HOMEWORK 7 (OCTOBER 26, 2022)

In the last two homeworks you have seen the vector fields on S^{3} given by

$$
\begin{aligned}
& V^{1}=\frac{1}{2}\left(-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}+t \frac{\partial}{\partial z}-z \frac{\partial}{\partial t}\right), \\
& V^{2}=\frac{1}{2}\left(-z \frac{\partial}{\partial x}-t \frac{\partial}{\partial y}+x \frac{\partial}{\partial z}+y \frac{\partial}{\partial t}\right), \\
& V^{3}=\frac{1}{2}\left(-t \frac{\partial}{\partial x}+z \frac{\partial}{\partial y}-y \frac{\partial}{\partial z}+x \frac{\partial}{\partial t}\right),
\end{aligned}
$$

which you proved to provide a basis for the tangent spaces of S^{3} and to satisfy

$$
\begin{equation*}
\left[V^{1}, V^{2}\right]=V^{3}, \quad\left[V^{2}, V^{3}\right]=V^{1}, \quad\left[V^{3}, V^{1}\right]=V^{2}, \tag{*}
\end{equation*}
$$

and the 1 -forms on S^{3} given by

$$
\left\{\begin{aligned}
\theta_{1} & =2(-y d x+x d y+t d z-z d t), \\
\theta_{2} & =2(-z d x-t d y+x d z+y d t), \\
\theta_{3} & =2(-t d x+z d y-y d z+x d t) .
\end{aligned}\right.
$$

that you proved to be dual to V^{1}, V^{2}, V^{3}. And there was also the vector field

$$
V:=\frac{1}{2}\left(-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}-t \frac{\partial}{\partial z}+z \frac{\partial}{\partial t}\right)
$$

for which you proved that $\theta_{i}(V)=h_{i}$ are the components of the Hopf map, for which you also proved $d h_{1}=h_{2} \cdot \theta_{3}-h_{3} \cdot \theta_{2}, d h_{2}=h_{3} \cdot \theta_{1}-h_{1} \cdot \theta_{3}, d h_{3}=h_{1} \cdot \theta_{2}-h_{2} \cdot \theta_{1}$.

Exercise 1. Please do the following:
1). (1pt) Show by direct computation (involving the $d x$, etc from \mathbb{R}^{4}) that

$$
d \theta_{1}=-\theta_{2} \wedge \theta_{3}, \quad d \theta_{2}=-\theta_{3} \wedge \theta_{1}, \quad d \theta_{3}=-\theta_{1} \wedge \theta_{2}
$$

2). (1pt) Show that a 2 -form η on S^{3} is zero if and only if $\eta\left(V^{i}, V^{j}\right)=0$ for all i, j.
3). (1.5pt) Prove again the formulas $\left({ }^{* *}\right)$, but now using V^{1}, V^{2}, V^{3} and $\left({ }^{*}\right)$.
4). (1pt) Deduce that θ_{1}, θ_{2} and θ_{3} are not exact.
5). (1pt) Compute $L_{V_{1}}\left(\theta_{2}\right)$ by direct computation (involving the $d x$, etc from \mathbb{R}^{4}).
6). (1pt) Now compute $L_{V_{1}}\left(\theta_{2}\right)$ using Cartan's magic formula.
7). (1.5pt) Prove now that $L_{V}\left(\theta_{1}\right)=L_{V}\left(\theta_{2}\right)=L_{V}\left(\theta_{3}\right)=0$ (hopefully you see how to do it without much computations now!).
8). (1pt) Show that $\theta_{1} \wedge \theta_{2} \wedge \theta_{3}$ is a volume form on S^{3}. Hopefully you do not start computing like crazy, but you remember that a top-degree form is a volume form means that it is nowhere vanishing, and you try to find some vector fields X^{1}, X^{2} and X^{3} such that your 3 -form, when evaluated on $\left(X^{1}, X^{2}, X^{3}\right)$ is a function that does not vanish anywhere.
9). (1.5pt) Compute the flow of V at time $\frac{\pi}{4}, \phi_{V}^{\frac{\pi}{4}}: S^{3} \rightarrow S^{3}$.
10). (1.5pt) Compute $(\phi)^{*}\left(\theta_{1}\right)$ where $\phi: S^{3} \rightarrow S^{3}$ sends (x, y, z, t) to $\frac{\sqrt{2}}{2}(x-y, x+y, z-$ $t, z+t)$.
11). (1.5pt) Now use the outcome from 7) and the description of L_{V} via the flow of V to deduce that $\epsilon \mapsto\left(\phi_{V}^{\epsilon}\right)^{*} \theta_{1}$ does not depend on ϵ, hence $\left(\phi_{V}^{\epsilon}\right)^{*} \theta_{1}=\theta_{1}$ for all ϵ.

