HOMEWORK 4 (OCTOBER 5, 2022)

This exercise is to help you work with tangent vectors, as (abstractly) defined in
the lectures, when looking inside R™ and embedded submanifolds. Therefore, we
will use the tangent vectors introduced (abstractly) in the lectures, such as:

e The canonical basis

0 0 n
(1) <8m1)p,...,(8%)peTpR .

Note that this allows us to write/represent an arbitrary tangent vector
vector v € T,R™ uniquely as

0 0
@) U:A1.<) +...+)\n(> ,
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with A\; € R.
e For v: (—¢,¢) — R its "speed” as an element
dry "
Q0 DO €TE (p=(0))

Via the standard identification

standard, : T,R" = R", v~ o'l

sending v to its value at the identity chart, the canonical basis (1) corresponds to
the standard basis ey, ..., e, of the vector space R™, and the abstract speed (3)
corresponds to the usual derivative. But we work with the more abstract objects.
Please also keep in mind that, given two tangent vectors v, w € T}, M, at some point
p € M, to check that

v=w
it suffices to check that, for some chart y around p, vX = wX.

Next, for an embedded submanifold M C N, we have discussed how to interpret
the resulting inclusion T,M C T,N, for p € M. In particular, for embedded
submanifolds M C R", one has

T,M C T,R" (pe M).

While arbitrary tangent vectors to R™ look like (2), the question is: when does
such a vector (2) actually belong to T,M? For instance, when M is just a point (a
0-dimensional submanifold!), the answer is: only when all \; vanish!

The main tool you have at hand is to use ”speeds of curves”: to show that
v € T,R" belongs to T, M you have to find a curve v in M such that v = 9 (0) (...

dt
well, there is also the regular value theorem, that you can use in extreme cases ...).
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Exercise: Please do the following:

(1) For arbitrary curves v : I — M in a manifold M, defined on some interval
I C R, make sense of (define) the speeds at arbitrary times:

dry

dt()ET()M

(2) When M C R™, using what we asked you to keep mind, show that

=510 () +t 0 (5)

where «; : I = R are the components of v and v}(t) € R the usual derivatives.

(3) Similarly, show that, for any h : R® — R smooth, and p € R, the differential
between the abstract tangent spaces,

(dh)p : T,R™ — Ty R*

is still given by “the usual formula’s”, i.e. it sends

8h] ( >
(8$2> Z 8:132 %5 ) i) ’

where A7 is the j-th component of h, and 37 are the usual partial derivatives.
J

(4) If M C R" is an embedded submanifold and h is as above, we can consider the
restriction h|ys : M — R¥ and its differential at an arbitrary point p € M:

(dh|ar), : T,M = T, R,

On the other hand, remembering that inclusions T, M C T,R™ (look them up!),
we can restrict (dh), to T, M. Show that the two are equal:

(dh|ar), = (dh)p|T, M-
(4) For the sphere S? C R3, show that for any q = (a,b,c) € S?,
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(5) When is qu,Xg a basis of 7,52. And what about X37Xq3?

belong to T,52.

(6) The three tangent vectors will be send by the differential (df), of the map

fiSP SR f(ny,2) = (vy,22)
to three tangent vectors to R? (at what point?). Compute them!

(7) Assuming you have done the previous point: now do it again, but differently.

(8) Find all the points at which f fails to be a submersion.



