HOMEWORK 6 (TO BE HANDED IN BY OCT 26, 2022)

Exercise 1. Each of the following is worth 1.5 points (hence lots of bonus points!):
1). Show that, on any manifold M which is connected ${ }^{1}$, if $f \in C^{\infty}(M)$ has the property that $d f=0$, then f must be constant.
2). Consider the vector fields $V^{1}, V^{2}, V^{3} \in \mathfrak{X}\left(S^{3}\right)$ from the previous homework, and define the similar 1-forms on S^{3}, given by the following formulas ${ }^{2}$:

$$
\left\{\begin{array}{l}
\theta_{1}:=2(-y d x+x d y+t d z-z d t), \\
\left.\theta_{2}:=2(-z d x-t d y+x d z+y d t), \quad \text { (as 1-forms on } S^{3}\right), \\
\theta_{3}:=2(-t d x+z d y-y d z+x d t) .
\end{array}\right.
$$

Show that $\theta_{i}\left(V^{j}\right)=\delta_{i}^{j}$ (i.e. 1 if $i=j$ and 0 otherwise).
3). Show that, for any function $f \in C^{\infty}\left(S^{3}\right)$, one has

$$
d f=L_{V^{1}}(f) \cdot \theta_{1}+L_{V^{2}}(f) \cdot \theta_{2}+L_{V^{3}}(f) \cdot \theta_{3} \quad\left(\text { as } 1 \text {-forms on } S^{3}\right)
$$

4). Considering also the vector field on $V \in \mathfrak{X}\left(S^{3}\right)$ from the last homework, show that the smooth functions on S^{3}

$$
h_{1}:=\theta_{1}(V), \quad h_{2}:=\theta_{2}(V), \quad h_{3}:=\theta_{3}(V)
$$

are precisely the components of the Hopf map from the last homework.
5). Show that:

$$
\left\{\begin{array}{l}
d h_{1}=h_{2} \cdot \theta_{3}-h_{3} \cdot \theta_{2}, \tag{*}\\
d h_{2}=h_{3} \cdot \theta_{1}-h_{1} \cdot \theta_{3}, \\
d h_{3}=h_{1} \cdot \theta_{2}-h_{2} \cdot \theta_{1}
\end{array} \quad\left(\text { as } 1 \text {-forms on } S^{3}\right)\right.
$$

6). Show that $L_{V}\left(h_{1}\right)=L_{V}\left(h_{2}\right)=L_{V}\left(h_{3}\right)=0$.
7). Show that the 1-form $\theta_{1} \in \Omega^{1}\left(S^{3}\right)$ cannot be written as the pull-back via the Hopf map $h: S^{3} \rightarrow S^{2}$, i.e. as $\theta_{1}=h^{*}(\eta)$ for some $\eta \in \Omega^{1}\left(S^{2}\right)$.
(Hint: if $\theta=h^{*}(\eta)$ for some η, what can you say about $\theta(V)$?).
8). Show that the 1 -form $\theta_{1} \in \Omega^{1}\left(S^{3}\right)$ cannot be written as $d f$ with $f \in C^{\infty}\left(S^{3}\right)$. (Hint: If $\theta=d f$ for some f, what can you say about $\theta\left(\left[V^{2}, V^{3}\right]\right)$? Or $\theta\left(V^{1}\right)$?).
9). Considering $x d y$ as a 1 -form on S^{2}, compute $h^{*}(x d y)$ and write it as a sum $f_{1} \cdot \theta_{1}+f_{2} \cdot \theta_{2}+f_{3} \cdot \theta_{3}$, with $f_{1}, f_{2}, f_{3}: S^{3} \rightarrow \mathbb{R}$ (to be computed).
10). Show that, if M is any connected manifold and $h=\left(h_{1}, h_{2}, h_{3}\right): M \rightarrow \mathbb{R}^{3}$ is a smooth function with the property that there exist 1-forms $\theta_{1}, \theta_{2}, \theta_{3} \in \Omega^{1}(M)$ such that the formulas $\left({ }^{*}\right)$ hold true, then there exists $r \in \mathbb{R}_{\geq 0}$ such that h takes values in S_{r}^{2}, the sphere of radius r.

[^0]
[^0]: $1_{\text {that }}$ is: for any $x, y \in M$ there exists a curve $\gamma: I \rightarrow M$, with $0,1 \in I$ and $\gamma(0)=x, \gamma(1)=y$
 2 where we recall that, according to our conventions/terminology, when writing 1-forms on a larger space, \mathbb{R}^{4} in this case, and saying that we view them as forms on the smaller space, S^{3} in this case, we mean that we consider their restriction to S^{3}

