HOMEWORK 2; GIVEN ON SEPT 21, 2022

Recall that, in general, the points in the (real) projective space \mathbb{P}^n are denoted $[x_0:x_1:\ldots:x_n]$, hence there is an obvious map

 $H_m: S^m \to \mathbb{P}^m, \quad H_m(x_0: x_1: \ldots: x_m) = [x_0: x_1: \ldots: x_m].$

We endow \mathbb{P}^m with the smooth structure discussed in the class (we only discussed one, by providing an atlas made of m + 1 charts), and S^m with the canonical smooth structure, for which we provided several descriptions in the class (just choose whatever description we prefer).

Exercise 1. Please do the following:

- 1. Show that H_m is smooth, specifying what description of the smooth structure on S^m you chose to use.
- 2. For m = 1 we also consider the map

$$h: S^1 \to S^1, \quad h(x,y) := (x^2 - y^2, 2xy).$$

Please provide a geometric description of h.

- 3. Show that also h is smooth, but it is not a diffeomorphism.
- 4. Show that there exists and is unique a map $\Phi : \mathbb{P}^1 \to S^1$ such that $h = \Phi \circ H_1$ i.e. a commutative diagram:

- 5. Show that Φ is smooth, and it is actually a diffeomorphism.
- 6. What do you think it happens if we replace \mathbb{R} by \mathbb{C} : is \mathbb{CP}^1 diffeomorphic to some sphere?