a basis B which is countable.

1.1.4 Topological manifolds

The second countability condition is a very subtle one and turns out to be of capital importance in establishing
some central results in Topology and Geometry- such as metrizability and embedding theorems. In particular, it is
part of the basic axioms for the notion of manifolds. For now:

Definition 1.3. A topological m-dimensional manifold is a topological space X satisfying the following:

(TM0): any point x ∈ X admits a neighborhood X which is homeomorphic to an open subset of Rm.
(TM1): it is Hausdorff.
(TM2): it is second countable.

A homeomorphism
χ : U →Ω ⊂ Rm

from an open subset U of X to an open subset Ω in Rm is called a m-dimensional topological chart for X , and U
is called the domain of the chart- so that axiom (TM0) can also be read as:

(TM0): X can be covered by (domains) of m-dimensional topological charts.

You should convince yourself (or remember) why some of the usual examples of topological spaces such as
spheres, tori, Moebius band, etc are topological manifolds. Also, in all these examples, one should concentrate
first on the condition (TM0) (... as the labelling indicates). Note however that, while the notion of dimension is
intuitively clear (at least in all examples), handling it theoretically is not such a piece of cake; see Remark 1.2. This
is due to the fact that there is no obvious topological characterization of the (intuitive notion) of dimension. This
will be much less of a problem as soon as we move to (differentiable) manifolds.

Remark 1.4. Since the notion of ”topological space” is built on the notion of ”open”, so are most of the basic
definitions in Topology- such as continuity, Hausdorffness, compactness, etc etc. However, under rather mild as-
sumptions, such definitions can be rephrased more intuitively, using sequences. The main ”mild assumption” that
we have in mind here is that of ”first countability”; please see the basic course on Topology. This condition is
weaker even than the second countability condition. For instance, metric topologies are always first countable but
may fail to be second countable. For our purpose, it is enough to know that either of the conditions (TM0) or (TM2)
implies 1st countability (and, if you look at the definitions, you will see that this statement is completely trivial).

What is interesting to know here is that, when restricting to spaces X which are first countable, many of the basic
notions can be reformulated in terms of sequences. E.g.:
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• X is Hausdorff iff any convergent sequence in X has at most one limit.
• f : X → Y is continuous iff it is sequential continuous i.e.: if (xn)n≥1 is a sequence converging in X to x ∈ X ,

then ( f (xn))n≥1 converges in Y to f (x).

1.1.5 Inside a topological space

Recall that, given a space X , a subset A ⊂ X is said to be closed in X if its complement X \A is open. Of course,
knowing the closed subsets of X is equivalent to knowing the open ones- hence one could have introduced the
notion of topology completely in terms of closed subsets (which would then be the axioms?). Opens are preferred
because some of the the most important properties can be described more directly in terms of opens (and perhaps
also because they are closer in spirit to the notion of ”ball” in a metric space). However, closed subsets often have
some very nice properties- e.g. when talking about compactness.

Given the axioms of a topology (namely the fact that arbitrary unions of opens is open or, equivalently, that
arbitrary intersections of closeds is closed), it follows that for any subset A of a topological space X one can talk
about:

• the largest open contained in A- and this is called the interior of A (in the space X), and denoted Int(A).
• the smallest closed containing A- and this is called the closure of A (in the space X), and denoted Cl(A),

Recall also that, under the first countability axiom (in particular, for topological manifolds), the closure has a
particularly nice description in terms of sequences:

Cl(A) = {x ∈ X : ∃ a sequence in A converging to x}.

1.1.6 Construction of topological spaces

We have already seen two (related) ways of constructing topologies on a set X : the metric topology Td induced by
any metric d on X , and the topology T (B) generated by any family B of subsets of X (with the particularly nice
situation when B is a topology basis).

There are various other important constructions of topologies out of the old ones. For instance, given any two
topological spaces X and Y , the Cartesian product

X×Y = {(x,y) : x ∈ X ,y ∈ Y}

carries a canonical topology, called the product topology. There is a slight complication: while we would like that
the products of opens is open,

BX×Y := {U×V : U−open in X ,V −open in Y}

is not a topology on X ×Y ; instead, it is a topology basis, and the product topology is defined as the topology
generated by BX×Y . Equivalently, and more conceptually, it is the smallest topology on X ×Y with the property
that the projections

prX : X×Y → X ,prY : X×Y → Y

are continuous.
The last description is more conceptual because it follows a general philosophy that one should apply when

looking for topologies: require that the most interesting maps that you have around to be continuous, and look for
”the best (least boring)” topology that does that (usually ”the best” means ”the largest” or ”the smallest”).

Another example of this philosophy is the induced topology: given a topological space X , any subset A ⊂ X
carries a canonical, induced, topology: it is the smallest topology with the property that the canonical inclusion

i : A→ X , i(a) = a
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is continuous (why would looking for the largest topology with this property be ”boring”?). Explicitly, the opens
in A (endowed with the topology induced from X) are the intersections A∩U of A with opens U of X .

Yet another example is that of quotient topology. In some sense, it is at the other extreme than the previous
example. While before we started with an inclusion I : A→ X , we now start with a surjection

π : X → Y,

where X is a topological space and Y is just a set (on which we would like to induce a topology). This time, looking
for ”the most interesting” topology on Y , we are lead to looking at the largest topology on Y with the property that
π is continuous (why?). We obtain the quotient topology on Y : a subset U ⊂ Y is an open of this topology if an
donly if π−1(U) is open in X (check that this is, indeed, a topology on Y ).

The terminology ”quotient” comes from the fact that, typically, the situation of having a surjection π : X → Y
arises when starting with X and an equivalence relation R on X . Then, with the intuition that we want to glue the
points of X that are equivalent (w.r.t. the equivalence relation R), we obtain the quotient space

Y = X/R

(abstractly made of R-equivalence classes [x]R = {y ∈ X : (x,y) ∈ R} of points x ∈ X) together with the canonical
projection

πR : X → X/R, πR(x) = [x]R.

Therefore, starting with an equivalence relation R on a topological space X , we see that the resulting quotient X/R
carries a canonical (quotient) topology.

One of the most interesting examples of quotient topologies is the canonical topology on the projective space

Pm := {l : l− line through the origin in Rm+1}

(i.e. the set of all 1-dimensional vector subspaces of Rm+1). We can put ourselves in the previous situation by
considering

π : Rm+1 \{0}→ Pm,x 7→ lx,

where lx is the line through the origin and x (i.e. the vector subspace R · x spanned by x). In terms of equivalence
relations, we deal with the equivalence relation on Rm+1 \{0} given by:

x∼ y⇐⇒ lx = ly⇐⇒ y = λ · x for some λ ∈ R.

Using the Euclidean topology on Rm+1 \{0} we obtain a natural topology on Pm; endowed with this topology, Pm

is called the projective space (of dimension m). You should convince yourself that convergence in this topology
corresponds to the intuitive idea of ”lines getting close to each other”.

Finally, given the notion of induced topology, one can make use of that of embeddings: an embedding of
a topological space X into a topological space Y is any map i : X → Y that is continuous, injective and, when
interpreted as a continuous map i : X → i(X) and we endow i(X) ⊂ Y with the topology induced from Y , it is a
homemorphism (note that the last map is automatically continuous and bijective, but that does not imply that its
inverse is continuous as well!). Next to metrizability theorems (see above), one of the most interesting problems
in Topology/Geometry is that of deciding whether a space X can be embedded in a Euclidean space; results in this
direction are usually labelled as embedding theorems. Looking at the notion of topological manifold, it is worth
pointing out that, due also to the axioms (TM1) and (TM2), it follows that any topological manifold is metrizable
and can be embedded in some Euclidean space!



6 1 Reminders on Topology and Analysis

1.1.7 Topological properties

As we have pointed out in Remark 1.1, to distinguish topological spaces from each other (or to understand better
each specific one), it is useful to isolate the various topological properties that spaces may have. By a topological
property we mean any property that can be described by only using the notion of opens or, equivalently, any
property that is preserved via homeomorphisms. We have already mentioned several such properties: Hausdorffness
and second countability. Here we recall a few more.

The first one is that of connectedness: a space X is called connected if it cannot be written as X = U ∪V with
U,V -disjoint non-empty opens in X . Or, equivalently, if the only subsets of X that are both open and closed are
/0 and X . In general, if X is not connected, it can be ”broken” into connected pieces; more precisely, recall that
a connected component of a space X is any connected subset C ⊂ X which (when endowed with the induced
topology) is connected, and which is maximal (w.r.t. the inclusion) with this property. Then the set of connected
components defines a partition of X by closed subspace. In examples, the partition into connected components is
usually easy to guess intuitively; here is a simple exercise that can be used as a recipe to confirm such guesses:
assume that we manage to write X as

X = X1∪ . . .∪Xk, with Xi∩X j = /0 for i 6= j.

Assume also that all the Xis are open or, equivalently (why?), that all the Xis are closed. Then {X1, . . . ,Xk} must
coincide with the partition into connected components.

Remark 1.5. Of course, the number of connected components may sometimes be infinite (even non-countable).
Note however that, for topological manifolds M, due to the second countability axiom, the number of connected
components if always at most countable (and finite if M is compact). Actually, one often restricts the attention to
connected manifolds.

Another important topological property is that of compactness. While this is a property that one usually encoun-
ters in the first courses in Analysis (compacts in Rm being the subsets A⊂Rm that are closed and bounded), the fact
that this is a topological property (i.e. can be described by appealing only to the notion of opens in A, without any
reference to the Euclidean metric or to the way that A sits inside Rm) is not at all obvious. That makes the resulting
general definition less intuitive and a bit hard to digest at first: a topological space X is said to be compact if for
any open cover

U = {Ui : i ∈ I}

of X (i.e. each Ui is open in X , their union is X , and I is an indexing set), one can extract a finite subcover, i.e. there
exists i1, . . . , ik ∈ I such that {Ui1 , . . . ,Uik} is still a cover of X- i.e.

X =Ui1 ∪ . . .∪Uik .

Here is the list of the most important properties of compactness:

1. Compact inside Hausdorff is closed: if X is a topological space, A⊂ X is endowed with the induced topology
(see above) then:

A− compact,X−Hausdorff =⇒ A− is closed inX .

2. Closed inside compact is compact: if X is a topological space, A ⊂ X is endowed with the induced topology
(see above) then:

A− is closed in X ,X− compact =⇒ A− is compact

3. Any compact Hausdorff space is automatically normal:

X− compact =⇒ X−normal.

Recall here that a topological space X is said to be normal if for any A,B⊂ X closed disjoint subsets, one can
find opens in X , U containing A and V containing B, such that U ∩V = /0.

4. Product of compacts is compact: if X and Y are compact spaces then X×Y , endowed with the product topology
(see above), is compact:
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X ,Y − compact =⇒ X×Y − compact.

5. Continuous applied to compact is compact: if f : X → Y is continuous and A⊂ X (with the induced topology)
is compact, then so is f (A)⊂ Y :

f : X → Y continuous,A− compact inside X =⇒ f (A)− compact.

6. In particular: quotients of compacts are compacts.
7. A continuous bijection from a compact space to a Hausdorff one is automatically a homeomorphism:

(continuous f ) : (compact space X)→ (Hausdorff space Y ) =⇒ f is a homeomorphism.

More generally: a continuous injection from compact to Hausdorff is automatically an embedding (see above).

Exercise 1.6. Assuming that you already know that the unit interval [0,1] (endowed with the Euclidean topology)
is compact, use the properties listed above to deduce that: for subsets of Rm endowed with the Euclidean topology:

A⊂ Rm is compact⇐⇒ A is closed and bounded in Rm.

A related topological property is the local version of compactness: one says that a space X is locally compact if
any point x ∈ X admits a compact neighborhood. If X is also Hausdorff, it follows that any point in X admits ”ar-
bitrarily small compact neighborhoods”: for any neighborhood U of x in X there exists a compact neighbhborhood
of x, contained in U . In general, Hausdorff locally compact spaces can be compactified by adding one extra-point.
More on the 1-point compactification can be found in the lecture note on Topology.

For topological manifolds, axiom (MT0) ensures that they are automatically locally compact. But also axioms
(MT1), (MT2) interact nicely with local compactness: they ensure the existence of ”exhaustions”. This is Theorem
4.37 in the notes on Topology:

Theorem 1.7. Any locally compact, Hausdorff, 2nd countable space X admits an exhaustion, i.e. a family {Kn :

n ∈ Z+} of compact subsets of X such that X = ∪nKn and Kn ⊂
◦
Kn+1 for all n.

Proof. Let B be a countable basis and consider V = {B ∈B : B− compact}. Then V is a basis: for any open
U and x ∈ X we choose a compact neighborhood N inside U ; since B is a basis, we find B ∈B s.t. x ∈ B ⊂ N;
this implies B ⊂ N and then B must be compact; hence we found B ∈ V s.t. x ∈ B ⊂U . In conclusion, we may
assume that we have a basis V = {Vn : n ∈ Z+} where V n is compact for each n. We define the exhaustion {Kn}
inductively, as follows. We put K1 =V 1. Since V covers the compact K1, we find i1 such that

K1 ⊂V1∪V2∪ . . .∪Vi1 .

Denoting by D1 the right hand side of the inclusion above, we put

K2 = D1 =V 1∪V 2∪ . . .∪V i1 .

This is compact because it is a finite union of compacts. Since D1 ⊂ K2 and D1 is open, we must have D1 ⊂
◦
K2;

since K1 ⊂ D1, we have K1 ⊂
◦
K2. Next, we choose i2 > i1 such that

K2 ⊂V1∪V2∪ . . .∪Vi2 ,

we denote by D2 the right hand side of this inclusion, and we put

K3 = D2 =V 1∪V 2∪ . . .∪V i2 .

As before, K3 is compact, its interior contains D2, hence also K2. Continuing this process, we construct the family
Kn, which clearly covers X .
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1.1.8 The algebra of continuous functions

Given a topological space X , an ”observable on X” has a precise meaning: it is a continuous function

f : X → R.

The set of all such continuous functions is denoted by

C (X).

One of the simplest but most fundamental ideas in various parts of Geometry is that of understanding a space X
via the associated ”object” C (X). This will allow one to consider ”more relevant observables”: e.g. for subspaces
X ⊂Rm, one can consider only f s that are smooth, or polynomials. Or even to handle ”spaces” which, although are
quite intuitive, are not topological spaces in the strict sense of the word. All together, this point of view gives rise to
several directions in Geometry: Differential Geometry (where the key-word is ”smooth” instead of ”continuous”),
Algebraic Geometry (where the key-word is ”polynomial”, or ”complex analytic”), Noncommutative Geometry
(where X does not even make sense, but C (X) does).

Of course, what makes these work is the rich structure that C (X) posses- making the ”object” C (X) (a priory
just a set) into a more interesting mathematical object. We recall here the most important part of the algebraic
structure present on C (X): it is an algebra. Recall here:

Definition 1.8. A (real) algebra is a vector space A over R together with an operation

A×A→ A, (a,b) 7→ a ·b

which is unital in the sense that there exists an element 1 ∈ A such that

1 ·a = a ·1 = a ∀ a ∈ A,

and which is R-bilinear and associative, i.e., for all a,a′,b,b′,c ∈ A, λ ∈ R,

(a+a′) ·b = a ·b+a′ ·b, a · (b+b′) = a ·b+a ·b′,

(λa) ·b = λ (a ·b) = a · (λb),

a · (b · c) = (a ·b) · c .

We say that A is commutative if a ·b = b ·a for all a,b ∈ A.
Similarly one talks about complex algebras: then A is a vector space over C and λ ∈ C.

For a topological space X , the algebra structure on C (X) is defined simply by pointwise addition and multipli-
cation: for f ,g ∈ C (X) and λ ∈ R, f +g, f ·g,λ · f ∈ C (X) are given by:

( f +g)(x) = f (x)+g(x), ( f ·g)(x) = f (x)g(x), (λ · f )(x) = λ f (x).

And, considering the space C (X ,C) of C-valued continuous functions on X , one obtains a complex algebra.
The fact that, under certain assumptions, a topological space X can be recovered from the algebra C (X), is the

content of the Gelfand-Naimark theorem. While we refer to the basic course on Topology for the full statement
and details, here is the very brief summary:

Theorem 1.9 (informative version of Gelfand Naimark theorem). There is a way to associate to any algebra A
a topological space X(A) (called the spectrum of A) so that, when applied to A = C (X)- the algebra of continuous
functions on a compact Hausdorff space X, one recovers X (i.e. X(C (X)) is homeomorphic to X).

Remark 1.10 (Some details). The spectrum X(A) of an algebra A is defined as the set of characters on A, i.e. maps

χ : A→ R
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which preserve the algebra structure, i.e. which are linear, multiplicative (χ(ab) = χ(a)χ(b) for all a,b ∈ A) and
send the unit of A to 1 ∈ R. The topology on X(A) is ”the best” for which all the evaluation maps

eva : X(A)→ R, χ 7→ χ(a) (one for each a ∈ A)

are continuous.
For instance, when A = C (X) for a compact Hausdorff space X , then any point x ∈M gives rise to a character

χx on C (X), namely the evaluation at x, and the resulting map

X → X(A), x 7→ χx

is the one the realises the desired homeomorphism (of course, there are things to prove along the way). Let us give
here a direct argument showing that, if X is a compact space, then any character on C (X),

χ : C (X)→ R,

is necessarily of type χx for some x ∈M (proving that the previous map is surjective). �

And, with the mind at the fact that we may want to consider more restrictive conditions than continuity (e.g.
smoothness), here is the resulting relevant abstract notion:

Definition 1.11. Given an algebra A (over the base field R or C), a subalgebra of A is any vector subspace B⊂ A,
containing the unit 1 of A and such that

b ·b′ ∈ B ∀ b,b′ ∈ B.

When we want to be more specific about the base field, we talk about real or complex subalgebras.

For instance, for X ⊂ Rm, when looking at smooth or polynomial functions, we obtain a sequence of sub-
algebras:

C polyn(X)⊂ C ∞(X)⊂ C (X).

Finally, when looking at a subset
A ⊂ C (X),

(subalgebra or not), there are several interesting properties that turn out to be interesting- and we say that:

(1) A is point separating if for any x,y ∈ X distinct there exists f ∈A such that f (x) 6= f (y) or, equivalently, if
there exists f ∈A such that f (x) = 0 and f (y) = 1.

(2) A is normal if for any two disjoint closed subset A,B⊂ X , there exists f ∈A such that f |A = 0, f |B = 1.
(3) A is closed under sums if f +g ∈A whenever f ,g ∈A .
(3) A is closed under quotients if f/g ∈A whenever f ,g ∈A and g is nowhere vanishing.

For instance, the Stone-Weierstrass theorem (which will not be used in the rest of the course) says that, if X is
a compact Hausdorff space, then any point-separating sub-algebra A ⊂ C (X) is dense in C (X); with particular
cases of the type: real valued continuous functions on [0,1] (or other similar spaces) can be approximated by poly-
nomial functions.

Note that, for a general topological space X , even the entire A = C (X) need not be point separating or normal.
Actually, it is a rather simple exercise to check that the point separation of C (X) implies that X must be Hausdorff,
while the normality of C (X) implies that the topological space X must be normal (i.e., as recalled above: any
two disjoint closed subsets A,B ⊂ X can be separated topologically: there exist opens U,V ⊂ X containing A and
B, respectively, with U ∩V = /0). What is far less obvious (actually one of the most non-trivial basic results in
Topology) is the converse, known as the Urysohn lemma: if a topological space X is Hausdorff and normal then
C (X) is normal; more precisely, for any two disjoint closed subsets A,B⊂ X there exists

f : X → [0,1] continuous and such that f |A = 0, f |B = 1.

This will not be used later in the course; we mention it here just for completeness.
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1.1.9 Partitions of unity

Finally, one more basic topic from Topology- but this time one that is difficult to appreciate (and perhaps even to
digest) without entering the realm of Differential Geometry and/or Analysis: partitions of unity. To be able to talk
about partitions of unity that are not just continuous (as we will be interested only on smooth functions), we can
place ourselves in the following setting: X is a topological space and

A ⊂ C (X)

is a given vector subspace; we will be looking at partitions of unity that belong to A . For the main definition, we
first need to recall the notion of support: given η : X → R continuous, the support of η in X , denoted suppX (η)
or simply supp(η) is the closure in X of the set η 6= 0 of points of X on which η does not vanish:

suppX (η) := {η 6= 0}= {x ∈ X : η(x) 6= 0}X
.

Given an open U ⊂ X , we say that η is supported in U if supp(η) ⊂U . This condition allows one to promote
functions that are defined only on U , f : U →R, to functions on X , at least after multiplying by η ; namely, η · f , a
priory defined only on U , if extended to X by declaring it to be zero outside U , the resulting function

η · f : X → R

will be continuous (check this and, by looking at examples, convince yourselves that this does not work if the
condition supp(η)⊂U is replaced by the weaker one that {η 6= 0} ⊂U).

We now move to partitions of unity; we start with the finite ones.

Definition 1.12. Let X be a topological space, U = {U1, . . . ,Un} a finite open cover of X . A continuous
partition of unity subordinated to U is a family of continuous functions ηi : X → [0,1] satisfying:

η1 + . . .+ηk = 1, supp(ηi)⊂Ui.

Given A ⊂ C (X), we say that {ηi} is an A -partition of unity if ηi ∈A for all i.

Fig. 1.1 On the left, an annulus X is covered by two open sets U1 and U2. The graph on the right shows two functions ηi : X → [0,1]
that form a partition of unity subordinate to this cover.

Theorem 1.13. Let X be a topological space and assume that A ⊂ C (X) is normal and is closed under sums and
quotients. Then, for any finite open cover U , there exists an A -partition of unity subordinated to U .

In particular if X is Hausdorff and normal, by the Uryshon Lemma (to ensure that A := C (X) is normal), any
finite open cover U admits a continuous partition of unity subordinated to U .
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Proof (sketch; for more details, see the lecture notes on Topology). The main ingredients are:

(St1) the remark made above that the normality of A implies that X is a normal space (simple exercise).
(St2) the fact that, in a normal space X , whenever we have A⊂U with A-closed in X and U-open in X , one can find

a smaller open V such that
A⊂V ⊂V ⊂U

(short proof, but a bit tricky).
(St3) the shrinking lemma: for any finite open cover U = {U1, . . . ,Uk} of a normal space X one can find another

cover V = {V1, . . . ,Vn} such that
V i ⊂Ui ∀ i ∈ {1, . . . ,k}.

(this follows by applying the previous step inductively, starting with U =U1 A = X \ (U2∪ . . .∪Uk).

Now the proof of the theorem. Apply the shrinking lemma twice and choose open covers V = {Vi}, W = {Wi},
with V i ⊂Ui, W i ⊂Vi. For each i, we use the separation property of A for the disjoint closed sets (W i,X−Vi). We
find fi : X → [0,1] that belongs to A , with fi = 1 on W i and fi = 0 outside Vi. Note that

f := f1 + . . .+ fk

is nowhere zero. Indeed, if f (x) = 0, we must have fi(x) = 0 for all i, hence, for all i, x /∈Wi. But this contradicts
the fact that W is a cover of X . From the properties of A , each

ηi :=
fi

f1 + . . .+ fk
: X → [0,1]

is continuous. Clearly, their sum is 1. Finally, supp(ηi) ⊂Ui because V i ⊂Ui and {x : ηi(x) 6= 0} = {x : fi(x) 6=
0} ⊂Vi.

And here is a nice application of the existence of (finite) partitions of unity:

Theorem 1.14. Any compact topological manifold M can be embedded in some Euclidean space Rm.

Proof. Cover M by opens that are homeomorphic to Rd , where d is the dimension of M. Using that M is compact,
we find an open cover U = {U1, . . . ,Un} together with homeomorphisms χi :Ui→Rd . Since M is compact it is also
normal hence we find a partition of unity {η1, . . . ,ηn} subordinated to U . Each of the functions ηi ·χi : Ui→Rd is
extended to M by declaring it to be zero outside Ui; by the previous comments, the resulting functions χ̃i : M→Rd

are continuous. Consider now

i = (η1, . . . ,ηk, χ̃1, . . . , χ̃k) : M→ R× . . .×R︸ ︷︷ ︸
k times

×Rd× . . .×Rd︸ ︷︷ ︸
k times

= Rk(d+1).

One check directly that i is injective; since M is compact and Rk(d+1) is Hausdorff, by the properties recalled on
compactness, i will be an embedding.

Finite partitions of unity are useful mainly when working over compacts (so that one can ensure finite open
covers). For the more general case one first has to make precise sense of ”infinite sums ∑i ηi”. For that first recall
that, given a topological space X , a family S of subsets of X is said to be locally finite (in X) if for any x ∈ X
there exists a neighborhood V of x which intersect only a finite number of members of S . Given a family {ηi}i∈I
(I some indexing set) of continuous functions ηi : X→R, we say that {ηi}i∈I is locally finite in X if their supports
(in X) supp(ηi) form a locally finite family of subsets of X . Note that in this case the sum

∑
i∈I

ηi : X → R

can be defined pointwise (at any x ∈ X only a finite number of terms do not vanish), and the resulting function
is continuous. For a subset A ⊂ C (X), we say that is closed under locally finite sums if for any locally finite
family {ηi} with ηi ∈A , ∑i ηi is again in A .

With these, we can now talk about infinite partitions of unity:
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Definition 1.15. Let X be a topological space, U = {Ui : i ∈ I} an open cover of X . A (continuous) partition of
unity subordinated to U is a locally finite family of continuous functions ηi : X → [0,1] satisfying:

∑
i∈I

ηi = 1, supp(ηi)⊂Ui.

Given A ⊂ C (X), we say that {ηi} is an A -partition of unity if ηi ∈A for all i.

If we are pragmatic and we only care about what is directly applicable later on in this course, the result to have
in mind is:

Theorem 1.16. Let X be a Hausdorff, locally compact and 2nd countable space, A ⊂ C (X) and assume that:

• A is closed under locally finite sums and under quotients and
• A satisfies: for any x∈M and any open neighborhood U of x, there exists f ∈A supported in U with f (x)> 0.

Then, for any open cover U of X, there exists an A -partition of unity subordinated to U .

For the curious student, here is the more detailed discussion to which the previous theorem belongs (with the
explanation of how the proof goes). The existence of partitions of unity subordinated to arbitrary open covers
forces a topological property of X called paracompactness: we say that a topological space X is paracompact if
for any open cover U of X , there exists a locally finite open cover V that is a refinement of U in the sense that any
V ∈ V is included inside some U ∈U . The existence of arbitrary partitions of unity is ensured by the following:

Theorem 1.17. Let X be a paracompact Hausdorff space and assume that A ⊂ C (X) is normal, closed under
locally finite sums and closed under quotients.

Then, for any open cover U of X, there exists an A -partition of unity subordinated to U .

Since paracompact spaces are automatically normal, hence we can use Uryshon’s lemma, it follows that in a
paracompact Hausdorff space a for any open cover there exists a continuous partition of unity subordinated to the
cover.

The proof of the previous theorem is almost identical with the one from the finite case- just that one now has to
establish an infinite version of the shrinking lemma (and that is where paracompactness enters),

To apply the previous theorem, there are two points that may be difficult to check: the paracompactness of X
and, when working with arbitrary A , that A is normal. For the first one, the following comes in handy:

Theorem 1.18. Any Hausdorff, locally compact and 2nd countable space is paracompact.

In particular, topological manifolds are automatically paracompact. One can actually show that, under the axioms
(TM0) and (TM1), the axiom (TM2) on second countability is equivalent to the fact that M is paracompact and has
a countable number of connected components.

Proof. We use an exhaustion {Kn} of X (Theorem 1.7). Let U be an open cover of X . For each n ∈ Z+ there is
a finite family Vn which covers Kn− Int(Kn−1), consisting of opens V with the properties: V ⊂ Int(Kn+1)−Kn−1,
V ⊂U for some U ∈U . Indeed, for any x ∈ Kn− Int(Kn−1) let Vx be the intersection of Int(Kn+1)−Kn−1 with any
member of U containing x; since Kn− Int(Kn−1) is compact, just take a finite subcollection Vn of {Vx}, covering
Kn− Int(Kn−1). Set V = ∪nVn; it covers X since each Kn−Kn−1 ⊂ Kn− Int(Kn−1) is covered by Vn. Finally, it is
locally finite: if x ∈ X , choosing n and V such that V ∈ Vn, x ∈V , we have V ⊂ Int(Kn+1)−Kn−1, hence V can only
intersect members of Vm with m≤ n+1 (a finite number of them!).

Finally, to check the normality of A needed in Theorem 1.17, the following comes in handy:

Theorem 1.19. Let X be a Hausdorff paracompact space and A ⊂ C (X) closed under locally finite sums and
under quotients. If X is also locally compact, then the following are equivalent:

1. A is normal.
2. for any x ∈M and any open neighborhood U of x, there exists f ∈A supported in U with f (x)> 0.
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In particular, for a topological manifold M, checking that a subset A ⊂ C (M) is normal is a local matter- and
that is very useful since, locally, topological manifolds look just like Euclidean spaces.

Proof. That 1 implies 2 is clear: apply the separation property to {x} and X−V . Assume 2. We claim that for any
C⊂ X compact and any open U such that C⊂U , there exists f ∈A supported in U , such that f |C > 0. Indeed, by
hypothesis, for any c ∈C we can find an open neighborhood Vc of c and fc ∈A positive such that fc(c)> 0; then
{ fc 6= 0}c∈C is an open cover of C in X , hence we can find a finite subcollection (corresponding to some points
c1, . . . ,ck ∈C) which still covers C; finally, set f = fc1 + . . .+ fck .

To prove 1, let A,B⊂ X be two closed disjoint subsets. As terminology, D⊂ X is called relatively compact if D
is compact. Since X is locally compact, any point has arbitrarily small relatively compact open neighborhoods. For
each y ∈ X−A, we choose such a neighborhood Dy ⊂ X−A. For each a ∈ A, since a ∈ X−B, applying step (St2)
from the proof of Theorem 1.13, we find an open Da such that a ∈ Da ⊂ X −B. Again, we may assume that Da is
relatively compact. Then {Dx : x ∈ X} is an open cover of X ; let U = {Ui : i ∈ I} be a locally finite refinement.
We split the set of indices as I = I1 ∪ I2, where I1 contains those i for which Ui ∩A 6= /0, while I2 those for which
Ui ⊂ X −A. Using the shrinking lemma (the infinite version of the one described in (St3) of he proof of Theorem
1.13) we can also choose an open cover of X , V = {Vi : i ∈ I}, with V i ⊂Ui. Note that, by construction, each Ui
(hence also each Vi) is relatively compact. Hence, by the claim above, we can find ηi ∈A such that

ηi|V i
> 0, supp(ηi)⊂Ui.

Finally, we define

f (x) =
∑i∈I1 ηi(x)

∑i∈I ηi(x)

From the properties of A , f ∈ A . Also, f |A = 1. Indeed, for a ∈ A, a cannot belong to the Ui’s with i ∈ I2 (i.e.
those⊂ X−A); hence ηi(a) = 0 for all i ∈ I2, hence f (a) = 1. Finally, f |B = 0. To see this, we show that ηi(b) = 0
for all i ∈ I1, b ∈ B. Assume the contrary. We find i ∈ I1 and b ∈ B∩Ui. Now, from the construction of U , Ui ⊂Dx
for some x ∈ X . There are two cases. If x = a ∈ A, then the defining property for Da, namely Da ∩B = /0, is in
contradiction with our assumption (b∈ B∩Ui). If x = y∈ X−A, then the defining property for Dy, i.e. Dy ⊂ X−A,

is in contradiction with the fact that i ∈ I1 (i.e. Ui∩A 6= /0).

1.2 Reminder 2: Analysis

The relationship between Analysis and Differential Geometry is subtle. On one hand, Differential Geometry relies
on the very basics of Analysis. On the other hand, various notions/results from Analysis become much more
transparent/intuitive once the geometric perspective/intuition is brought into picture. In some sense, in many cases,
the geometric point of view indicates the (expected) results while analysis provides the tools to prove them.

1.2.1 Rn

The basic playground for multivariate analysis is the standard Euclidean space

Rn = R× . . .×R︸ ︷︷ ︸
n times

.

Despite its simplicity, this ”space” has many different (but related) structures- and often the problem with handling
Rn comes from the fact that it may not be completely clear which of the structures present on Rn is relevant for the
specific discussions. Here are some of the many interesting structures present on Rn:

• it is a vector space. When we want to emphasize this structure, we will denoted by

v = (v1, . . . ,vn) ∈ Rn



14 1 Reminders on Topology and Analysis

its elements and we will think of them as ”vectors”/”directions”. Intrinsic in this notation is the presence of yet
another piece of structure: it is not just a vector space- it comes with a preferred (canonical) basis:

e1, . . . ,em ∈ Rn;

in coordinates, ei has 1 on the i-th position and 0 everywhere else.
• it is a vector space endowed with an inner product:

〈v,w〉=
n

∑
i=1

vi ·wi,

hence it is also a normed vector space, with the norm:

||v||=
√
〈v,v〉.

• it is a topological space- endowed with the standard Euclidean topology. When we want to emphasize this
structure, we will denote by

x = (x1, . . . ,xn) ∈ Rn

its elements and we will think of them as ”points”. For instance, when looking at a circle in R2, the vector space
space structure on R2 is not so relevant, and we think of the circle as made by points rather then vectors. Also,
when talking about the continuity of a function f : Rn → R, the vector space structure of Rn is not relevant
(though it may be useful).
Recall also that the topology on Rn is a shadow of yet another structure: Rm is also a metric space, with the
standard Euclidean metric:

d(x,y) =

√
n

∑
i=1

(xi− yi)2.

We say a ”shadow” because uses part of what the metric allows us top talks about: points being ”close to each
other” (or, more precisely: convergence and continuity). In particular, there are several other natural metrics on
Rn that induce the same Euclidean topology- e.g. the so called square metric

d′(x,y) = max{|x1− y1|, . . . , |xn− yn|}.

• even when thinking about Rn as a topological space, so of its elements as points, each point x ∈ Rn can be
represented using ”canonical coordinates”- used already above. Again, the coordinates are not so relevant/im-
portant: they are useful and can be used, but they are not intrinsic to the structure. For instance, a circle in R2

can be described using coordinates by the equation x2 + y2 = 1, but the circle itself can be drawn without any
coordinate axes at our disposal.
Note that the standard coordinates we mentioned are the simplest illustration of the notion of ”chart”- to be
discussed in a bit more detail below, and essential in defining the notion of manifold.

• it is a topological space ”on which analysis can be performed” (... i.e. a manifold).
• etc.

Of course, all these are inter-related but, in each situation, it is important to realize which of these structures really
matter. In particular, whenever one encounters a definition or result, it is instructive to figure out whether the
elements in Rm that show up play the role of points and which ones of vectors, and how much the definition/result
depends on the coordinates. This is the first step towards a geometric understanding of Analysis.

1.2.2 The differential and the inverse function theorem

One can talk about various notions of derivatives of a function f at a point

x ∈ Rn
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whenever we have a function f defined on a neighborhood of x- so that the expressions f (y) used below makes
sense for all y near x or, equivalently, f (x+ v) is defined for small vectors v.

Typically one assumes that f is defined on an open subset Ω ⊂ Rn and takes values in some other Euclidean
space Rk,

f : Ω → Rk,

so that it makes sense to talk about derivatives of f at any point in its domain, x ∈Ω .
The most intrinsic notion of derivative is that of ”total derivative”, also called the differential of f (at the

given point x ∈ Ω ). This notion arises when trying to approximate f , near x, by simpler (linear-like) functions.
Understanding f near x is about understanding

v 7→ f (x+ v)

for v ∈ Rn near 0. It sends v = 0 to f (x), hence the best one can hope for is to approximate

v 7→ f (x+ v)− f (x)

by functions that are linear in v. Think that we try to write the last expression as a function linear in v, plus one that
is qudratic in v, etc (plus eventually an ”error term”), but we are interested only in the linear term A. We see we are
looking for a linear map

A ∈ Lin(Rn,Rk)

with the property that

lim
v→0

f (x+ v)− f (x)−A(v)
||v||

= 0. (1.2.1)

It is easy to see that, if such a map A exists, then it is unique. And that is what the differential of f at x is.

Fig. 1.2 Visualization of the total derivative for a function f : Ω → Rk defined over an open Ω ⊆ Rn, in this case with n = 2 and
k = 1. Infinitesimal movements through a point x ∈ Ω are represented by the blue horizontal vectors vi and the resulting infinitesimal
movement in the codomain Rk is represented by the yellow vertical vectors Dx f (vi). They sum up to dashed vectors of the form
(vi,Dx f (vi)) ∈ Rn×Rk that are tangent to the graph of f in the point (x, f (x)). The graph of the best affine approximation T of f in x
(which sends any x̃ ∈ Rn to T (x̃) = f (x)+Dx f (x̃− x)) is an affine plane spanned by the dashed vectors.

Definition 1.20. We say that f : Ω → Rk is differentiable at x if there exists a linear map A ∈ Lin(Rn,Rk) sat-
isfying (1.2.1). The linear map A (necessarily unique) is called the differential of f at the point x (or the total
derivative of f at x) and is denoted

D x f = (D f )x : Rn→ Rk.
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We say that f is differentiable if it differentiable at all points x in its domain Ω . We say that f is of class C1 if it
is differentiable and the resulting map

D f : Ω → Lin(Rn,Rk), x 7→ (d f )x

is continuous (recall here that, via the matrix representation of linear maps, Lin(Rn,Rk) can be interpreted as the
Euclidean space Rn·k).

We say that f is of class C2 if it differentiable and d f is of class C1; proceeding inductively, we can talk about
f being of class Cl for any l ∈ N. We say that f is smooth if it is of class Cl for all l.

Recall here also the chain rule that allows one to compute the differential of a composition of two functions:

Proposition 1.21 (the chain rule). Given opens Ω ⊂ Rn, Ω ′ ⊂ Rk and functions

Ω
f→Ω

′ g→ Rl ,

if f is differentiable at x ∈Ω and g is differentiable at f (x) ∈Ω ′, then g◦ f is differentiable at x and

(D(g◦ f ))x = (Dg) f (x) ◦ (D f )x.

Despite the fact that the differential (D f )x arises as ”the linear approximation” of f near x, it contains a great
deal of information of f near x- and that makes it extremely useful. Probably the best and most fundamental
illustration is the inverse function theorem. Recall here that

Definition 1.22. A map f : Ω →Ω ′ between two opens Ω ⊂Rn and Ω ′ ⊂Rk is said to be a diffeomorphism if it
is bijective and both f and f−1 are smooth.

We say that f is a local diffeomorphism around x ∈Ω if there exist opens Ωx ⊂Ω and Ω
′
f (x) ⊂Ω ′ with x ∈Ωx,

such that f |Ωx : Ωx→Ω
′
f (x) is a diffeomorphism.

It is interesting to draw an analogy with Topology, where the main objects are topological spaces, the relevant
maps are the continuous ones and two spaces are ”isomorphic in Topology” (homeomorphic) if there exists a
bijection f between them such that both f as well as f−1 are continuous. However, in topology is it usually very
hard to prove that two given spaces are not homeomorphic (and one often has to appeal to methods from Algebraic
Topology); for instance, just the simple the fact that Rn and Rk are homeomorphic only when n = k is very hard
to prove. In contrast, the similar statements for diffeomorphisms are much easier to prove thanks to the notion of
differential. Indeed, using the chain rule, the following should be a rather easy exercise:

Exercise 1.23. Show that if a map f : Ω →Ω
′
between two opens Ω ⊂Rn and Ω

′ ⊂Rk is a local diffeomorphism
around x ∈Ω , then

(D f )x : Rn→ Rk

is a linear isomorphism. Deduce that if two opens Ω ⊂ Rn and Ω
′ ⊂ Rk are diffeomorphic, then n = k.

Although this clearly shows the usefulness of the differential, its great power is due to the inverse function
theorem (and its immediate consequences, such as the implicit function theorem -see below). Indeed, we see that
a condition on the differential of f at a single (given) point x tells us information about f around x:

Theorem 1.24 (The inverse function theorem). Given a smooth map f : Ω → Ω
′

between two opens Ω ⊂ Rn

and Ω
′ ⊂Rk, if f is differentiable at a point x ∈Ω and (D f )x is an isomorphism, then f is a local diffeomorphism

around x.

1.2.3 Directional/partial derivatives; the implicit function theorem

Note that, when talking about the differential (D f )x(v) (hence f : Ω → Rk, with Ω ⊂ Rn open), x ∈Ω should be
thought of as a point, while v ∈ Rn as a direction (vector). This becomes more apparent if we reformulate the total
derivative as a directional derivative.
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Fig. 1.3 The directional derivative ∂v f (x) of the function f from Fig. 1.2 can be seen to arise geometrically in the following way: The
map t 7→ x+ vt traces a line through Ω . The slice of the graph of f over this line is exactly the graph of the function t 7→ f (x+ tv)
if we label the horizontal axis by integer multiples of v. The directional derivative can now be defined as the normal derivative of this
function since we have a one-dimensional domain.

Definition 1.25. With f : Ω → Rk and x ∈Ω as above, and an arbitrary vector v ∈ Rn, the derivative of f at x in
the direction v is defined as the vector

∂v( f )(x) =
∂ f
∂v

(x) :=
d
dt

∣∣∣∣
t=0

f (x+ tv) = lim
t→0

f (x+ tv)− f (x)
t

∈ Rk.

When this derivative exists, we say that f is differentiable at x in the v-direction.

The relationship with the total differential is immediate: just replace in (1.2.1) v (small enough) by tv with v∈Rn

fixed (but arbitrary) and t ∈ R approaching 0; using that A is linear, we find that:

(D f )x(v) =
∂ f
∂v

(x).

This relationship is visualized in Fig. 1.3. In particular, if f is differentiable at x then it is differentiable in all
directions. The converse is not true; however, one can show that if f is of class C1 if and only if all the directional
derivatives ∂ f

∂v exist and are continuous (see also the discussion below on partial derivatives).
Applying the previous definition to v ∈ {e1, . . . ,en}, a vector in the standard basis of Rn, we obtain the partial

derivatives
∂ f
∂xi

(x) :=
∂ f
∂ei

(x) =
d
dy

∣∣∣∣
y=xi

f (x1, . . . ,xi−1,y,xi+1, . . . ,xn) ∈ Rk.

Its components are the partial derivatives of the components fi of f :

∂ f
∂xi

(x) =
(

∂ f1

∂x j
(x), . . . ,

∂ fk

∂x j
(x)
)

(where f = ( f1, . . . , fk)).

These partial derivatives contain the same information as (D f )x, just in a less intrinsic way; however, they allow
one to handle (D f )x more concretely, via matrices. For that recall that, due to the fact that the standard Euclidean
spaces come with a preferred basis, linear maps

A : Rn→ Rk

can be represented as matrices
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A = (Ai
j)1≤i≤k,1≤ j≤n =

A1
1 . . . A1

n
. . . . . . . . .
Ak

1 . . . Ak
n


To make a distinction between the matrix A and the linear map A, one may want to denote by Â the linear map, at
least for a while. Then the relationship between the two is (by definition):

Â(e j) =
k

∑
i=1

Ai
jei

or, on a general vector v = v1e1 + . . .+ vnen ∈ Rn, one has

Â(v) =
k

∑
i=1

(
n

∑
j=1

Ai
jv

j)ei.

To write also this formula in terms of matrix multiplication, we interpret any v ∈Rn as a row matrix and we denote
by vT its transpose (column matrix):

vT =

v1

. . .
vn


With this, the previous formula becomes

Â(v)T = A · vT

It follows immediately that the standard multiplication of matrices,

(A ·B)i
j = ∑

k
Ai

kBk
j,

corresponds to the composition of linear maps:

ÂB = Â◦ B̂.

All together, there should be no confusion in identifying A with Â even notationally.
In the case of the differential (D f )x, to see the matrix representing it we write

(D f )x(e j) =
∂ f
∂x j

(x) =
(

∂ f1

∂x j
(x), . . . ,

∂ fk

∂x j
(x)
)
=

k

∑
i=1

∂ fi

∂x j
(x)e j

i.e., in the matrix notation,

(D f )x =


∂ f1
∂x1

(x) . . . ∂ f1
∂xn

(x)
. . . . . . . . .

∂ fk
∂x1

(x) . . . ∂ fk
∂xn

(x)

 .

Note that, with this, the fact that (D f )x is an isomorphism is equivalent to the fact that the matrix above is invertible.
More generally, the rank of (D f )x as a linear map coincides with the rank as a matrix.

With these:

Proposition 1.26. A function f : Ω → Rk is of class C1 if and only if all the partial derivatives ∂ f
∂xi

exist and are
continuous functions on Ω .

In this case we can further look at partials derivatives of order two etc. Hence the higher, order l, partial deriva-
tives are defined inductively:

∂ l f
∂xi1 . . .∂xil

=
∂

∂xi1

(
∂

∂xi2

(
. . .

(
∂ f
∂xil

)))
.
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The previous proposition that extends to a characterization of f being of class Cl ; in particular, f is smooth if and
only if all its higher partial derivatives exist. We will denote by

C ∞(Rn)

the space (algebra!) of smooth functions on Rn. A smooth partitions of unity on Rn (subordinated to an open
cover) is any partition of unity whose members ηi are smooth- i.e. Definition 1.12 (finite case) and Definition 1.15
(general case) applied at A := C ∞(Rn)⊂ C (Rn).

Theorem 1.27. Any open cover of Rn admits a smooth partition subordinated to it.

Proof. We want to use Theorem 1.17 for A := C ∞(Rn). This is clearly closed under quotients and, for the same
reason that locally finite sums of continuous functions are continuous, it is closed under locally finite sums. We
still have to check the last condition on A or, equivalently: for any x ∈Rn and any ball centered at x, B(x,ε), there
exists a smooth functions f : Rn→ [0,1] such that f (x)> 0 and f is supported in the ball. It is clear that we may
assume that x = 0. Also, by rescaling the argument of f (i.e. multiply it by a constant) we may assume that ε = 1.
Then set f (x) = g(x2

1 + . . .+ x2
n) where g : R→ [0,1] is any smooth function with g(0) > 0 and g = 0 outside

[− 1
2 ,

1
2 ]. That such a function exists should be clear by thinking of its graph. The following exercise provides and

explicit formula.

Exercise 1.28. Show that

g0 : R→ R, g0(x) =

{
e−

1
x if x > 0

0 otherwise

is a smooth function. Then show that

g : R→ R, g(x) = g0(x+
1
2
)g0(

1
2
− x).

is a smooth function with the properties required at the end of the previous proof.

We now recall the implicit function theorem- which is one the important and rather immediate consequences of
the inverse function theorems. The importance is rather geometric, as it arises when looking at curves, surfaces
(or higher dimensional ... submanifolds) in Rn. While such subspaces are usually given by equations of type
f (x1, . . . ,xn) = 0 (think e.g. of x2 +y2 = 1, defining the unit circle in the plane), one would like to express some of
the coordinates xi in terms of the others (or, equivalently, describe our subspace as a graph).

Fig. 1.4 The implicit function Theorem 1.29 illustrated for a concrete choice of f : Ω →Rk. The theorem establishes that the preimage
f−1(0) (under appropriate assumptions) can locally be written as a graph of a function par : U → Rk over a subset of the variables. In
other words, the condition that f vanishes implicitly defines the function par.
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Theorem 1.29. Let f : Ω → Rk be a smooth map defined on an open Ω ⊂ Rm×Rk whose elements we label as
(x,y) = (x1, ...,xm,y1, ...,yk). Furthermore let (x̃, ỹ) ∈Ω be a point where f (x̃, ỹ) = 0 and the matrix(

∂ fi

∂y j
(x̃, ỹ)

)
1≤i, j≤k

is non-singular. Then there exists a function par : U →Rk defined in a neighborhood U of x̃ such that for all (x,y)
near (x̃, ỹ), one has

f (x,y) = 0⇐⇒ y = par(x).

The matrix appearing in this theorem is exactly the Jacobian matrix of the map y 7→ f (x̃,y) at y = ỹ. You can
convince yourself using Fig. 1.4 that its non-singularity is a neccessary condition to find a smooth function par: In
the depicted situation, it corresponds exactly to a tangency of f−1(0) in the y-direction at (x̃, ỹ).

Remark 1.30. Note that this theorem is not completely canonical: It gives preference to the last k components of
the arguments of f , i.e. depends on how we split the components of elements of Ω into x and y-components. For
example, there is an obvious modification in which the starting assumption is that the Jacobian with respect to the
first k components is regular, instead of the last ones. Such modifications are necessary even when looking at the
simplest examples: E.g., for the unit circle where f : R2→ R, f (x,y) = x2 + y2−1, the condition

∂ f
∂y

(x,y) 6= 0

(necessary for the theorem) is valid at almost all the points (x,y) in the circle (and, indeed, we can always solve
y = ±

√
1− x2), except for the points (1,0) and (−1,0) (and, indeed, there is a problem there: we would need a

function two take two values simultaneously close to y = 0 in order for it’s graph to match f−1(0)). However,
at those points one can switch the roles of x and y- and, indeed, around those points which are problematic for
±
√

1− x2, one can write x =±
√

1− y2.
A more intrinsic version of the theorem (and with exactly the same proof) can be obtained by requiring that

(D f )x has maximal rank k, without specifying which minor is non-singular. the conclusion will be that there exists
a permutation σ ∈ Sm+k such that f (p) = 0 near p̃ ∈ Rm+k is equivalent to

πy(σ · p) = par(πx(σ · p)),

where πx and πy are the projections of Rm+k onto the first m and last k components, respectively, and we write σ · p
for the result of permuting p by σ . But perhaps the most geometric formulation is what is know as the submersion
theorem- see below.

Proof. Consider the map
F : Ω → Rm+k, F(x,y) := (x, f (x,y)).

Then the non-singularity condition in the statement precisely means that (DF)(x̃,ỹ) is non-singular. Hence, by the
inverse function theorem, we find a smooth inverse G of F , defined near F(x̃, ỹ). Given the form of F , it follows
that G is of a similar form:

G(x,z) = (x,g(x,z)).

That G◦F and F ◦G are the identity maps (near (x̃, ỹ), and F(x̃, ỹ), respectively) translates into

g(x, f (x,y)) = y and f (x,g(x,z)) = z. (1.2.2)

The first equation shows that
f (x,y) = 0 =⇒ g(x,0) = y,

hence we have an obvious candidate par(x) := g(x,0). Note that the assumption f (x̃, ỹ) = 0 guarantees that g is
defined for (x,z) near (x̃,0). The fact that, indeed, f (x, par(x)) = 0 for x close to x̃ is just the second equation in
(1.2.2) applied when z = 0.



1.2 Reminder 2: Analysis 21

1.2.4 Local coordinates/charts

The standard coordinates in Rn, despite being ”obvious”, are often not the best ones to use in specific problems.
E.g.: often when dealing with (algebraic or differential) equations or computing integrals, one proceeds to a change
of variables (i.e. passing to more convenient coordinates). Baby example: looking at the curve in R2 defined by

5x2 +2xy+2y2 = 1,

a change of coordinates of type

x =
u+ v

3
, y =

u−2v
3

(1.2.3)

brings us to the simpler looking equation u2 + v2 = 1. A very common change of coordinates in R2 is the passing
to polar coordinates:

x = r cos(θ), y = r sin(θ). (1.2.4)

To formalise such changes of coordinates, one talks about charts:

Definition 1.31. A smooth chart of Rn is a diffeomorphism

χ = (χ1, . . . ,χn) : U →Ω ⊂ Rn

between an open U ⊂ Rn and an open Ω ⊂ Rn. The open U is called the domain of the chart and, for p ∈U ,

(χ1(p), . . . ,χn(p))

are called the coordinates of p w.r.t. the chart (U,χ) and we also say that (U,χ) is a smooth chart around p.

For instance the change of coordinates (1.2.3) is about the chart

χ : R2→ R2, χ(x,y) = (2x+ y,x− y) (1.2.5)

so that, in the new coordinates, a point p = (x,y) will have the coordinates (w.r.t. χ)

u(x,y) = 2x+ y, v(x,y) = x− y.

Similarly for the polar coordinates where, computing the inverse of (r,θ) 7→ (r cos(θ),r sin(θ)), one finds the chart

χ(x,y) =
(√

x2 + y2,arctg(
y
x
)
)
.

1.2.5 Changing coordinates to make functions simpler (the immersion/submersion theorem)

In general, given a smooth function
f : Rn→ Rk

and a point p ∈Rn, whenever we have two new charts χ and χ ′ around p and f (p), respectively, one can represent
the function f using the new resulting coordinates: the representation of f w.r.t. the charts χ and χ ′ is

f χ ′
χ = χ

′ ◦ f ◦χ
−1.

Of course, for the standard charts (the identity maps) one obtains back f . If just χ ′, or just χ , is the standard chart
then we use the notations fχ and f χ ′ , respectively.

For instance, for the function
f (x,y) = 5x2 +2xy+2y2,

with respect to the new chart (1.2.5) one obtains fχ(u,v) = u2 + v2.
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In general, it is interesting to try to write smooth functions in the simplest possible way, modulo change of
coordinates. The simplest types of functions for which this is possible are the most ”non-singular” ones. More
precisely, given

f : U → Rk

a smooth map defined on an open U ⊂ Rn and given x ∈U , the ”non-singular behaviour” that we require is that

(D f )p : Rn→ Rk

has maximal rank. It is interesting to consider the cases n≥ k and n≤ k separately. The first case brings us to the
more canonical version of the implicit function theorem:

Theorem 1.32 (the submersion theorem). Assume that f is a submersion at a given point p ∈U in the sense
that (D f )p : Rn → Rk is surjective. Then there exists a smooth chart χ of Rn around p such that, around χ(p),
fχ = f ◦χ−1 is given by

fχ(x1, . . . ,xk,xk+1, . . . ,xn) = (x1, . . . ,xk).

Proof. Since the matrix representing (D f )p is of maximal rank, one of its maximal minors (an k× k matrix) is
invertible; we may assume that the invertible minor is precisely the one made of the last k rows (why?)- which
is also the hypothesis of the implicit function theorem (Theorem 1.29). Looking at the proof of the theorem, one
remarks that the desired chart is χ = f̃ .

A similar argument gives rise to the following:

Theorem 1.33 (the immersion theorem). Assume that f is an immersion at a given point p ∈U in the sense that
(D f )p : Rn→Rk is injective. Then there exists a smooth chart χ ′ of Rk around f (p) such that, in a neighborhood
p, f χ ′ = χ ′ ◦ f is given by

f χ ′(x1, . . . ,xn) = (x1, . . . ,xn, 0, . . . ,0︸ ︷︷ ︸
k−n zeros

). (1.2.6)

More precisely, denoting q = f (p), there exist:

• a smooth chart χ ′ : U ′q→Ω ′q of Rk around q,
• a neighborhood Ωp of p in Rn, inside the domain of f

such that (1.2.6) holds on Ωp. Furthermore, one may choose χ ′ and Ωp so that:

f (Ωp) = {u ∈U ′q : χ
′
L+1(u) = . . .= χ

′
k(u) = 0}.

Proof. Let us give a proof that makes reference to (D f )p as a linear map and not as a matrix. Since (D f )p : Rn→
Rk is injective, we find a second linear map B : Rk−n→ Rk such that

((D f )p,B) : Rn×Rk−n→ Rk

is an isomorphism. Consider then

h : U×Rk−n→ Rk, h(x1,x2) = f (x1)+B(x2).

We see that h satisfies the hypothesis of the inverse function theorem at the point (x,0). Hence it is a diffeomor-
phism around a neighborhood of (x,0). We denote by

χ
′ : U ′→Ω

′

its inverse. Note that:

1. U ′ is an open neighborhood of f (p) in Rk.
2. Ω ′ is an open neighborhood of (p,0) in Rk, contained in U×Rk−n.
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3. the intersection of Ω ′ ⊂ Rk with Rn×{0},

Ω := {u ∈ Rn : (u,0) ∈Ω
′},

is an open neighborhood of p included in the domain of f .

Note that, since χ ′(h(x1,x2) = 0 for all (x1,x2) ∈ Ω ′ and h(x,0) = f (x), we have χ ′( f (x)) = (x,0) for all x ∈ Ω .
This proves the main part of the theorem; for the last part, note that we have, by the first part, that f (Ω) is inside
the zero set of χ ′2 : U ′→ Rk−n (the second component of the chart χ ′ w.r.t. the decomposition Rk = Rn×Rk−n).
For the reverse inclusion, let x ∈U ′ with χ ′2(x) = 0; since h◦χ ′ = id on U ′, we obtain

x = h(χ ′(x)) = h(χ ′1(x),0) = f (χ ′1(x))

where, for the last equality, we used the explicit formula for h. Moreover, since χ ′(x) ∈ Ω ′ and since χ ′(x) =
(χ ′1(x),0), by the definition of Ω , we have χ ′1(x) ∈Ω . With the previous equality in mind, we obtain x ∈ f (Ω).

For later use let us introduce the notion of smoothness defined on arbitrary subsets M ⊂ Rn.

Definition 1.34. Given M ⊂ Rn and a function f : M → Rk, we say that f is smooth around p ∈ M if, in a
neighborhood U of p in M, f |U admits a smooth extension to an open inside Rn containing U . When this happens
around all p ∈M, we say that f is smooth.

A diffeomorphism between M ⊂ Rn and N ⊂ Rk is any bijection f : M→ N with both f and f−1 smooth.

And here is a nice application of the existence of smooth partitions of unity.

Exercise 1.35. Show that if M ⊂ Rn is a closed subset that any smooth function f : M → Rk admits a smooth
extension f̃ : Rn→ Rk. (Hint: Rn \M is open; get an open cover of Rn out of one of M.)

1.2.6 Embedded submanifolds of RL

We now move to the notion of (smooth) embedded submanifolds of RL 1. In low dimensions, these are curves (1-
dimensional) and surfaces (2-dimensional); for an arbitrary dimension m we will be talking about m-dimensional
submanifolds of RL. For instance, the standard sphere

Sm = {(x0, . . . ,xm) ∈ Rm+1 : ∑
i
(xi)

2 = 1} (L = m+1)

will be such a smooth m-dimensional submanifold. Already when looking at the simplest examples one sees that
such subspaces may (naturally) be described in several different (but equivalent) ways. E.g., already for the unit
circle in the plane, one has the standard descriptions:

• implicit (by equations): x2 + y2 = 1.
• parametric: x = cos(t),y = sin(t) with t ∈ R.

Accordingly, the notion of submanifold of RL can be introduced in several ways that look differently (but which
turn out to be equivalent).

We start with the definition that can be seen as just a small variation on the notion of topological manifold from
Definition 1.3 just that, for M ⊂ RL the axioms (TM1), (TM2) are automatically satisfied, and one can can further
take advantage of the Euclidean space to talk about smoothness of charts- as in Definition 1.34.

Definition 1.36. An m-dimensional embedded submanifold of RL is any subset M ⊂ RL which, for each p ∈ M,
satisfies the (m-dimensional) manifold condition at p in the following sense: there exists a topological chart of M
(Definition 1.3)

1 here L is an integer, possibly large, that will denote the dimension of the Euclidean space inside which our manifolds M ⊂ RL; we
use here the letter L not only to suggest that L may be possibly large w.r.t. the dimension of M, but also to emphasise that the role of
the dimension L is very different than that of the dimension m of M
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χ : U →Ω

(U ⊂M open neighborhood of p, Ω open in Rm) which is also a diffeomorphism (i.e. χ and χ−1 are smooth in the
sense of Definition 1.34). These will also be called smooth (m-dimensional) charts for M.

Of course, when M =RL, the resulting notion of ”smooth chart for RL” coincides with the one already introduced
in Definition 1.31. For general M, a particularly nice class of smooth charts of M are the ones that can be obtained
by restricting such charts of RL. More precisely, given a subset M ⊂ RL, a smooth chart of RL

χ̃ : Ũ → Ω̃ ⊂ RL (1.2.7)

said to be adapted to M if it takes U := M∩Ũ into Ω := Ω̃ ∩ (Rm×{0}):

χ̃|U : U →Ω . (1.2.8)

Equivalently: inside Ũ ⊂ RL, the points that belong to M are characterised by the equations χ̃i = 0 for i > m:

M∩Ũ = {q ∈ Ũ : χ̃m+1(q) = . . .= χ̃L(q) = 0.}

Note also that Ω may be, and will be, interpreted as an open in Rm; in this way, any smooth chart (1.2.7) of RL

that is adapted to M induces a smooth chart (1.2.8) of M.
Not every smooth chart χ of M is induced by an adapted smooth chart χ̃ of RL. However:

Proposition 1.37. For M ⊂ RL and p ∈ M, the manifold condition for M at p is equivalent to the existence of a
smooth chart of RL around p, that is adapted to M.

The proof will be done together with the proof of the following theorem. This theorem describes submanifolds
parametrically (think of x = cos(t),y = sin(t) for the circle) and by equations (think of x2 + y2 = 1 for the circle),
taking care of the precise conditions.

Theorem 1.38. Given a subset M ⊂ RL, p ∈M, the following are equivalent:

1. M satisfies the m-dimensional manifold condition at p.
2. M admits an m-dimensional parametrization around p- by which we mean a homeomorphism

par : Ω →U ⊂M

between an open Ω ⊂ Rm and an open neighborhood U of p in M satisfying the regularity condition that, as
a map from Ω to RL, par is an immersion.

3. M can be described by an m-dimensional implicit equation around p- by which we mean a submersion

eq : Ũ → RL−m

defined on an open neighborhood Ũ of p in RL and which describes M near p by the equation eq = 0:

M∩Ũ = {q ∈ Ũ : eq(q) = 0}.

Proof. For keeping track of notations note that, throughout the proof, we look around the given point p ∈M ⊂RL

and around the corresponding point

x = χ(p) = par−1(p) ∈Ω ⊂ Rm.

Therefore, we will deal with

• neighborhoods Up of p in M, and Ũp of p in RL.
• neighborhoods Ωx of x in Rm.
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Fig. 1.5 The equivalent ways of phrasing the manifold condition in Theorem 1.38 involve (adapted) charts, parametrizations or implicit
equations that are related as shown in this figure. Note that U = Ũ ∩M and Ω = Ω̃ ∩Rm. ι and pr are canonical inclusions and
projections of the product space RL = Rm×RL−m in the lower right. All these maps commute where they can be evaluated.

The points in the neighborhoods of p will be denoted by q, while the ones in the neighborhoods of x by y; for them,
we may be looking at similar neighborhoods Uq, Ũq and Ωy.

We first prove that (1) implies (2). We start with the the chart χ : U→Ω ⊂Rm defined in a neighborhood U of p
in M. Setting par = χ−1 we have to check that par is a homeomorphism -which is clear by construction (it has the
continuous χ as inverse)- and that, as a map Ω →RL, it is an immersion. For the last part use that the composition

U
χ−→Ω

par−→ RL

is the inclusion U ⊂ RL and then apply the chain rule to deduce that, for each point q ∈U , (D χ)par(q) ◦ (D par)q
is the identity- hence, in particular, (D par)q will be injective.

We now prove that (2) implies both (1) as well as (3). Hence we start with a parametrization par : Ω →U ⊂M;
as above, we set χ = par−1 : U →Ω . To get (1), we still have to check that χ is smooth in the sense of Definition
1.34: i.e., around any point q ∈U , it is obtained by restricting a smooth map defined on an open Ũq ⊂RL. For that
we use the immersion theorem (Theorem 1.33) applied to par : Ω → RL around

y = χ(q) ∈Ω .

We find:

• an open neighborhood Ωy of y in Ω ⊂ Rm

• a diffeomorphism χ̃ : Ũq→ Ω̃q from an open neighborhood Ũq ⊂ RL of p′ to an open Ω̃q ⊂ RL,
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so that, on Ωy, χ̃ ◦ par becomes the inclusion on the first factors. We now write χ̃ = (χ̃1, χ̃2) where we use again
the decomposition RL = Rm×RL−m. We deduce that χ̃1(par(z)) = z for all z ∈ Ωy. Since z = χ(par(z)) for all
z ∈ Ω , we deduce that χ̃1(r) = χ(r′) for all r ∈ par(Ωq). In this way, on the neighborhood par(Ωq) of q in U , χ

is now the restriction of a smooth function defined on an open neighborhood of q in RL- namely χ̃1 : Ũq→ Rm.
To prove (3) (still assuming (2)), we use q = p in the previous reasoning and the resulting diffeomorphism

χ̃ : Ũp → Ω̃p; in principle, the desired function f will be χ̃2, but we have to choose the domain of definition
carefully. For that we use the last part of Theorem 1.33 which says that we may assume that

par(Ωx) = {y ∈ Ũp : χ̃m+1(y) = 0, . . . , χ̃L(y) = 0}.

Since this is open in M, we can write it as M∩Wp for some open Wp ⊂ RL. Considering now

Ũ := Ũp∩Wp, eq = χ̃2|Ũ : Ũ → RL−m

one checks right away that M∩Ũ is the zero set of eq (why is eq a submersion?).

Exercise 1.39. Conclude now that χ̃ is actually an adapted chart.

We are now left with proving that (3) implies (1). Let eq : Ũ → RL−m satisfying the conditions from the hy-
pothesis. Note that if we replace Ũ by a smaller open neighborhood of p in RL (and eq by its restriction), those
conditions will still be satisfied. Therefore, using the submersion theorem applied to eq, we may assume that we
also find a diffeomorphism χ̃ : Ũ → Ω̃ into an open subset of RL, such that eq = χ̃2. This chart will then take the
zero set of eq into the zero set of the second projection pr2 : Ω̃ → RL−m, i.e. into

Ω := {u ∈ Rm : (u,0) ∈ Ω̃}.

We deduce that the restriction of χ̃ to U = M∩Ũ ,

χ := χ̃|U : U →Ω ⊂ Rm,

is a smooth chart of M (around p).

Example 1.40. Returning to the circle S1,

• h(x,y) = x2 + y2−1 serves as a (1-dimensional) implicit equation (around any point!)
• p(t) = (cos(t),sin(t)), when considered on sufficiently small intervals (on which it is injective) serves as para-

matrization of S1 around any point in S1.
• as smooth (1-dimensional) charts one could use two projections pr1, pr2 : S1→ R, restricted to the appropriate

domains (so that they become homeomorphisms). Another possible choice of charts is given by the stereo-
graphic projections (see the lecture notes on Topology).

Exercise 1.41. Generalize this discussion to the spheres Sm of arbitrary dimension.

1.2.7 From directional derivatives to tangent spaces

The point of view provided by the directional derivatives brings us closer to the intrinsic nature of (p,v) when
talking about (D f )p(v): that of tangent vector. The key point is that (D f )p(v) depends only on the behaviour of f
near p, in ”the direction of v”- and how we realize that ”direction” is less important. This is best seen by looking
at arbitrary paths through p with the original speed v, i.e. any smooth map

γ : (−ε,ε)→ Rn

(with ε > 0) satisfying

γ(0) = p,
dγ

dt
(0) = v. (1.2.9)
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For instance, one could take γ(t) = p+ tv, but the point is that the variation of f (p+ tv) at t = 0 does not depend
on this specific choice of γ .

Lemma 1.42. If f is differentiable at p then, for any path γ satisfying (1.2.9), one has

(D f )p(v) =
∂ f
∂v

(p) =
d
dt

∣∣∣∣
t=0

f (γ(t)).

In particular, if f is constant along such a path γ , then (D f )p(v) = 0.

This point of view becomes extremely useful when looking at more general subspaces

M ⊂ Rn.

Definition 1.43. Let M ⊂ Rn and consider a point p ∈ M. A smooth curve in M is any smooth map γ : I → Rn

defined on some interval I ⊂ R, which takes values in M.
A vector tangent to M at p is any vector v ∈ Rn which can be realized as the speed at t = 0 of a smooth curve

in M that passes through p at t = 0 (i.e. for which 0 ∈ I and γ(0) = p):

v =
dγ

dt
(0).

The set of such vectors is denoted by T geom
p M; hence

T geom
p M ⊂ Rn.

Although we use the name ”tangent space”, in general (for completely random Ms inside Rn), T geom
p M is just a

subset of Rn (... but it is a vector subspace if M is ”nice”).

Exercise 1.44. Compute T geom
p M when:

1. M ⊂ R2 is the unit circle and p = (1,0).
2. M ⊂ R2 is the union of the coordinate axes and p = (0,0).

Exercise 1.45. Assume that M ⊂Rn is defined by an equation f (x) = 0, where f : Rn→Rk is a smooth function.
For p ∈ Rn we denote by Kerp(D f ) the kernel (= the zero set) of the differential (D f )p : Rn→ Rk. Show that, in
general,

T geom
p (M f )⊂ Kerp(D f ),

but the inclusion may be strict. Then prove this inclusion becomes and equality when

f (x1, . . . ,xn) = (x1)
2 + . . .+(xn)

2−1.

Exercise 1.46. With the notations from the previous exercise show that for all p ∈M f at which f is a submersion

T geom
p (M f ) = Kerp(D f ).

We now return to our discussion on differentials/directional derivatives, recast in terms of tangent spaces.
Namely, Lemma 1.42 gives us right away:

Corollary 1.47. Given M ⊂ Rn, p ∈M and a function f̃ : Rn ⊂ Rk differentiable at p then, for any vector v ∈ Rn

tangent to M at p, (D f̃ )p(v) depends only on f̃ |M .

Of course, a similar conclusion holds slightly more generally, for any function f̃ : U → Rk defined on an open
neighborhood U ⊂Rn of p- the otcome being that (D f̃ )p(v) only depends on the values of f̃ |M near p. This shows
how to define the differential of a function f : M→ Rk which is differentiable at p ∈M in the sense of Definition
1.34: for f : M→ Rk that is differentiable at p, one has a well-defined differential

(D f )p : T geom
p M→ Rk,
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defined using an extension f̃ of f near p, but independent of the extension.

Exercise 1.48. Show that if M ⊂ Rn and N ⊂ Rk and f : M→ N is smooth at p ∈ M, then (D f )p takes values
in T geom

f (p) N. Then prove the chain rule in this context and deduce that, if f is a diffeomorphism, then (D f )p is a
bijection between T geom

p M and T geom
f (p) N.

Finally, let us look at tangent spaces of submanifolds of Rn.2

Proposition 1.49. If M ⊂ Rn is a m-dimensional embedded submanifold then, for any p ∈M, the tangent space of
M at p is an m-dimensional vector subspace of Rn, which can also be described as follows:

1. as the kernel of (Deq)p : Rn→ RL−m, where eq : Ũ → RL−m is any implicit equation defining M around p.
2. as the image of (D par)p : TpΩ → Rn, where par : Ω →M is any parametrization of M around p.

Proof. Exercise.

Exercise 1.50. Compute again the tangent spaces of the spheres, but applying now the previous proposition.

1.2.8 More exercises

Exercise 1.51. Consider two smooth functions

U
f→U ′

g→ Rp,

defined on opens U ⊂ Rn, U ′ ⊂ Rk. Using the interpretation of linear maps as matrices (as made precise on page
23) show that the chain rule becomes:

∂g◦ f
∂xi

(x) =
n

∑
j=1

∂g
∂y j

( f (p))
∂ f j

∂xi
(x)

for all x ∈U and 1≤ i≤ n .

Exercise 1.52. Show that for any function g : R→ R, the function

g̃ : Rn→ R, g̃(x1, . . . ,xn) = g((x1)
2 + . . .+(xn)

2)

is not a submersion at x = 0.

Exercise 1.53. Assume that f : U0→ Rk is a smooth map, U ⊂ Rn open, p ∈U . Let

χ : U →Ω ⊂ Rn, χ
′ : U ′→Ω

′ ⊂ Rk

be charts, of Rn around p and of Rk around f (p), respectively. What is the (maximal) domain of definition of f χ ′
χ ?

Exercise 1.54. Consider
f : R2→ R, f (x,y) = 3 · 3

√
x2 +2xy+2y2

and look around p = (1,0). Find a chart χ of R2 around p and a chart χ of R around f (p) = 3 such that, w.r.t.
these charts,

f χ ′
χ (u,v) = u2 + v2.

2 is this the right place?



1.2 Reminder 2: Analysis 29

Exercise 1.55. Show that
f : R→ R2, f (t) = (cos(t),sin(t))

is an immersion at each point. Then, looking around t = 0, find a chart χ ′ of R2 around f (0) = (1,0) such that,
w.r.t. this chart,

fχ ′(t) = (t,0).

Exercise 1.56. Show that if f : U → Rk, p ∈U satisfy the conclusion of the submersion theorem, then f must be
a submersion at p. Similarly for the immersion theorem.
(Hint: try it! If it really doesn’t work, then look at the next exercise).

Exercise 1.57. Assume that f : U → Rk is a smooth map, U ⊂ Rn open, p ∈U . Let χ be a chart of Rn around
p and let χ ′ be a chart of Rk around f (p). Show that f is a submersion/immersion at p if and only if f χ ′

χ is a
submersion/immersion at χ(p).

Exercise 1.58. Consider the stereographic projection w.r.t. the north pole pN , denoted

χN : S2 \{pN}→ R2

and similarly the one w.r.t. the south pole, denoted χS. Show that

χS ◦χ
−1
N : R2 \{0}→ R2 \{0}

is a diffeomorphism.

Exercise 1.59. For any ε > 0 describe a smooth function

f : Rn→ [0,1]

with the property that f (0)> 0 and whose support (in Rn) is contained in the ball {x ∈ Rn : ||x||< ε}.

Exercise 1.60. Assume that f : U →U ′ and g : U ′ →U ′′ are two smooth functions, with U ⊂ Rn, U ′ ⊂ Rk and
U ′′ ⊂ Rp opens. Show that if g◦ f is a local diffeomorphism around a given point x ∈U , then:

1. f is an immersion at x and g is a submersion at f (x).
2. however, it may happen that f is not a submersion at x and g is not an immersion at g(x) (describe an example!).
3. if, furthermore, f is a submersion at x or g is an immersion at f (x), then both f and g are local diffeomorphisms

(around x and f (x), respectively).
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