HOMEWORK 1; GIVEN ON SEPT 14, 2022

Exercise 1. Let $M = S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$

- (1) Show that M is a smooth submanifold of \mathbb{R}^2 . In what follows we will denote by $\mathcal{A}_{S^1}^{can}$ the canonical smooth (maximal) atlas on M, i.e. the one consisting of all *smooth charts* of M in the sense of Chapter I (as they are mentioned also in Theorem 1.38).
- (2) Let \mathcal{P} be the collection consisting of four charts of S^1 ,

$$(U_n, \operatorname{pr}_n), (U_s, \operatorname{pr}_s), (U_e, \operatorname{pr}_e), (U_v, \operatorname{pr}_v),$$

given by

$$\begin{split} &U_n = \{(x,y) \in S^1 : y > 0\}, \quad \mathrm{pr}_n(x,y) = x, \\ &U_s = \{(x,y) \in S^1 : y < 0\}, \quad \mathrm{pr}_s(x,y) = x, \\ &U_e = \{(x,y) \in S^1 : x > 0\}, \quad \mathrm{pr}_e(x,y) = y, \\ &U_v = \{(x,y) \in S^1 : x < 0\}, \quad \mathrm{pr}_v(x,y) = y. \end{split}$$

Indicate these charts in a picture and prove that \mathcal{P} is a smooth atlas.

(3) Let S be the collection consisting of two charts (U_N, σ_N) , (U_S, σ_S) of S^1 , given by

$$U_N = S^1 \setminus \{(0,1)\}, \sigma_N(x,y) = \frac{x}{1-y},$$
$$U_S = S^1 \setminus \{(0,-1)\}, \sigma_S(x,y) = \frac{x}{1+y}$$

Indicate these charts in a picture and prove that \mathcal{S} is a smooth atlas.

- (4) Show that $\mathcal{P}^{\max} = \mathcal{S}^{\max}$ i.e. that \mathcal{P} and \mathcal{S} induce the same smooth structure on S^1 .
- (5) Construct yet another atlas, denoted \mathcal{T} , that induces the same smooth structure on S^1 , consisting now of two charts (U_E, θ_E) , (U_V, θ_V) of S^1 , with

$$U_E = S^1 \setminus \{(1,0)\}, \quad U_V = S^1 \setminus \{(-1,0)\},\$$

and where θ_E and θ_V are related to the angle variable θ in the polar coordinate representation $x = \cos \theta, y = \sin \theta$. In other words, define carefully/explicitly θ_E and θ_V , prove that they form a smooth atlas \mathcal{T} on S^1 , then show that \mathcal{T} induces the same smooth structure on S^1 as \mathcal{P} and \mathcal{S} .

(6) Finally, show that these smooth structures on S^1 also coincide with the canonical smooth structure on S^1 , induced from the fact that S^1 is a smooth submanifold of \mathbb{R}^2 (i.e. the $\mathcal{A}_{S^1}^{can}$ from the first part).