
HOMEWORK 4 (OCTOBER 5, 2022)

This exercise is to help you work with tangent vectors, as (abstractly) defined in
the lectures, when looking inside Rn and embedded submanifolds. Therefore, we
will use the tangent vectors introduced (abstractly) in the lectures, such as:

• The canonical basis

(1)

(
∂

∂x1

)
p

, . . . ,

(
∂

∂xn

)
p

∈ TpRn.

Note that this allows us to write/represent an arbitrary tangent vector
vector v ∈ TpRn uniquely as

(2) v = λ1 ·
(

∂

∂x1

)
p

+ . . .+ λn

(
∂

∂xn

)
p

,

with λi ∈ R.
• For γ : (−ε, ε)→ Rn, its ”speed” as an element

(3)
dγ

dt
(0) ∈ TpRn (p = γ(0))

Via the standard identification

standardp : TpRn → Rn, v 7→ vId

sending v to its value at the identity chart, the canonical basis (1) corresponds to
the standard basis e1, . . . , en of the vector space Rn, and the abstract speed (3)
corresponds to the usual derivative. But we work with the more abstract objects.
Please also keep in mind that, given two tangent vectors v, w ∈ TpM , at some point
p ∈M , to check that

v = w

it suffices to check that, for some chart χ around p, vχ = wχ.

Next, for an embedded submanifold M ⊂ N , we have discussed how to interpret
the resulting inclusion TpM ⊂ TpN , for p ∈ M . In particular, for embedded
submanifolds M ⊂ Rn, one has

TpM ⊂ TpRn (p ∈M).

While arbitrary tangent vectors to Rn look like (2), the question is: when does
such a vector (2) actually belong to TpM? For instance, when M is just a point (a
0-dimensional submanifold!), the answer is: only when all λi vanish!

The main tool you have at hand is to use ”speeds of curves”: to show that
v ∈ TpRn belongs to TpM you have to find a curve γ in M such that v = dγ

dt (0) (...
well, there is also the regular value theorem, that you can use in extreme cases ...).
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Exercise: Please do the following:

(1) For arbitrary curves γ : I → M in a manifold M , defined on some interval
I ⊂ R, make sense of (define) the speeds at arbitrary times:

dγ

dt
(t) ∈ Tγ(t)M.

(2) When M ⊂ Rn, using what we asked you to keep mind, show that

dγ

dt
(t) = γ′1(t)

(
∂

∂x1

)
γ(t)

+ . . .+ γ′n(t)

(
∂

∂xn

)
γ(t)

,

where γi : I → R are the components of γ and γ′i(t) ∈ R the usual derivatives.

(3) Similarly, show that, for any h : Rn −→ Rk smooth, and p ∈ Rn, the differential
between the abstract tangent spaces,

(dh)p : TpRn −→ Th(p)Rk

is still given by “the usual formula’s”, i.e. it sends(
∂

∂xi

)
p

7→
∑
j

∂hj

∂xi
(p)

(
∂

∂xj

)
h(p)

,

where hj is the j-th component of h, and ∂
∂xj

are the usual partial derivatives.

(4) If M ⊂ Rn is an embedded submanifold and h is as above, we can consider the
restriction h|M : M → Rk and its differential at an arbitrary point p ∈M :

(dh|M )p : TpM → Th(p)Rk.

On the other hand, remembering that inclusions TpM ⊂ TpRn (look them up!),
we can restrict (dh)p to TpM . Show that the two are equal:

(dh|M )p = (dh)p|TpM .

(4) For the sphere S2 ⊂ R3, show that for any q = (a, b, c) ∈ S2,

X1
q := c

(
∂

∂y

)
q

− b
(
∂

∂z

)
q

,

X2
q := a

(
∂

∂z

)
q

− c
(
∂

∂x

)
q

,

X3
q := b

(
∂

∂x

)
q

− a
(
∂

∂y

)
q

belong to TqS
2.

(5) When is X1
q , X

2
q a basis of TqS

2. And what about X2
q , X

3
q ?

(6) The three tangent vectors will be send by the differential (df)q of the map

f : S2 → R2, f(x, y, z) = (xy, xz)

to three tangent vectors to R2 (at what point?). Compute them!

(7) Assuming you have done the previous point: now do it again, but differently.

(8) Find all the points at which f fails to be a submersion.


