HOMEWORK 6 (TO BE HANDED IN BY OCT 26, 2022)

Exercise 1. Each of the following is worth 1.5 points (hence lots of bonus points!):

- 1). Show that, on any manifold M which is connected ¹, if $f \in C^{\infty}(M)$ has the property that df = 0, then f must be constant.
- 2). Consider the vector fields $V^1, V^2, V^3 \in \mathfrak{X}(S^3)$ from the previous homework, and define the similar 1-forms on S^3 , given by the following formulas²:

 $\begin{cases} \theta_1 := 2 \left(-ydx + xdy + tdz - zdt \right), \\ \theta_2 := 2 \left(-zdx - tdy + xdz + ydt \right), \\ \theta_3 := 2 \left(-tdx + zdy - ydz + xdt \right). \end{cases}$ (as 1-forms on S^3)

Show that $\theta_i(V^j) = \delta_i^j$ (i.e. 1 if i = j and 0 otherwise).

- 3). Show that, for any function $f \in C^{\infty}(S^3)$, one has $df = L_{V^1}(f) \cdot \theta_1 + L_{V^2}(f) \cdot \theta_2 + L_{V^3}(f) \cdot \theta_3 \quad \text{(as 1-forms on } S^3).$
- 4). Considering also the vector field on $V \in \mathfrak{X}(S^3)$ from the last homework, show that the smooth functions on S^3

 $h_1 := \theta_1(V), \quad h_2 := \theta_2(V), \quad h_3 := \theta_3(V)$

are precisely the components of the Hopf map from the last homework.

5). Show that:

$$\begin{cases} dh_1 = h_2 \cdot \theta_3 - h_3 \cdot \theta_2, \\ dh_2 = h_3 \cdot \theta_1 - h_1 \cdot \theta_3, \\ dh_3 = h_1 \cdot \theta_2 - h_2 \cdot \theta_1 \end{cases}$$
(as 1-forms on S^3) (*)

- 6). Show that $L_V(h_1) = L_V(h_2) = L_V(h_3) = 0$.
- 7). Show that the 1-form $\theta_1 \in \Omega^1(S^3)$ cannot be written as the pull-back via the Hopf map $h: S^3 \to S^2$, i.e. as $\theta_1 = h^*(\eta)$ for some $\eta \in \Omega^1(S^2)$. (Hint: if $\theta = h^*(\eta)$ for some η , what can you say about $\theta(V)$?).
- 8). Show that the 1-form $\theta_1 \in \Omega^1(S^3)$ cannot be written as df with $f \in C^{\infty}(S^3)$. (Hint: If $\theta = df$ for some f, what can you say about $\theta([V^2, V^3])$? Or $\theta(V^1)$?).
- 9). Considering xdy as a 1-form on S^2 , compute $h^*(xdy)$ and write it as a sum $f_1 \cdot \theta_1 + f_2 \cdot \theta_2 + f_3 \cdot \theta_3$, with $f_1, f_2, f_3 : S^3 \to \mathbb{R}$ (to be computed).
- 10). Show that, if M is any connected manifold and $h = (h_1, h_2, h_3) : M \to \mathbb{R}^3$ is a smooth function with the property that there exist 1-forms $\theta_1, \theta_2, \theta_3 \in \Omega^1(M)$ such that the formulas (*) hold true, then there exists $r \in \mathbb{R}_{\geq 0}$ such that h takes values in S_r^2 , the sphere of radius r.

¹that is: for any $x, y \in M$ there exists a curve $\gamma : I \to M$, with $0, 1 \in I$ and $\gamma(0) = x, \gamma(1) = y$ ²where we recall that, according to our conventions/terminology, when writing 1-forms on a larger space, \mathbb{R}^4 in this case, and saying that we view them as forms on the smaller space, S^3 in this case, we mean that we consider their restriction to S^3