Marius Crainic

Manifolds 2023-2024

http ://www.staff.science.uu.nl/~crain101/manifolds-2023/

Version September 14, 2023

Springer






Contents

1

Reminders on Topology and Analysis. ... ......... ... . i, 1
1.1 Reminder 1: Topology; topological manifolds............ ... ... i, 1
1.1.1  The objects of TOPOIOZY ... ..ottt e e e e 1
1.1.2  The morphisms/isomomorphisms of Topology ............. ... ... .. ... ... 1
1.1.3  Metric topologies; DASES . . ... ...ttt 2
1.1.4  Topological manifolds . ... ........... oot e 3
1.1.5 Inside a topoloZical SPACE . .. ..ottt ettt ettt e et e e e 4
1.1.6  Construction of topological SPaCeS . . .. ...u ottt i 4
1.1.7  Topological Properties . . ... ... .. ...ttt e e 6
1.1.8 The algebra of continuous functions ..................iiiiiiuninneeeinnneeennnn. 8
1.1.9  Partitions Of UNILY . .. ... .uue e e e e e e e e e e 10
1.2 Reminder 2: ANALySis . ..o ouuun ittt e e e 14
L2 L R 14
1.2.2  The differential and the inverse function theorem............ ... ... ... ... ... ..... 15
1.2.3 Directional/partial derivatives; the implicit function theorem .......................... 17
1.2.4  Local coordinates/charts .. .......... ...ttt 22
1.2.5 Changing coordinates to make functions simpler (the immersion/submersion theorem) . ... 23
1.2.6  Embedded submanifolds of RE . ... . ... .. ... .. . 25
1.2.7 From directional derivatives to tangent SPACES . .. .. ....vverneeine e, 28
1.2.8 IMOTE EXETCISES .« v o vttt et ettt et e et e e e e e e e e e e et e e e e 30
Smooth manifolds . . ... ... 33
2.1 Manifolds . ..o oo e 33
2.1.1 Charts and smooth atlases . ............ ot e 33
2.1.2 SMOOth SHUCTUIES . . .« o ottt ettt e e et e e e e e et e e e e e e e 36
2.1.3  Manifolds ... ..o 38
2,14 Variations ... ...ttt 39
2.2 SMOOtN MAPS . ¢ . ottt ettt et et e e e e e e e 40
221 Smoothmaps ... ... e 40
222 Observables (01: B (M) .ottt 42
2.2.3 Special maps: Diffeomorphisms, immersions, SUbmersions ........................... 44
2.3 Immersions and submanifolds .......... ... 47
2.3.1 Embedded submanifolds; the regular value theorem ............... ... ... ......... 47
2.3.2  General (immersed) submanifolds ........... ... .. .. i e 52
2.4 Submersions and QUOLIENLS . . . . .. ...ttt e e 54
2.4.1 Quotient SmOOth StruCtures: UNIQUENESS . . . .« v vttt ettt et et ee e e et ieae e e e 54
2.4.2 The case of Zroup aCtIONS . .. ... ..ottt ittt ettt e 55
2.4.3  Quotient smooth structures: general Crieteria . ...........ouuvirneinneernnennneenn.. 58
2.5 EXAMPIES . .ottt e e 58



vi

Contents

2.5.1 Submanifolds of R” via the regular value theorem . ................... ... ........... 58

2.5.2  The SPheres S . .o 58

2.5.3 The projective spaces P/ . .. ... 60
2.5.4 The complex projective spaces CIP . ... ...ttt 63

2.5.5 The toruS T2 .. ...ttt ettt 64

2.5.6 TheMoebius band . ... ... ... i e 69

257 TheKlein bottle ... ... 72

2.5.8 AN thE TESE . ..ottt 74
2.5.9  GIrasSMANIAIS . . ..ot ettt et ettt et e ettt e et e e 75
2.5.10 More examples: classical groups and ... Lie groups . ..., 75
TANEENT SPACES . . . . . .ottt ettt e e e e 81
Bl INMIO oot e 81
3.2 Tangent vectors via ChartS ... ... ... ...ttt e e 83
3.2.1 The general NOtION .. ... ... . i e 83
3.2.2 The case of R™ (the standard identifications) .............. ... .. ... ..., 86

32,3 SPeeds Of CUIVES . . . oo vttt ettt e e e e e e e e e e e 87

324 Differentials . ... ... 87

3.2.5 SubmanifoldS M C N ..o 89

3.3 Tangent vectors as directional derivatives. . ............. .t 90
3.3.1 The general NOLION . ... ..ottt 90
3.3.2  The case of Euclidean Spaces . ..............uuuiiiiiitine i 91

3.3.3  SPeeds Of CUIVES . . .ottt e ettt et e e e e e e et e e 92

3.3.4 Differentials . ... ...t 93

3.3.5 Extra-for the interested student: the algebraic nature of the construction. ................ 93
3.3.6 The local nature of derivations . ... ........ ...t itttiin e 94

3.3.7 Comparing with the previous definition of tangent spaces. ................ccuuuunnnnn. 95

3.4 Tangent spaces: CONCIUSIONS . . . ..o v vttt ettt e ettt e et 97
3.4.1 Viacharts, or as deriVationS . . . . ..t v vttt et e e e e e 97

B34 SPEEAS . .ttt e 97

3.4.3 Basiswithrespecttoachart .......... ... . 98

344 DifferentialS . . ... ... 98

3.4.5 Submanifolds ... ... 99

3.4.6 Back to Euclidean spaces and their embedded submanifolds .......................... 100

3.5 Vector flelds ... oo oo 101
3.5.1 Smooth vector fields. . . ... ... 102

3.5.2  Vector fields as derivations . ... ... ... ....oouuut ettt 105

353 TheLiebracket. ... ...t 106

3.5.4 The tangent bundle/the configuration Space. ......... ...ttt eiiinneeenn. 108

3.5.5 Extra-for the interested student: cool stuff with vector fields ....................... ... 110
3.5.6 Push-forwards of vector fields. ......... .. i 111

3.5.7 Application: the Lie algebraof aLie group........... ..o, 113

3.6 Theflowofavector field ......... ... e 117
3.6.1  Integral CUIVES ... ...ttt e 117

300.2  FlOWS ..ttt 121

3.6.3  COMPIELENESS . . o vttt ettt et et e e e e e e e e e e e 123

3.6.4 Lie derivatives along vector fields .......... ... ... . . i 124

3.6.5 Application: the exponential map for Lie groups .......... ..., 126

3.0.0  EXIIa-€XEICTISES . .ot v ittt ettt e e e et e e e e 127



Chapter 1
Reminders on Topology and Analysis

1.1 Reminder 1: Topology; topological manifolds

Here is a very brief reminder on the basic notions from Topology. For those which are not so familiar with these
basics, one may skip the later parts of this section (most notably the part on partitions of unity) and return to it later
on, when necessary.

1.1.1 The objects of Topology

First of all, the main objects of Topology: a topological space is a set X endowed with a topologys, i.e. a collection
 of subsets of X (called the opens of the topological space, or simply opens in X) such that @ and X are open
in X, arbitrary unions of opens are open and finite intersections of opens are open. We usually omit .7 from the
notations, and we simply say that X is a topological space; hence that means that X is a set and we can talk about
the subsets of X that are open (in X).

A topology on X allows us to make sense of the central phenomena of Topology: “’two points being close to each
other”. First of all we can make sense of neighborhoods in a topological space X: given x € X, a neighborhood
(in X) of x is any subset V C X that contains at least an open neighborhood of x, i.e. an open U with x € U. In turn,
this allows us to talk about convergence: a sequence (x,),>; of elements of X converges (in the topological space
X) to x € X if for any neighborhood V of x there exists an integer ny such thatx,, € V for all n > ny.

The notion of neighborhoods also allows to talk also about an important property one requires on topological
spaces in order to exclude pathological examples- Hausdorffness: a topological space X called Hausdorff if for
any x,y € X distinct, there are neighborhoods U of x and V of y such that U NV = (. Hence, intuitively, this means
that ”if two are distinct, then they cannot be too close to each other” (yes, not having this sounds pathological but,
since this condition is not automatic, it is often imposed precisely to avoid “’strange/pathological spaces).

1.1.2 The morphisms/isomomorphisms of Topology

The relevant maps (the only ones that really matter) in Topology are the continuous ones: a map f : X — Y between
topological spaces is called continuous if for any U-open in Y, its pre-image f~!(U) is open in X. “Isomorphism”
between topological spaces are known under the name of homeomorphisms: they are the bijections f: X =Y
with the property that both f as well as £~! are continuous.

In the language of ”Category Theory”, Topology is the category whose objects are topological spaces, and whose
morphisms (between objects) are the continuous maps.

Remark 1.1. Note that, while proving that two topological spaces are homeomorphic (i.e there exists a homeomor-
phism between them) is relatively easy in principle (one just has to produce ONE single homeomorphism between
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them- and for that it is often enough to follow ones intuition), proving that two spaces are not homeomorphic is
much harder. One way to proceed is by understanding the specific "topological properties” of the spaces under
discussion (such as Hausdorffness, compactness, etc); if one of them has such a topological property and the other
one does not, then they cannot be homeomorphic. A more advanced approach consists of constructing topological
invariants of algebraic nature (such as numbers, groups, etc)- and that is what Algebraic Topology is about.

1.1.3 Metric topologies; bases

One of the largest class of topological spaces are metric spaces (X, d): any metric d : X x X — R induces a topology
JyonX:asubset U C X is open iff for any x € U there exists r > 0 such that U contains the d-ball of center x and
radius r:

By(x,r):={yeX :d(x,y) <r}. (1.1.1)

In general, a topological space X is called metrizable if there is a metric d on X such that the original topology
on X coincides with .7, (note also that, if such a d exists, in general it is far from being unique; e.g. already
2d, 3d, dLH would do the same job). One of the most interesting questions about topological spaces is to decide
whether they are metrizable or not; metrizability theorems aim at finding simple topological conditions that imply
metrizability.

Considering the Euclidean metric d on R™, or on any subset A C R, we see that A is endowed with a canonical
topology- called the Euclidean topology on the subset A C R™ (exercise: show that also the square metric induces
the same topology). Note that, in this case, the resulting notion of convergence (and continuity) coincides with the
one from Analysis.

Remark 1.2. Continuing the previous remark, let us point out that showing that two Euclidean spaces R™ and R”
of different dimensions m # n are not homeomorphic is non-trivial. When m = 1, this can be done using the notion
of connectedness but, for m,n > 2, one has to appeal to tools from Algebraic Topology.

We now return to general metric spaces. A metric d on X allows us to talk about the open balls B,(x, r) for x € X,
r € R4 (see (1.1.1)), giving rise to the collection of open balls induced by d:

By ={By(x,r) :xeX,re Ry }.

This is not a topology on X, but .7 is the smallest topology containing %,.

Recall also (simple exercise) that any family 2 of subsets of X gives rise to a topology 7 () on X, defined as
the smallest one containing 4. It is called the topology generated by . In general, the members of .7 (%) are
arbitrary unions of finite intersections of members of .7.

Depending on the properties of %, the members of .7 (%) may have simpler descriptions. The most common
case is when & is a topology basis, i.e. satisfies the following axioms: any x € X is contained in at least one
member B of £ and, for any B}, B, € % and any x € B| N B, there exists B € 4 containing x with B C B] N B;. In
this case, for U C X, the following are equivalent:

(0) U belongs to 7 (A).
(1) forany x € U there exists B€ #Zs.t.xe BCU.
(2) U is a union of members of %.

For instance, for any metric d on X, the collection 4, is a topology basis, and (1) is precisely the original definition
of 7.

One can change a bit the point of view and, starting with a topology .7 on X, look for collections % generating
T ,i.e.suchthat 7 = 7 (). Of course, one possibility is to take Z = 7, but this is the least interesting one. The
more interesting choices are the ones for which & is smaller- e.g. countable. And here is the precise terminology:
given a topological space X, a basis for the topological space X is any collection £ of subsets of X with the
property it is a topology basis and .7 = 7 (). As above, for a collection & of subsets of X, the following are
equivalent:
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(0) A is abasis for the space X.
(1) for any open U in X and any x € U there exists B€ #s.t.xe BCU.
(2) any open in X is a union of members of Z.

(in particular, each of the conditions (1) and (2) imply that 4 is a topology basis).

Repeating what we said before, but with a slightly different wording, we have that for any metric d on X, the
metric topology admits %, as basis. Another possible basis for the space X (endowed with the topology 7;),
slightly smaller, is

1
By = {Bd(x7;) ixe€X,neN}.

For the Euclidean metric dgy on R™ we can do even better:

1
%0 = {Big,a(¢,-) 14 € Q",n €N}
is still a basis for the Euclidean topology on R, but it it "much smaller”: it is countable.

In general, one says that a topological space X is second countable if it admits a basis % which is countable.

1.1.4 Topological manifolds

The second countability condition is a very subtle one and turns out to be of capital importance in establishing
some central results in Topology and Geometry- such as metrizability and embedding theorems. In particular, it is
part of the basic axioms for the notion of manifolds. For now:

Definition 1.3. A topological m-dimensional manifold is a topological space X satisfying the following:

(TMO): any point x € X admits a neighborhood X which is homeomorphic to an open subset of R".
(TM1): it is Hausdorff.
(TM2): it is second countable.

A homeomorphism
x:U—QCR"

from an open subset U of X to an open subset 2 in R™ is called a m-dimensional topological chart for X,
and U is called the domain of the chart- so that axiom (TMO) can also be read as:

(TMO0): X can be covered by (domains) of m-dimensional topological charts.

You should convince yourself (or remember) why some of the usual examples of topological spaces such as
spheres, tori, Moebius band, etc are topological manifolds. Also, in all these examples, one should concentrate
first on the condition (TMO) (... as the labelling indicates). Note however that, while the notion of dimension is
intuitively clear (at least in all examples), handling it theoretically is not such a piece of cake; see Remark 1.2. This
is due to the fact that there is no obvious topological characterization of the (intuitive notion) of dimension. This
will be much less of a problem as soon as we move to (differentiable) manifolds.

Remark 1.4. Since the notion of “topological space” is built on the notion of “open”, so are most of the basic
definitions in Topology- such as continuity, Hausdorffness, compactness, etc etc. However, under rather mild as-
sumptions, such definitions can be rephrased more intuitively, using sequences. The main “mild assumption” that
we have in mind here is that of first countability”’; please see the basic course on Topology. This condition is
weaker even than the second countability condition. For instance, metric topologies are always first countable but
may fail to be second countable. For our purpose, it is enough to know that either of the conditions (TMO) or (TM2)
implies 1st countability (and, if you look at the definitions, you will see that this statement is completely trivial).
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What is interesting to know here is that, when restricting to spaces X which are first countable, many of the basic
notions can be reformulated in terms of sequences. E.g.:

* X is Hausdorff iff any convergent sequence in X has at most one limit.
* f: X — Y is continuous iff it is sequential continuous i.e.: if (x,),>1 is a sequence converging in X to x € X,
then (f(x,))n>1 convergesinY to f(x).

1.1.5 Inside a topological space

Recall that, given a space X, a subset A C X is said to be closed in X if its complement X \ A is open. Of course,
knowing the closed subsets of X is equivalent to knowing the open ones- hence one could have introduced the
notion of topology completely in terms of closed subsets (which would then be the axioms?). Opens are preferred
because some of the the most important properties can be described more directly in terms of opens (and perhaps
also because they are closer in spirit to the notion of ’ball” in a metric space). However, closed subsets often have
some very nice properties- e.g. when talking about compactness.

Given the axioms of a topology (namely the fact that arbitrary unions of opens is open or, equivalently, that
arbitrary intersections of closeds is closed), it follows that for any subset A of a topological space X one can talk
about:

* the largest open contained in A- and this is called the interior of A (in the space X), and denoted Int(A).
* the smallest closed containing A- and this is called the closure of A (in the space X), and denoted C1(A),

Recall also that, under the first countability axiom (in particular, for topological manifolds), the closure has a
particularly nice description in terms of sequences:

Cl(A) = {x € X : 3 a sequence in A converging to x}.

1.1.6 Construction of topological spaces

We have already seen two (related) ways of constructing topologies on a set X : the metric topology 7; induced by
any metric d on X, and the topology .7 (%) generated by any family 2 of subsets of X (with the particularly nice
situation when 2 is a topology basis).

There are various other important constructions of topologies out of the old ones. For instance, given any two
topological spaces X and Y, the Cartesian product

XxY={(x,y):xeX,yeY}

carries a canonical topology, called the product topology. There is a slight complication: while we would like that
the products of opens is open,

PBxxy :={UxV :U—openin X,V —openinY}

is not a topology on X x Y; instead, it is a topology basis, and the product topology is defined as the topology
generated by Py «y. Equivalently, and more conceptually, it is the smallest topology on X x ¥ with the property
that the projections

pry : X XY = X,pry : X XY =Y

are continuous.

The last description is more conceptual because it follows a general philosophy that one should apply when
looking for topologies: require that the most interesting maps that you have around to be continuous, and look for
“the best (least boring)” topology that does that (usually “the best” means the largest” or ”the smallest”).
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Another example of this philosophy is the induced topology: given a topological space X, any subset A C X
carries a canonical, induced, topology: it is the smallest topology with the property that the canonical inclusion

itA—X, ila)=a

is continuous (why would looking for the largest topology with this property be ’boring”?). Explicitly, the opens
in A (endowed with the topology induced from X) are the intersections AN U of A with opens U of X.

Yet another example is that of quotient topology. In some sense, it is the other extreme compared to the previous
example. While before we started with an inclusion 7 : A — X, we now start with a surjection

n:X—=Y,

where X is a topological space and Y is just a set (on which we would like to induce a topology). This time, looking
for ’the most interesting” topology on Y, we are lead to looking at the largest topology on Y with the property that
7 is continuous (why?). We obtain the quotient topology on Y: a subset U C Y is an open of this topology if an
donly if 771 (U) is open in X (check that this is, indeed, a topology on Y).

The terminology “quotient” comes from the fact that, typically, the situation of having a surjection 7 : X — Y
arises when starting with X and an equivalence relation R on X. Then, with the intuition that we want to glue the
points of X that are equivalent (w.r.t. the equivalence relation R), we obtain the quotient space

Y =X/R

(abstractly made of R-equivalence classes [x]g = {y € X : (x,y) € R} of points x € X) together with the canonical
projection
7'L'RZX—>X/R, ER(x):[x]R.

Therefore, starting with an equivalence relation R on a topological space X, we see that the resulting quotient X /R
carries a canonical (quotient) topology.

One of the most interesting examples of quotient topologies is the canonical topology on the projective space
P := {I : [ — line through the origin in R"*!}

(i.e. the set of all 1-dimensional vector subspaces of R”*!). We can put ourselves in the previous situation by
considering
RPN {0} = P x i I,

where [, is the line through the origin and x (i.e. the vector subspace R - x spanned by x). In terms of equivalence
relations, we deal with the equivalence relation on R”+1\ {0} given by:

x~y<=l, =l <= y=A -xforsome A € R.

Using the Euclidean topology on R”*1\ {0} we obtain a natural topology on P""; endowed with this topology, P
is called the projective space (of dimension m). You should convince yourself that convergence in this topology
corresponds to the intuitive idea of lines getting close to each other”.

Finally, given the notion of induced topology, one can make use of that of embeddings: an embedding of
a topological space X into a topological space Y is any map i : X — Y that is continuous, injective and, when
interpreted as a continuous map i : X — i(X) and we endow i(X) C Y with the topology induced from Y, it is a
homemorphism (note that the last map is automatically continuous and bijective, but that does not imply that its
inverse is continuous as well!). Next to metrizability theorems (see above), one of the most interesting problems
in Topology/Geometry is that of deciding whether a space X can be embedded in a Euclidean space; results in this
direction are usually labelled as embedding theorems. Looking at the notion of topological manifold, it is worth
pointing out that, due also to the axioms (TM1) and (TM2), it follows that any topological manifold is metrizable
and can be embedded in some Euclidean space!
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1.1.7 Topological properties

As we have pointed out in Remark 1.1, to distinguish topological spaces from each other (or to understand better
each specific one), it is useful to isolate the various topological properties that spaces may have. By a topological
property we mean any property that can be described by only using the notion of opens or, equivalently, any
property that is preserved via homeomorphisms. We have already mentioned several such properties: Hausdorffness
and second countability. Here we recall a few more.

The first one is that of connectedness: a space X is called connected if it cannot be written as X = U UV with
U,V-disjoint non-empty opens in X. Or, equivalently, if the only subsets of X that are both open and closed are
0 and X. In general, if X is not connected, it can be “broken” into connected pieces; more precisely, recall that
a connected component of a space X is any connected subset C C X which (when endowed with the induced
topology) is connected, and which is maximal (w.r.t. the inclusion) with this property. Then the set of connected
components defines a partition of X by closed subspace. In examples, the partition into connected components is
usually easy to guess intuitively; here is a simple exercise that can be used as a recipe to confirm such guesses:
assume that we manage to write X as

X=X1U...UXy, WithXiﬁXjZQfOI'i#j.

Assume also that all the X;s are open or, equivalently (why?), that all the X;s are closed. Then {Xj,...,X;} must
coincide with the partition into connected components.

Remark 1.5. Of course, the number of connected components may sometimes be infinite (even non-countable).
Note however that, for topological manifolds M, due to the second countability axiom, the number of connected
components if always at most countable (and finite if M is compact). Actually, one often restricts the attention to
connected manifolds.

Another important topological property is that of compactness. While this is a property that one usually encoun-
ters in the first courses in Analysis (compacts in R” being the subsets A C R™ that are closed and bounded), the fact
that this is a topological property (i.e. can be described by appealing only to the notion of opens in A, without any
reference to the Euclidean metric or to the way that A sits inside R™) is not at all obvious. That makes the resulting
general definition less intuitive and a bit hard to digest at first: a topological space X is said to be compact if for
any open cover

U = {U iiiel }

of X (i.e. each U; is open in X, their union is X, and / is an indexing set), one can extract a finite subcover, i.e. there
exists iy,...,ix € I such that {U; ,...,U;, } is still a cover of X- i.e.

XZU,‘IU...UU,'/(.

Here is the list of the most important properties of compactness:

1. Compact inside Hausdorff is closed: if X is a topological space, A C X is endowed with the induced topology
(see above) then:
A — compact,X — Hausdorff = A —is closed inX.

2. Closed inside compact is compact: if X is a topological space, A C X is endowed with the induced topology
(see above) then:
A —is closed in X, X — compact = A —is compact

3. Any compact Hausdorff space is automatically normal:

X — compact => X —normal.

Recall here that a topological space X is said to be normal if for any A, B C X closed disjoint subsets, one can
find opens in X, U containing A and V containing B, such that UNV = 0.

4. Product of compacts is compact: if X and Y are compact spaces then X x Y, endowed with the product topology
(see above), is compact:
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X,Y — compact = X X Y — compact.

5. Continuous applied to compact is compact: if f: X — Y is continuous and A C X (with the induced topology)
is compact, then so is f(A) C Y:

f:X —Y continuous,A — compact inside X = f(A) — compact.

6. In particular: quotients of compacts are compacts.
7. A continuous bijection from a compact space to a Hausdorff one is automatically a homeomorphism:

(continuous f) : (compact space X) — (Hausdorff space Y) = f is a homeomorphism.
More generally: a continuous injection from compact to Hausdorff is automatically an embedding (see above).

Exercise 1.6. Assuming that you already know that the unit interval [0, 1] (endowed with the Euclidean topology)
is compact, use the properties listed above to deduce that: for subsets of R™ endowed with the Euclidean topology:

A C R™ is compact <= A is closed and bounded in R™.

A related topological property is the local version of compactness: one says that a space X is locally compact if
any point x € X admits a compact neighborhood. If X is also Hausdorff, it follows that any point in X admits "ar-
bitrarily small compact neighborhoods”: for any neighborhood U of x in X there exists a compact neighbhborhood
of x, contained in U. In general, Hausdorff locally compact spaces can be compactified by adding one extra-point.
More on the 1-point compactification can be found in the lecture note on Topology.

For topological manifolds, axiom (MTO) ensures that they are automatically locally compact. But also axioms
(MT1), (MT2) interact nicely with local compactness: they ensure the existence of “exhaustions”. This is Theorem
4.37 in the notes on Topology:

Theorem 1.7. Any locally compact, Hausdorff, 2nd countable space X admits an exhaustion, i.e. a family
{K,, :n € Z.} of compact subsets of X such that X = U,K, and K, CK 4 for all n.

Proof. Let % be a countable basis and consider ¥ = {B € % : B— compact}. Then ¥ is a basis: for any open
U and x € X we choose a compact neighborhood N inside U; since % is a basis, we find B € & s.t. x € BC N,
this implies B C N and then B must be compact; hence we found B € ¥ s.t. x € B C U. In conclusion, we may
assume that we have a basis ¥ = {V,, : n € Z } where V,, is compact for each n. We define the exhaustion {K,, }
inductively, as follows. We put K; = V1. Since ¥ covers the compact K7, we find i; such that

Ki cviuWu...UV;,.
Denoting by D; the right hand side of the inclusion above, we put
K, =Dy =V UV,U...UV,.
This is compact because it is a finite union of compacts. Since D| C K, and D; is open, we must have D CIOQ;
since K| C Di, we have K; CIOQ. Next, we choose i» > i; such that
K, CViUuV,U...UV,,
we denote by D, the right hand side of this inclusion, and we put
K3 =Dy =V UV,U...UV,,.

As before, K3 is compact, its interior contains D;, hence also K>. Continuing this process, we construct the family
K, which clearly covers X. <
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1.1.8 The algebra of continuous functions

Given a topological space X, an ~observable on X has a precise meaning: it is a continuous function
f:X—=R
The set of all such continuous functions is denoted by

One of the simplest but most fundamental ideas in various parts of Geometry is that of understanding a space X
via the associated “object” %' (X). This will allow one to consider “more relevant observables”: e.g. for subspaces
X C R™, one can consider only f's that are smooth, or polynomials. Or even to handle “’spaces” which, although are
quite intuitive, are not topological spaces in the strict sense of the word. All together, this point of view gives rise to
several directions in Geometry: Differential Geometry (where the key-word is “smooth” instead of “continuous”),
Algebraic Geometry (where the key-word is ’polynomial”, or “complex analytic”’), Noncommutative Geometry
(where X does not even make sense, but € (X) does).

Of course, what makes these work is the rich structure that € (X) posses- making the “object” ¢ (X) (a priory
just a set) into a more interesting mathematical object. We recall here the most important part of the algebraic
structure present on % (X): it is an algebra. Recall here:

Definition 1.8. A (real) algebra is a vector space A over R together with an operation
AxXA—A, (a,b)—a-b

which is unital in the sense that there exists an element 1 € A such that
l-a=a-1=a Va€A,

and which is R-bilinear and associative, i.e., for all a,a’,b,b’,c € A, A € R,

(a+d) b=a-b+d -b,a (b+b)=a-b+a-V,
(Aa)-b=A(a-b) =a-(Ab),
a-(b-c)=(a'b)-c.

We say that A is commutative if a-b = b-a for all a,b € A.
Similarly one talks about complex algebras: then A is a vector space over C and A € C.

For a topological space X, the algebra structure on ¢(X) is defined simply by pointwise addition and multipli-
cation: for f,g € € (X)and A €R, f+g,f g,A - f € €(X) are given by:

(f+8)(x) =f)+sx), (f-8)x)=rf()gkx), (A-f)x)=Af(x).

And, considering the space ¢'(X,C) of C-valued continuous functions on X, one obtains a complex algebra.

The fact that, under certain assumptions, a topological space X can be recovered from the algebra €' (X), is the
content of the Gelfand-Naimark theorem. While we refer to the basic course on Topology for the full statement
and details, here is the very brief summary:
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Theorem 1.9 (informative version of Gelfand Naimark theorem). There is a way to associate to any
algebra A a topological space X(A) (called the spectrum of A) so that, when applied to A = € (X)- the
algebra of continuous functions on a compact Hausdor{f space X, one recovers X (i.e. X(€ (X)) is home-
omorphic to X ).

Remark 1.10 (Some details). The spectrum X (A) of an algebra A is defined as the set of characters on A, i.e. maps
x:A—R

which preserve the algebra structure, i.e. which are linear, multiplicative (y(ab) = x(a)x(b) for all a,b € A) and
send the unit of A to 1 € R. The topology on X (A) is the best” for which all the evaluation maps

evg: X(A) =R, x> x(a) (oneforeachac€A)

are continuous.
For instance, when A = € (X) for a compact Hausdorff space X, then any point x € M gives rise to a character
Xx on € (X), namely the evaluation at x, and the resulting map

X —=>X(A), x— X

is the one the realises the desired homeomorphism (of course, there are things to prove along the way). Let us give
here a direct argument showing that, if X is a compact space, then any character on %' (X),

X:C(X) =R,
is necessarily of type xx for some x € M (proving that the previous map is surjective). [l

And, with the mind at the fact that we may want to consider more restrictive conditions than continuity (e.g.
smoothness), here is the resulting relevant abstract notion:

Definition 1.11. Given an algebra A (over the base field R or C), a subalgebra of A is any vector subspace
B C A, containing the unit 1 of A and such that

b-b'eB VYb,b ecB.

When we want to be more specific about the base field, we talk about real or complex subalgebras.

For instance, for X C R”, when looking at smooth or polynomial functions, we obtain a sequence of sub-
algebras:
EPMN(X) C 67 (X) C E(X).

Finally, when looking at a subset
o CE(X),

(subalgebra or not), there are several interesting properties that turn out to be interesting- and we say that:

(1) < is point separating if for any x,y € X distinct there exists f € <7 such that f(x) # f(y) or, equivalently, if
there exists f € 7 such that f(x) =0and f(y) = 1.

(2) < is normal if for any two disjoint closed subset A, B C X, there exists f € o such that f]4 =0, f|p = 1.

(3) < is closed under sums if f+ g € o/ whenever f,g € <.

(3)  is closed under quotients if /g € &/ whenever f,g € <7 and g is nowhere vanishing.

For instance, the Stone-Weierstrass theorem (which will not be used in the rest of the course) says that, if X is
a compact Hausdorff space, then any point-separating sub-algebra o7 C % (X) is dense in € (X); with particular
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cases of the type: real valued continuous functions on [0, 1] (or other similar spaces) can be approximated by poly-
nomial functions.

Note that, for a general topological space X, even the entire &7 = € (X) need not be point separating or normal.
Actually, it is a rather simple exercise to check that the point separation of ¢ (X) implies that X must be Hausdorff,
while the normality of % (X) implies that the topological space X must be normal (i.e., as recalled above: any
two disjoint closed subsets A, B C X can be separated topologically: there exist opens U,V C X containing A and
B, respectively, with U NV = 0). What is far less obvious (actually one of the most non-trivial basic results in
Topology) is the converse, known as the Urysohn lemma: if a topological space X is Hausdorff and normal then
% (X) is normal; more precisely, for any two disjoint closed subsets A, B C X there exists

f:X —0,1] continuous and such that f|4 =0, f|p = 1.

This will not be used later in the course; we mention it here just for completeness.

1.1.9 Partitions of unity

Finally, one more basic topic from Topology- but this time one that is difficult to appreciate (and perhaps even to
digest) without entering the realm of Differential Geometry and/or Analysis: partitions of unity. To be able to talk
about partitions of unity that are not just continuous (as we will be interested only on smooth functions), we can
place ourselves in the following setting: X is a topological space and

of CE(X)

is a given vector subspace; we will be looking at partitions of unity that belong to .27 For the main definition, we
first need to recall the notion of support: given 1 : X — R continuous, the support of 7 in X, denoted suppy (1)
or simply supp(n) is the closure in X of the set ) # 0 of points of X on which 1 does not vanish:

suppy () := {11 £ 0} = (x € X : (x) #0} .

Given an open U C X, we say that 7 is supported in U if supp(n) C U. This condition allows one to promote
functions that are defined only on U, f : U — R, to functions on X, at least after multiplying by 1n; namely, n - f, a
priory defined only on U, if extended to X by declaring it to be zero outside U, the resulting function

n-f:X—-NR

will be continuous (check this and, by looking at examples, convince yourselves that this does not work if the
condition supp(n) C U is replaced by the weaker one that {n # 0} C U).
We now move to partitions of unity; we start with the finite ones.

Definition 1.12. Let X be a topological space, Z = {Uj,...,U,} a finite open cover of X. A continuous
partition of unity subordinated to %/ is a family of continuous functions 7; : X — [0, 1] satisfying:

Mm+...+M=1, supp(n;) C U;.

Given & C €(X), we say that {n,} is an .«7-partition of unity if 1; € < for all i.
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Fig. 1.1 On the left, an annulus X is covered by two open sets U and U,. The graph on the right shows two functions 7; : X — [0, 1]
that form a partition of unity subordinate to this cover.

Theorem 1.13. Let X be a topological space and assume that of C € (X) is normal and is closed under
sums and quotients. Then, for any finite open cover %, there exists an < -partition of unity subordinated

toU.
In particular if X is Hausdorff and normal, by the Uryshon Lemma (to ensure that o/ :== € (X) is normal),
any finite open cover % admits a continuous partition of unity subordinated to % .

Proof (sketch; for more details, see the lecture notes on Topology). The main ingredients are:

(Stl) the remark made above that the normality of ./ implies that X is a normal space (simple exercise).
(St2) the fact that, in a normal space X, whenever we have A C U with A-closed in X and U-open in X, one can find
a smaller open V such that
ACVcCcVcU

(short proof, but a bit tricky).
(St3) the shrinking lemma: for any finite open cover % = {Uj,...,U;} of a normal space X one can find another
cover ¥ = {Vy,...,V,} such that
V. cU; ViE{l,...,k}.

(this follows by applying the previous step inductively, starting with U = U; A =X \ (U, U...UUy).

Now the proof of the theorem. Apply the shrinking lemma twice and choose open covers ¥ = {V;}, # = {W;},
with V; C U;, W; C V;. For each i, we use the separation property of . for the disjoint closed sets (Wi,X —V;). We
find f; : X — [0, 1] that belongs to o7, with f; = 1 on W; and f; = 0 outside V;. Note that

f=A+...+f

is nowhere zero. Indeed, if f(x) = 0, we must have f;(x) = 0 for all i, hence, for all i, x ¢ W;. But this contradicts
the fact that %/ is a cover of X. From the properties of <7, each

fi

R — :X —[0,1]

ni:

is continuous. Clearly, their sum is 1. Finally, supp(n;) C U; because V; C U; and {x: m;(x) # 0} = {x: fi(x) #
0}cv. &

And here is a nice application of the existence of (finite) partitions of unity:

Theorem 1.14. Any compact topological manifold M can be embedded in some Euclidean space R™.
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Proof. Cover M by opens that are homeomorphic to R, where d is the dimension of M. Using that M is compact,
we find an open cover % = {U},...,U, } together with homeomorphisms y; : U; — R4 Since M is compact it is also
normal hence we find a partition of unity {7,...,n,} subordinated to % . Each of the functions 1;- x; : U; — RY is
extended to M by declaring it to be zero outside U;; by the previous comments, the resulting functions %; : M — R¢
are continuous. Consider now

P= M M T ) M= Rx xR RY x . x RY = RK@HD),

k times k times

One check directly that i is injective; since M is compact and R¥(¢*1) js Hausdorff, by the properties recalled on
compactness, i will be an embedding. =

Finite partitions of unity are useful mainly when working over compacts (so that one can ensure finite open
covers). For the more general case one first has to make precise sense of “infinite sums ) ; 1;”". For that first recall
that, given a topological space X, a family .# of subsets of X is said to be locally finite (in X) if for any x € X
there exists a neighborhood V' of x which intersect only a finite number of members of .. Given a family {n; }ie/
(I some indexing set) of continuous functions 1), : X — R, we say that {1, };c; is locally finite in X if their supports
(in X) supp(n;) form a locally finite family of subsets of X. Note that in this case the sum

Yn:Xx—R
iel

can be defined pointwise (at any x € X only a finite number of terms do not vanish), and the resulting function
is continuous. For a subset &7 C ¥’ (X), we say that is closed under locally finite sums if for any locally finite
family {n;} with n; € &7, ¥'; 7); is again in <.

With these, we can now talk about infinite partitions of unity:

Definition 1.15. Let X be a topological space, Z = {U; : i € I'} an open cover of X. A (continuous) partition
of unity subordinated to % is a locally finite family of continuous functions n; : X — [0, 1] satisfying:

Y ni=1, supp(m) CU;.

icl

Given &/ C €' (X), we say that {n;} is an &7-partition of unity if n; € < for all i.

If we are pragmatic and we only care about what is directly applicable later on in this course, the result to have
in mind is:

Theorem 1.16. Let X be a Hausdorff, locally compact and 2nd countable space, of C € (X) and assume
that:

o & is closed under locally finite sums and under quotients and
o o satisfies: for any x € M and any open neighborhood U of x, there exists f € of supported in U with
f(x)>0.

Then, for any open cover % of X, there exists an < -partition of unity subordinated to ¥ .

J

For the curious student, here is the more detailed discussion to which the previous theorem belongs (with the
explanation of how the proof goes). The existence of partitions of unity subordinated to arbitrary open covers
forces a topological property of X called paracompactness: we say that a topological space X is paracompact if
for any open cover % of X, there exists a locally finite open cover ¥ that is a refinement of %/ in the sense that any
V € ¥ is included inside some U € % . The existence of arbitrary partitions of unity is ensured by the following:
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Theorem 1.17. Let X be a paracompact Hausdorff space and assume that &/ C € (X) is normal, closed
under locally finite sums and closed under quotients.
Then, for any open cover % of X, there exists an <7 -partition of unity subordinated to ¥ .

Since paracompact spaces are automatically normal, hence we can use Uryshon’s lemma, it follows that in a
paracompact Hausdorff space a for any open cover there exists a continuous partition of unity subordinated to the
cover.

The proof of the previous theorem is almost identical with the one from the finite case- just that one now has to
establish an infinite version of the shrinking lemma (and that is where paracompactness enters),

To apply the previous theorem, there are two points that may be difficult to check: the paracompactness of X
and, when working with arbitrary .7, that .7 is normal. For the first one, the following comes in handy:

Theorem 1.18. Any Hausdorff; locally compact and 2nd countable space is paracompact.

In particular, topological manifolds are automatically paracompact. One can actually show that, under the axioms
(TMO) and (TM1), the axiom (TM2) on second countability is equivalent to the fact that M is paracompact and has
a countable number of connected components.

Proof. We use an exhaustion {K,} of X (Theorem 1.7). Let % be an open cover of X. For each n € Z there is
a finite family ¥}, which covers K,, — Int(K,,_1), consisting of opens V with the properties: V C Int(K,4+1) — Ky—1,
V C U for some U € % . Indeed, for any x € K, — Int(K,,_1) let V, be the intersection of Int(K,,+) — K,—; with any
member of %/ containing x; since K, — Int(K,_1) is compact, just take a finite subcollection ¥; of {V,}, covering
K, —Int(K,_1). Set ¥ = U, ¥y it covers X since each K, — K,,_| C K,, — Int(K,,_) is covered by ;. Finally, it is
locally finite: if x € X, choosing n and V such thatV € ¥;,, x € V, we have V C Int(K,,+1) — K,,—1, hence V can only

intersect members of ¥, with m < n+ 1 (a finite number of them!). ‘=

Finally, to check the normality of <7 needed in Theorem 1.17, the following comes in handy:

Theorem 1.19. Let X be a Hausdorff paracompact space and <f C € (X) closed under locally finite sums
and under quotients. If X is also locally compact, then the following are equivalent:

1. & is normal.
2. for any x € M and any open neighborhood U of x, there exists | € </ supported in U with f(x) > 0.

In particular, for a topological manifold M, checking that a subset &/ C € (M) is normal is a local matter- and
that is very useful since, locally, topological manifolds look just like Euclidean spaces.

Proof. That 1 implies 2 is clear: apply the separation property to {x} and X — V. Assume 2. We claim that for any
C C X compact and any open U such that C C U, there exists f € .o/ supported in U, such that f|¢ > 0. Indeed, by
hypothesis, for any ¢ € C we can find an open neighborhood V. of ¢ and f, € 7 positive such that f.(c) > 0; then
{fe # 0}ccc is an open cover of C in X, hence we can find a finite subcollection (corresponding to some points
ct,...,cx € C) which still covers C; finally, set f = f., +...+ fc,.

To prove 1, let A, B C X be two closed disjoint subsets. As terminology, D C X is called relatively compact if D
is compact. Since X is locally compact, any point has arbitrarily small relatively compact open neighborhoods. For
each y € X — A, we choose such a neighborhood D, C X —A. For each a € A, since a € X — B, applying step (St2)
from the proof of Theorem 1.13, we find an open D, such that a € D, C X — B. Again, we may assume that D, is
relatively compact. Then {D, : x € X} is an open cover of X; let = {U; : i € I} be a locally finite refinement.
We split the set of indices as I = I} U, where I; contains those i for which U; N A # 0, while I, those for which
U; C X —A. Using the shrinking lemma (the infinite version of the one described in (St3) of he proof of Theorem
1.13) we can also choose an open cover of X, ¥ = {V; :i € I'}, with V; C U;. Note that, by construction, each U;
(hence also each V;) is relatively compact. Hence, by the claim above, we can find 1; € <7 such that

Nily, >0, supp(n;) C Us.
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Finally, we define
_ Yier, Mi(x)

YierMi(x)
From the properties of <7, f € /. Also, f|s = 1. Indeed, for a € A, a cannot belong to the U;’s with i € I, (i.e.
those C X —A); hence 1;(a) =0 for all i € I, hence f(a) = 1. Finally, f|p = 0. To see this, we show that 1;(b) =0
foralli € I, b € B. Assume the contrary. We find i € I} and b € BN U;. Now, from the construction of %, U; C Dy
for some x € X. There are two cases. If x = a € A, then the defining property for D,, namely D, "B = 0, is in
contradiction with our assumption (b € BNU;). If x =y € X — A, then the defining property for Dy, i.e. D, C X — A,

is in contradiction with the fact thati € I} (i.e. U;NA # 0). <

f()

1.2 Reminder 2: Analysis

The relationship between Analysis and Differential Geometry is subtle. On one hand, Differential Geometry relies
on the very basics of Analysis. On the other hand, various notions/results from Analysis become much more
transparent/intuitive once the geometric perspective/intuition is brought into picture. In some sense, in many cases,
the geometric point of view indicates the (expected) results while analysis provides the tools to prove them.

1.2.1 R"

The basic playground for multivariate analysis is the standard Euclidean space

R'=Rx...xR.

n times

Despite its simplicity, this ’space” has many different (but related) structures- and often the problem with handling
R" comes from the fact that it may not be completely clear which of the structures present on R” is relevant for the
specific discussions. Here are some of the many interesting structures present on R":

* it is a vector space. When we want to emphasize this structure, we will denoted by
v=(vi,...,v) ER"

its elements and we will think of them as “vectors”/”directions”. Intrinsic in this notation is the presence of
yet another piece of structure: it is not just a vector space- it comes with a preferred (canonical) basis:

n.
el,...,eqm €R";

in coordinates, ¢; has 1 on the i-th position and 0 everywhere else.
* it is a vector space endowed with an inner product:

n
(v,w) = Zv,- Wi,
i=1

hence it is also a normed vector space, with the norm:

[Vl = v/ {vv).

* it is a topological space- endowed with the standard Euclidean topology. When we want to emphasize this
structure, we will denote by
xX=(x1,...,%,) €ER"
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its elements and we will think of them as ”’points”. For instance, when looking at a circle in R2, the vector
space space structure on R is not so relevant, and we think of the circle as made by points rather then vectors.
Also, when talking about the continuity of a function f : R" — R, the vector space structure of R” is not
relevant (though it may be useful).

Recall also that the topology on R” is a shadow of yet another structure: R™ is also a metric space, with the
standard Euclidean metric:

We say a ”shadow” because uses part of what the metric allows us top talks about: points being “close to each
other” (or, more precisely: convergence and continuity). In particular, there are several other natural metrics
on R” that induce the same Euclidean topology- e.g. the so called square metric

d'(x,y) = max{|x; — y1],..., |xs — yal}.

* even when thinking about R" as a topological space, so of its elements as points, each point x € R” can be
represented using “canonical coordinates”- used already above. Again, the coordinates are not so relevant/im-
portant: they are useful and can be used, but they are not intrinsic to the structure. For instance, a circle in R>
can be described using coordinates by the equation x> +y> = 1, but the circle itself can be drawn without any
coordinate axes at our disposal.

Note that the standard coordinates we mentioned are the simplest illustration of the notion of chart”- to be
discussed in a bit more detail below, and essential in defining the notion of manifold.

* it is a topological space ”on which analysis can be performed” (... i.e. a manifold).

e etc.

Of course, all these are inter-related but, in each situation, it is important to realize which of these structures really
matter. In particular, whenever one encounters a definition or result, it is instructive to figure out whether the
elements in R™ that show up play the role of points and which ones of vectors, and how much the definition/result
depends on the coordinates. This is the first step towards a geometric understanding of Analysis.

1.2.2 The differential and the inverse function theorem

One can talk about various notions of derivatives of a function f at a point
xeR"

whenever we have a function f defined on a neighborhood of x- so that the expressions f(y) used below makes
sense for all y near x or, equivalently, f(x+ v) is defined for small vectors v.
Typically one assumes that f is defined on an open subset 2 C R” and takes values in some other Euclidean
space R,
f:Q Rk

so that it makes sense to talk about derivatives of f at any point in its domain, x € Q.

The most intrinsic notion of derivative is that of “total derivative”, also called the differential of f (at the
given point x € ). This notion arises when trying to approximate f, near x, by simpler (linear-like) functions.
Understanding f near x is about understanding

vie fx+v)
for v € R" near 0. It sends v = 0 to f(x), hence the best one can hope for is to approximate

v fletv) = f(x)
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by functions that are linear in v. Think that we try to write the last expression as a function linear in v, plus one that
is qudratic in v, etc (plus eventually an “error term”), but we are interested only in the linear term A. We see we are
looking for a linear map

A € Lin(R",R)

with the property that

=0. (1.2.1)

Fig. 1.2 Visualization of the total derivative for a function f :  — R¥ defined over an open 2 C R”, in this case with n = 2 and
k = 1. Infinitesimal movements through a point x € £ are represented by the blue horizontal vectors v; and the resulting infinitesimal
movement in the codomain R¥ is represented by the yellow vertical vectors D, f(v;). They sum up to dashed vectors of the form
(vi, Dy f(v;)) € R” x R¥ that are tangent to the graph of £ in the point (x, f(x)). The graph of the best affine approximation T of f in x
(which sends any ¥ € R" to T(%) = f(x) + D, f (% —x)) is an affine plane spanned by the dashed vectors.

Definition 1.20. We say that f : Q — R is differentiable at x if there exists a linear map A € Lin(R",R¥)
satisfying (1.2.1). The linear map A (necessarily unique) is called the differential of f at the point x (or the
total derivative of f at x) and is denoted

D.f=(Df);:R" - Rk,

We say that f is differentiable if it differentiable at all points x in its domain £. We say that f is of class C!
if it is differentiable and the resulting map

Df:Q —Lin(R" RN, x— (Df);

is continuous (recall here that, via the matrix representation of linear maps, Lin(R”, R¥) can be interpreted
as the Euclidean space R™*).

We say that f is of class C? if it differentiable and df is of class C'; proceeding inductively, we can talk
about f being of class C’ for any / € N. We say that f is smooth if it is of class C' for all .

Recall here also the chain rule that allows one to compute the differential of a composition of two functions:
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Proposition 1.21 (the chain rule). Given opens Q C R", Q' C R¥ and functions
Lo 4R,
if f is differentiable at x € Q and g is differentiable at f(x) € Q', then go f is differentiable at x and

(D(g0f)) = (D&)s(x) 0 (D f)s-

J

Despite the fact that the differential (D f), arises as “the linear approximation” of f near x, it contains a great
deal of information of f near x- and that makes it extremely useful. Probably the best and most fundamental
illustration is the inverse function theorem. Recall here that

Definition 1.22. A map f : Q2 — Q' between two opens 2 C R” and Q' C R¥ is said to be a diffeomorphism
if it is bijective and both f and f~! are smooth.
We say that f is a local diffeomorphism around x € Q if there exist opens 2, C Q2 and Q ) C Q' with

x € Q,, such that f|g, : Q, — .Q}(x) is a diffeomorphism.

It is interesting to draw an analogy with Topology, where the main objects are topological spaces, the relevant
maps are the continuous ones and two spaces are “isomorphic in Topology” (homeomorphic) if there exists a
bijection f between them such that both f as well as f~! are continuous. However, in topology is it usually very
hard to prove that two given spaces are not homeomorphic (and one often has to appeal to methods from Algebraic
Topology); for instance, just the simple the fact that R” and R* are homeomorphic only when 7 = k is very hard
to prove. In contrast, the similar statements for diffeomorphisms are much easier to prove thanks to the notion of
differential. Indeed, using the chain rule, the following should be a rather easy exercise:

Exercise 1.23. Show thatifamap f: Q — Q' between two opens 2 C R" and Q' c R¥isalocal diffeomorphism

around x € £, then
(Df), : R" — R*

is a linear isomorphism. Deduce that if two opens 2 C R” and Q' c RFare diffeomorphic, then n = k.

Although this clearly shows the usefulness of the differential, its great power is due to the inverse function
theorem (and its immediate consequences, such as the implicit function theorem -see below). Indeed, we see that
a condition on the differential of f at a single (given) point x tells us information about f around x:

Theorem 1.24 (The inverse function theorem). Given a smooth map f : Q — Q' between two opens
Q CR"and Q C RX, if f is differentiable at a point x €  and (D f), is an isomorphism, then f is a local
diffeomorphism around x.

1.2.3 Directional/partial derivatives; the implicit function theorem

Note that, when talking about the differential (D f),(v) (hence f: Q — R, with Q C R” open), x € Q should be
thought of as a point, while v € R”" as a direction (vector). This becomes more apparent if we reformulate the total
derivative as a directional derivative.
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:Rn : T

Fig. 1.3 The directional derivative d, f(x) of the function f from Fig. 1.2 can be seen to arise geometrically in the following way: The
map ¢ — x + vt traces a line through Q. The slice of the graph of f over this line is exactly the graph of the function ¢ — f(x +v)
if we label the horizontal axis by integer multiples of v. The directional derivative can now be defined as the normal derivative of this
function since we have a one-dimensional domain.

Definition 1.25. With f: Q — RF and x € Q as above, and an arbitrary vector v € R", the derivative of f
at x in the direction v is defined as the vector

_of d flettv) - fx)

%(f)x) =50 x) = —|  flx+rv)=lim p €R-.

t=0

When this derivative exists, we say that f is differentiable at x in the v-direction.

The relationship with the total differential is immediate: just replace in (1.2.1) v (small enough) by ¢v with v € R"
fixed (but arbitrary) and ¢ € R approaching 0; using that A is linear, we find that:

010 =2,

This relationship is visualized in Fig. 1.3. In particular, if f is differentiable at x then it is differentiable in all
directions. The converse is not true; however, one can show that if f is of class C Lif and only if all the directional
derivatives % exist and are continuous (see also the discussion below on partial derivatives).

Applying the previous definition to v € {ey,...,e,}, a vector in the standard basis of R”, we obtain the partial

derivatives
Lw=Lw=1
ox; = de; = dy

Its components are the partial derivatives of the components f; of f:

L= (L gim) s =i

f(xl,...,x,-,l,y,xl-H,.. . ,xn) S Rk.

Y=Xi

These partial derivatives contain the same information as (D f),, just in a less intrinsic way; however, they allow
one to handle (D f), more concretely, via matrices. For that recall that, due to the fact that the standard Euclidean
spaces come with a preferred basis, linear maps
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can be represented as matrices

A= (Aj')lgigk,lgjgn =1 ...

To make a distinction between the matrix A and the linear map A, one may want to denote by A the linear map, at
least for a while. Then the relationship between the two is (by definition):

k
_ i,
ej) = ZAjel
i=1
or, on a general vector v = vlej+...+v"%, € R", one has

M»

Il
=

i

To write also this formula in terms of matrix multiplication, we interpret any v € R” as a row matrix and we denote

by v7 its transpose (column matrix):
1

v
=1 ...
vn
With this, the previous formula becomes
AT =4aHT

It follows immediately that the standard multiplication of matrices,
= LA,
k
corresponds to the composition of linear maps:
AB=AoB.

All together, there should be no confusion in identifying A with A even notationally.
In the case of the differential (D f),, to see the matrix representing it we write

0e) = 20 = (320 320 = 3 Fio

i.e., in the matrix notation,

9 9
S )

(Df)x:

e
Tg(x)... a)fc’;(x)

Note that, with this, the fact that (D f), is an isomorphism is equivalent to the fact that the matrix above is invertible.
More generally, the rank of (D f), as a linear map coincides with the rank as a matrix.
With these:

Proposition 1.26. A function f : Q — R¥ is of class C' if and only if all the partial derivatives gf exist
and are continuous functions on 2.
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In this case we can further look at partials derivatives of order two etc. Hence the higher, order /, partial deriva-

tives are defined inductively:
df 9 (9 of
8x,-1 e 8x,-l o 3x,-l 3x,-2 o 8xil '

The previous proposition that extends to a characterization of f being of class C'; in particular, f is smooth if and
only if all its higher partial derivatives exist. We will denote by

%> (R")

the space (algebra!) of smooth functions on R”. A smooth partitions of unity on R" (subordinated to an open
cover) is any partition of unity whose members 1); are smooth- i.e. Definition 1.12 (finite case) and Definition 1.15
(general case) applied at &7 := €~ (R") C € (R").

Theorem 1.27. Any open cover of R" admits a smooth partition subordinated to it.

Proof. We want to use Theorem 1.17 for o7 := €~ (R"). This is clearly closed under quotients and, for the same
reason that locally finite sums of continuous functions are continuous, it is closed under locally finite sums. We
still have to check the last condition on & or, equivalently: for any x € R” and any ball centered at x, B(x, €), there
exists a smooth functions f : R* — [0, 1] such that f(x) > 0 and f is supported in the ball. It is clear that we may
assume that x = 0. Also, by rescaling the argument of f (i.e. multiply it by a constant) we may assume that € = 1.
Then set f(x) = g(x} +...+x2) where g : R — [0,1] is any smooth function with g(0) > 0 and g = 0 outside
[—%, %] That such a function exists should be clear by thinking of its graph. The following exercise provides and
explicit formula. &

Exercise 1.28. Show that

_1
X

e x ifx>0
R— R, X) =
80 g0x) {0 otherwise
is a smooth function. Then show that
1 1
g:R=R, g(x) =golx+5)g0(5 ).

is a smooth function with the properties required at the end of the previous proof.

We now recall the implicit function theorem- which is one the important and rather immediate consequences of
the inverse function theorems. The importance is rather geometric, as it arises when looking at curves, surfaces
(or higher dimensional ... submanifolds) in R”. While such subspaces are usually given by equations of type
f(x1,...,%,) = O (think e.g. of x> +y? = 1, defining the unit circle in the plane), one would like to express some of
the coordinates x; in terms of the others (or, equivalently, describe our subspace as a graph).

Theorem 1.29. Let f : Q — R be a smooth map defined on an open  C R™ x R¥ whose elements we label
as (x,y) = (X1, .e;Xm, Y1, ---, k). Furthermore let (%,5) € Q be a point where f(%,5) = 0 and the matrix

afi . ~>
(ayj(x,y) 1<i,j<k

is non-singular. Then there exists a function par : U — R¥ defined in a neighborhood U of & such that for
all (x,y) near (%,7), one has

f(x,y) =0<=y=par(x).
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Fig. 1.4 The implicit function Theorem 1.29 illustrated for a concrete choice of f : 2 — R¥. The theorem establishes that the preimage
#71(0) (under appropriate assumptions) can locally be written as a graph of a function par : U — R¥ over a subset of the variables. In
other words, the condition that f vanishes implicitly defines the function par.

The matrix appearing in this theorem is exactly the Jacobian matrix of the map y — f(%,y) at y = j. You can
convince yourself using Fig. 1.4 that its non-singularity is a neccessary condition to find a smooth function par: In
the depicted situation, it corresponds exactly to a tangency of f~!(0) in the y-direction at (%, 7).

Remark 1.30. Note that this theorem is not completely canonical: It gives preference to the last K components of
the arguments of f, i.e. depends on how we split the components of elements of € into x and y-components. For
example, there is an obvious modification in which the starting assumption is that the Jacobian with respect to the
first k components is regular, instead of the last ones. Such modifications are necessary even when looking at the
simplest examples: E.g., for the unit circle where f : R?> — R, f(x,y) = x> +y> — 1, the condition

of
aiy(xay) %O

(necessary for the theorem) is valid at almost all the points (x,y) in the circle (and, indeed, we can always solve
y = £V 1 —x2), except for the points (1,0) and (—1,0) (and, indeed, there is a problem there: we would need a
function two take two values simultaneously close to y = 0 in order for it’s graph to match f~!(0)). However,
at those points one can switch the roles of x and y- and, indeed, around those points which are problematic for
++/1 —x2, one can write x = =4/1 —y2.

A more intrinsic version of the theorem (and with exactly the same proof) can be obtained by requiring that
(D f)x has maximal rank k, without specifying which minor is non-singular. the conclusion will be that there exists
a permutation ¢ € S, such that f(p) = 0 near € R"** is equivalent to

ny(o - p) = par(m(o - p)),

where 7, and 7, are the projections of R™+* onto the first m and last k components, respectively, and we write & - p
for the result of permuting p by ¢. But perhaps the most geometric formulation is what is know as the submersion
theorem- see below.

Proof. Consider the map
F:Q—R™ Flxy) = (xf(xy).

Then the non-singularity condition in the statement precisely means that (D F )(f,y') is non-singular. Hence, by the
inverse function theorem, we find a smooth inverse G of F, defined near F(%,7). Given the form of F, it follows
that G is of a similar form:

G(x,2) = (x,8(x,2))-
That Go F and F o G are the identity maps (near (%,7), and F(%,¥), respectively) translates into

glx, flx,y)) =y and  f(x,g(x,z)) =z (1.2.2)
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The first equation shows that

f(xy) =0=g(x,0) =y,
hence we have an obvious candidate par(x) := g(x,0). Note that the assumption f(%,7) = 0 guarantees that g is
defined for (x,z) near (%, 0). The fact that, indeed, f(x, par(x)) = 0 for x close to ¥ is just the second equation in
(1.2.2) applied when z =0. ‘=

1.2.4 Local coordinates/charts

The standard coordinates in R", despite being “obvious”, are often not the best ones to use in specific problems.
E.g.: often when dealing with (algebraic or differential) equations or computing integrals, one proceeds to a change
of variables (i.e. passing to more convenient coordinates). Baby example: looking at the curve in R? defined by

5x2+2xy—|—2y2 =1,

a change of coordinates of type
u+v u—2v
— - 1.2.3
X=—73" Y 3 (1.23)
brings us to the simpler looking equation u#”> 4+ v> = 1. A very common change of coordinates in R? is the passing

to polar coordinates:

x=rcos(0), y=rsin(0). (1.2.4)

To formalise such changes of coordinates, one talks about charts:

Definition 1.31. A smooth chart of R”" is a diffeomorphism
X=Xty sdn):U—QCR"
between an open U C R” and an open 2 C R". The open U is called the domain of the chart and, for p € U,

(X1(P)s-- > 2n(P))

are called the coordinates of p w.r.t. the chart (U, ) and we also say that (U, x) is a smooth chart around
p.
For instance the change of coordinates (1.2.3) is about the chart
x:RZ =R x(x,y)=(2x+y,x—y) (1.2.5)
so that, in the new coordinates, a point p = (x,y) will have the coordinates (w.r.t. })
ulx,y) =2x+y, v(x,y)=x—y

Similarly for the polar coordinates where, computing the inverse of (r,0) — (rcos(0),rsin(0)), one finds the chart

x(x,y) = (\/Jc2 +y2,arctg(§)> )
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1.2.5 Changing coordinates to make functions simpler (the immersion/submersion theorem)

In general, given a smooth function
f:R" > RF

and a point p € R", whenever we have two new charts ) and )’ around p and f(p), respectively, one can represent
the function f using the new resulting coordinates: the representation of f w.r.t. the charts y and y’ is

fF=tofox".
Of course, for the standard charts (the identity maps) one obtains back f. If just x’, or just ¥, is the standard chart
then we use the notations f, and f% , respectively.

For instance, for the function
f(x,y) =55+ 2xy+2y%,

with respect to the new chart (1.2.5) one obtains fy (u,v) = u? +v2.

In general, it is interesting to try to write smooth functions in the simplest possible way, modulo change of
coordinates. The simplest types of functions for which this is possible are the most “non-singular” ones. More
precisely, given

f:U—R*

a smooth map defined on an open U C R" and given x € U, the "non-singular behaviour” that we require is that
(Df), :R" — R¥

has maximal rank. It is interesting to consider the cases n > k and n < k separately. The first case brings us to the
more canonical version of the implicit function theorem:

Theorem 1.32 (the submersion theorem). Assume that f is a submersion at a given point p € U in the
sense that (D f), : R" — R¥ is surjective. Then there exists a smooth chart y of R" around p such that,

around X (p), fy = fox ' is given by

f){(-xh’"7-xk7-xk+lu"'7xn) = (.X],...,Xk).

Proof. Since the matrix representing (D f),, is of maximal rank, one of its maximal minors (an k X k matrix) is
invertible; we may assume that the invertible minor is precisely the one made of the last k rows (why?)- which
is also the hypothesis of the implicit function theorem (Theorem 1.29). Looking at the proof of the theorem, one

remarks that the desired chart is y = f. &

A similar argument gives rise to the following:
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~

Theorem 1.33 (the immersion theorem). Assume that f is an immersion at a given point p € U in the
sense that (D f), : R" — RK is injective. Then there exists a smooth chart X' of R* around f(p) such that,
in a neighborhood p, f%/ = x' o f is given by

SE (X1, yxn) = (X1, 4,24, 0,...,0). (1.2.6)
——
k—n zeros
More precisely, denoting g = f(p), there exist:

* a smooth chart ' : Uy — £, of R¥ around g,
* a neighborhood £, of p in R", inside the domain of f

such that (1.2.6) holds on Q,,. Furthermore, one may choose X' and ,, so that:

F(Qp) ={ueUs: 2p1(w) = .. = 2 (u) = 0}.

Proof. Let us give a proof that makes reference to (D f), as a linear map and not as a matrix. Since (D f), : R" —
R¥ is injective, we find a second linear map B : R¥~" — R* such that

((Df)p,B) : R x RE" — RF
is an isomorphism. Consider then
h:UxRE" S RE h(xy,x) = f(x1) +B(x2).

We see that & satisfies the hypothesis of the inverse function theorem at the point (x,0). Hence it is a diffeomor-
phism around a neighborhood of (x,0). We denote by

x U —Q
its inverse. Note that:

1. U’ is an open neighborhood of f(p) in R¥.
2. Q' is an open neighborhood of (p,0) in R¥, contained in U x R¥".
3. the intersection of ' C R¥ with R” x {0},

Q:={uek": (u,0)cQ'},

is an open neighborhood of p included in the domain of f.

Note that, since x'(h(x1,x2) = 0 for all (x1,x2) € Q" and h(x,0) = f(x), we have ¥'(f(x)) = (x,0) for all x € Q.
This proves the main part of the theorem; for the last part, note that we have, by the first part, that f(€) is inside
the zero set of x} : U’ — R¥=" (the second component of the chart ' w.r.t. the decomposition R* = R” x Rk="),
For the reverse inclusion, let x € U’ with x}(x) = 0; since ho ¥’ = id on U’, we obtain

x=h(x'(x)) = h(x1(x),0) = f(x1(x))

where, for the last equality, we used the explicit formula for h. Moreover, since x’'(x) € Q' and since y'(x) =

An

(x1(x),0), by the definition of £, we have x| (x) € £. With the previous equality in mind, we obtain x € f(Q). =

For later use let us introduce the notion of smoothness defined on arbitrary subsets M C R”.
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Definition 1.34. Given M C R” and a function f : M — R¥, we say that f is smooth around p € M if, in a
neighborhood U of p in M, f|y admits a smooth extension to an open inside R” containing U. When this
happens around all p € M, we say that f is smooth.

A diffeomorphism between M C R" and N C R¥ is any bijection f : M — N with both f and f~! smooth.

And here is a nice application of the existence of smooth partitions of unity.

Exercise 1.35. Show that if M C R" is a closed subset that any smooth function f : M — R¥ admits a smooth
extension f : R” — R, (Hint: R\ M is open; get an open cover of R”" out of one of M.)

1.2.6 Embedded submanifolds of R"

We now move to the notion of (smooth) embedded submanifolds of R 1. In low dimensions, these are curves (1-
dimensional) and surfaces (2-dimensional); for an arbitrary dimension m we will be talking about m-dimensional
submanifolds of RE. For instance, the standard sphere

S"™ = {(x0,...,xn) € R™1: Z(xi)2 =1} (L=m+1)

1

will be such a smooth m-dimensional submanifold. Already when looking at the simplest examples one sees that
such subspaces may (naturally) be described in several different (but equivalent) ways. E.g., already for the unit
circle in the plane, one has the standard descriptions:

« implicit (by equations): x*> +y? = 1.
o parametric: x = cos(r),y = sin(¢) with t € R.

Accordingly, the notion of submanifold of RZ can be introduced in several ways that look differently (but which
turn out to be equivalent).

We start with the definition that can be seen as just a small variation on the notion of topological manifold from
Definition 1.3 just that, for M C RE the axioms (TM1), (TM2) are automatically satisfied, and one can can further
take advantage of the Euclidean space to talk about smoothness of charts- as in Definition 1.34.

Definition 1.36. An m-dimensional embedded submanifold of RZ is any subset M C RE which, for each pE
M, satisfies the (m-dimensional) manifold condition at p in the following sense: there exists a topological
chart of M (Definition 1.3)

x:U— Q

(U C M open neighborhood of p, 2 open in R”) which is also a diffeomorphism (i.e. ¥ and y ~! are smooth
in the sense of Definition 1.34). These will also be called smooth (m-dimensional) charts for M.

Of course, when M = RE, the resulting notion of ”smooth chart for RL” coincides with the one already introduced
in Definition 1.31. For general M, a particularly nice class of smooth charts of M are the ones that can be obtained
by restricting such charts of RZ. More precisely, given a subset M C RE, a smooth chart of RE

7:U—QCRL (1.2.7)

said to be adapted to M if it takes U := M NU into Q := Q N (R™ x {0}):

! here L is an integer, possibly large, that will denote the dimension of the Euclidean space inside which our manifolds M C RE; we
use here the letter L not only to suggest that L may be possibly large w.r.t. the dimension of M, but also to emphasise that the role of
the dimension L is very different than that of the dimension m of M
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Xlu:U— Q. (1.2.8)
Equivalently: inside U C RE, the points that belong to M are characterised by the equations ¥; = 0 for i > m:
MAU={q€U: fms1(q)=...=7(q) =0.}

Note also that  may be, and will be, interpreted as an open in R”; in this way, any smooth chart (1.2.7) of RF
that is adapted to M induces a smooth chart (1.2.8) of M.
Not every smooth chart y of M is induced by an adapted smooth chart ¥ of RE. However:

Proposition 1.37. For M C RE and p € M, the manifold condition for M at p is equivalent to the existence
of a smooth chart of RE around p, that is adapted to M.

The proof will be done together with the proof of the following theorem. This theorem describes submanifolds
parametrically (think of x = cos(t),y = sin(t) for the circle) and by equations (think of x> +y? = 1 for the circle),
taking care of the precise conditions.

o

Theorem 1.38. Given a subset M C RE, p € M, the following are equivalent:

1. M satisfies the m-dimensional manifold condition at p.
2. M admits an m-dimensional parametrization around p- by which we mean a homeomorphism

par:Q —-UCM

between an open 2 C R™ and an open neighborhood U of p in M satisfying the regularity condition
that, as a map from Q to RE, par is an immersion.
3. M can be described by an m-dimensional implicit equation around p- by which we mean a submersion

eq:U — RE™
defined on an open neighborhood U of p in RL and which describes M near p by the equation eq = 0:

MNU ={qeU :eq(q) =0}.

Proof. For keeping track of notations note that, throughout the proof, we look around the given point p € M C RF
and around the corresponding point

x=x(p)=par'(p) € Q CR".

Therefore, we will deal with

« neighborhoods U, of p in M, and U, of p in RL.
* neighborhoods €2, of x in R™.

The points in the neighborhoods of p will be denoted by g, while the ones in the neighborhoods of x by y; for them,
we may be looking at similar neighborhoods Uy, U, and £2,.

We first prove that (1) implies (2). We start with the the chart y : U — Q C R" defined in a neighborhood U of p
in M. Setting par = %! we have to check that par is a homeomorphism -which is clear by construction (it has the
continuous x as inverse)- and that, as a map £ — RL, it is an immersion. For the last part use that the composition

par

Q™ut o
is the identity on Q and then apply the chain rule to deduce that, for each point y € Q, (D ) yar(y) © (D par)y is the
identity- hence, in particular, (D par), will be injective.

We now prove that (2) implies both (1) as well as (3). Hence we start with a parametrization par: Q — U C M,
as above, we set ¥ = par~' : U — Q. To get (1), we still have to check that  is smooth in the sense of Definition
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Fig. 1.5 The equivalent ways of phrasing the manifold condition in Theorem 1.38 involve (adapted) charts, parametrizations or implicit
equations that are related as shown in this figure. Note that U = UNM and Q = Q NR™. 1 and pr are canonical inclusions and
projections of the product space Rl = R™ x RE~ in the lower right. All these maps commute where they can be evaluated.

1.34: i.e., around any point g € U, it is obtained by restricting a smooth map defined on an open ﬁq C RE. For that
we use the immersion theorem (Theorem 1.33) applied to par : Q — RL around

y=12(q) € Q.

We find:

* an open neighborhood £, of y in 2 C R™

* adiffeomorphism ¥ : ﬁq — fzq from an open neighborhood l7q C RE of p’ to an open f2q C RE,
so that, on Q,, ¥ o par becomes the inclusion on the first factors. We now write ¥ = (X1, X2) where we use again
the decomposition RE = R™ x RE"™, We deduce that % (par(z)) = z for all z € Q,. Since z = x(par(z)) for all
z € Q, we deduce that x;(r) = x (') for all r € par(£2,). In this way, on the neighborhood par(,) of ¢in U, x
is now the restriction of a smooth function defined on an open neighborhood of g in R:- namely 7 : L~/q — R™.

To prove (3) (still assuming (2)), we use g = p in the previous reasoning and the resulting diffeomorphism
x: ljp — Q,; in principle, the desired function f will be X, but we have to choose the domain of definition
carefully. For that we use the last part of Theorem 1.33 which says that we may assume that

par() ={y € Up: Zn11(») =0,..., Z(y) = 0}.
Since this is open in M, we can write it as M NW,, for some open W), C RE. Considering now

U:= lﬂ]})ﬁWp7 eq=i2|l7 U — RE™
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one checks right away that M N U is the zero set of eq (why is eq a submersion?).
Exercise 1.39. Conclude now that ¥ is actually an adapted chart.

We are now left with proving that (3) implies (1). Let eq : U — RLm satisfying the conditions from the hy-
pothesis. Note that if we replace U by a smaller open neighborhood of p in R” (and eq by its restriction), those
conditions will still be satisfied. Therefore, using the submersion theorem apphed to eq, we may assume that we
also find a diffeomorphism ¥ : U — Q into an open subset of RZ, such that eq = ¥>. This chart will then take the
zero set of eq into the zero set of the second projection pr; : Q - RE™ e, into

Q:={ucR": (u,0)c Q}.
We deduce that the restriction of ¥ to U = M N U s
X =Xlv:U—QCR",

is a smooth chart of M (around p). =

Example 1.40. Returning to the circle S,

* h(x,y) = x> +y* — 1 serves as a (1-dimensional) implicit equation (around any point!)

* p(t) = (cos(t),sin(r)), when considered on sufficiently small intervals (on which it is injective) serves as
paramatrization of S! around any point in S'.

« as smooth (1-dimensional) charts one could use two projections pry,pr» : S' — R, restricted to the appro-
priate domains (so that they become homeomorphisms). Another possible choice of charts is given by the
stereographic projections (see the lecture notes on Topology).

Exercise 1.41. Generalize this discussion to the spheres S of arbitrary dimension.

1.2.7 From directional derivatives to tangent spaces

The point of view provided by the directional derivatives brings us closer to the intrinsic nature of (p,v) when
talking about (D f),(v): that of tangent vector. The key point is that (D f),(v) depends only on the behaviour of f
near p, in ’the direction of v”’- and how we realize that “’direction” is less important. This is best seen by looking
at arbitrary paths through p with the original speed v, i.e. any smooth map

y:(—€,e) > R"
(with € > 0) satisfying
d
Y(0) = p, dzl( )=v. (1.2.9)

For instance, one could take y(r) = p+tv, but the point is that the variation of f(p+tv) att = 0 does not depend
on this specific choice of 7.

Lemma 1.42. If f is differentiable at p then, for any path 7y satisfying (1.2.9), one has

of d

DN =50 = G| 100

In particular, if f is constant along such a path ¥y, then (D f),(v) = 0.
This point of view becomes extremely useful when looking at more general subspaces

M C R
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Definition 1.43. Let M C R” and consider a point p € M. A smooth curve in M is any smooth map y: [ — R”
defined on some interval I C R, which takes values in M.

A vector tangent to M at p is any vector v € R” which can be realized as the speed at = 0 of a smooth
curve in M that passes through p atz = 0 (i.e. for which 0 € I and y(0) = p):

_dy

The set of such vectors is denoted by TlflassM ; hence

TS*SM C R".

Although we use the name “tangent space”, in general (for completely random Ms inside R"), Tlf]aSSM is just a
subset of R” (... but it is a vector subspace if M is ’nice”).

Exercise 1.44. Compute 75*M when:

1. M C R? is the unit circle and p = (1,0).
2. M C R? is the union of the coordinate axes and p = (0,0).

Exercise 1.45. Assume that M C R" is defined by an equation f(x) = 0, where f : R" — R¥ is a smooth function.
For p € R" we denote by Ker,(D f) the kernel (= the zero set) of the differential (D f), : R" — R¥. Show that, in
general,

T;lass(Mf) C Ker, (D f),

but the inclusion may be strict. Then prove this inclusion becomes and equality when
Fxr,ox) = (x1)2 4.+ () — 1.
Exercise 1.46. With the notations from the previous exercise show that for all p € My at which f is a submersion
T[flass(Mf) =Ker,(Df).

We now return to our discussion on differentials/directional derivatives, recast in terms of tangent spaces.
Namely, Lemma 1.42 gives us right away:

Corollary 1.47. Given M C R", p € M and a function f : R" C R¥ differentiable at p then, for any vector v € R"
tangent to M at p, (D f),(v) depends only on f|y.

Of course, a similar conclusion holds slightly more generally, for any function f : U — R¥ defined on an open
neighborhood U C R” of p- the otcome being that (D f),(v) only depends on the values of f{y near p. This shows
how to define the differential of a function f : M — R¥ which is differentiable at p € M in the sense of Definition
1.34: for f : M — R* that is differentiable at p, one has a well-defined differential

(Df)p: Ts™M — R,
defined using an extension f of f near p, but independent of the extension.

Exercise 1.48. Show that if M C R” and N C R¥ and f : M — N is smooth at p € M, then (D f) p takes values
in TJS(IZS)SN . Then prove the chain rule in this context and deduce that, if f is a diffeomorphism, then (D f), is a

bijection between T2 M and T2 N.
p f(p)
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Finally, let us look at tangent spaces of submanifolds of R” >

Proposition 1.49. If M C R" is a m-dimensional embedded submanifold then, for any p € M, the tangent space
of M at p is an m-dimensional vector subspace of R", which can also be described as follows:

1. as the kernel of (Deq), : R" — RE™ where eq : U — RE™ jg any implicit equation defining M around p.
2. as the image of (D par),, : T, — R", where par : Q — M is any parametrization of M around p.

Proof. Exercise. @

Exercise 1.50. Compute again the tangent spaces of the spheres, but applying now the previous proposition.

1.2.8 More exercises

Exercise 1.51. Consider two smooth functions

IENES S

defined on opens U C R”, U’ C R¥. Using the interpretation of linear maps as matrices (as made precise on page
23) show that the chain rule becomes:

dgof " dg afj

foralxeUand1<i<n.

Exercise 1.52. Show that for any function g : R — R, the function

2

R R, g(x1,...,x:) =g((x1) —|—...—|—(xn)2)

is not a submersion at x = 0.
Exercise 1.53. Assume that f : Uy — R¥ is a smooth map, U C R" open, p € U. Let
X U—=QCR", x U —Q cRF
be charts, of R” around p and of R around f(p), respectively. What is the (maximal) domain of definition of ff,?

Exercise 1.54. Consider
FiRZ SR, flx,y) =3-/x2+2xy+2y2

and look around p = (1,0). Find a chart y of R? around p and a chart ¥’ of R around f(p) = 3 such that, w.r.t.
these charts,

ff/(u,v) = 7
Exercise 1.55. Show that
f:R—=R2  f(t) = (cos(t),sin(r))

is an immersion at each point. Then, looking around ¢ = 0, find a chart ' of R? around f£(0) = (1,0) such that,
w.r.t. this chart,

[y (1) = (2,0).

2 is this the right place?
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Exercise 1.56. Show that if f: U — R¥, p € U satisfy the conclusion of the submersion theorem, then f must be
a submersion at p. Similarly for the immersion theorem.
(Hint: try it! If it really doesn’t work, then look at the next exercise).

Exercise 1.57. Assume that f : U — R¥ is a smooth map, U C R” open, p € U. Let x be a chart of R” around

p and let ¥’ be a chart of R¥ around f(p). Show that f is a submersion/immersion at p if and only if fff, is a
submersion/immersion at x(p).

Exercise 1.58. Consider the stereographic projection w.r.t. the north pole py, denoted
av P\ {pn} = R?
and similarly the one w.r.t. the south pole, denoted ys. Show that
xsoxy' :R*\ {0} = R*\ {0}
is a diffeomorphism.
Exercise 1.59. For any € > 0 describe a smooth function
fiR"—[0,1]

with the property that f(0) > 0 and whose support (in R") is contained in the ball {x € R" : ||x|| < €}.

Exercise 1.60. Assume that f: U — U’ and g : U’ — U” are two smooth functions, with U ¢ R", U’ C R¥ and
U” C R opens. Show that if g o f is a local diffeomorphism around a given point x € U, then:

1. f is an immersion at x and g is a submersion at f(x).

2. however, it may happen that f is not a submersion at x and g is not an immersion at g(x) (describe an example!).

3. if, furthermore, f is a submersion at x or g is an immersion at f(x), then both f and g are local diffeomorphisms
(around x and f(x), respectively).






Chapter 2
Smooth manifolds

2.1 Manifolds

2.1.1 Charts and smooth atlases

The difference between topological manifolds (see Definition 1.3) and smooth manifolds is, as the terminology
suggests, that we assume smoothness for all the objects one considers (so that, on smooth manifolds, unlike for
topological ones, we will be able to talk about speeds of curves, tangent vectors, differential forms, etc etc). For
subspaces M C R", making use of the ambient space R", we managed to make sense of smoothness of various
objects on M, such as charts- giving rise to the notion of smooth submanifold of R” (as in Definition 1.36).
However, in the general setting, there is no intrinsic way to make sense of smoothness just for a topological space
M (not necessarily embedded into R")- instead, we need extra-data on M that serves precisely that purpose. And
that is the notion of smooth atlas that we start with here.

Recall from Definition 1.3 that, given a topological space M, an m-dimensional chart is a homeomorphism ¥
between an open U in M and an open subset x (U) of R™,

x:U—x({U)CR™ (coordinate charts)

We also say that (U, ) is a chart for M, and we call U the domain of the chart. Given such a chart, each point
p € U is determined/parametrized by its coordinates w.r.t. x:

(XI(P)a~~-7in(p)) eR"

(a more intuitive notation would be: (xglC (p),-., X2 (p))).
Given a second chart
x U — x (U)CR™,

the map

[ cﬁ/ =y ox lix(UNU) = ¥ (UNU ] (coordinate changes)

is a homeomorphism between two opens in R". It will be called the change of coordinates map from the chart
to the chart y’. The terminology is motivated by the fact that, denoting
c% =(c1y---yCm),

the coordinates of a point p € U NU’ w.r.t. ¥’ can be expressed in terms of those w.r.t. ¥ by:

33
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%i(p) =ci(x1(p), - xm(p))-

Fig. 2.1 Two charts x : U — x(U) and x' : U' — x'(U’) C R™ together with the change of coordinates map c%l x(UNU') —
% (UNU’). These maps commute wherever they can be evaluated sensibly, i.e. c%l ox=x"holdsonUNU".

Definition 2.1. We say that two charts (U, ) and (U’, x’) are smoothly compatible if the change of coordi-
nates map c% (a map between two opens in R™) is a diffeomorphism.

Definition 2.2. A (m-dimensional) smooth atlas on a topological space M is a collection o/ of (m-
dimensional) charts of M with the following properties:

1. the domains of the charts that belong to .2/ cover M entirely.
2. each two charts from @7 are smoothly compatible.

Example 2.3. (Euclidean spaces) On M = R there are several interesting atlases. We mention here the extreme
ones: the atlas </gm consisting of only one chart, namely the identity chart Idg» : R™ — R™, and .#/g* consisting
of all smooth charts of R™ in the sense of Definition 1.31.

Example 2.4. (inside Euclidean spaces) For embedded m-dimensional submanifolds M C R’ (cf. Definition 1.36),
there are two interesting atlases on M: the atlas 27;®* consisting of all smooth m-dimensional charts of M in the
sense of Definition 1.36, and the atlas dﬁdam consisting of all charts that arise from smooth charts of R that are
adapted to M (see the discussion following Definition 1.36).

The charts of an atlas are used to transfer notions and properties that involve smoothness from the Euclidean
spaces (and opens inside) R™ to M; the compatibility of the charts ensures that the resulting notions (now on M)
do not depend on the choice of the charts from the atlas. Hence one may say that an atlas on M allows us to
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Fig. 2.2 An atlas of Earth is exactly a collection of charts that covers the surface of the globe. The same region might be included in
several charts of a smooth atlas in a way that measured distances, angles and areas do not match - e.g. one chart might use the Mercator
projection whereas another might faithfully depict areas. However, the smooth compatibility between charts does guarantee at least
that a smooth path in one chart cannot develop any kinks in another.

Fig. 2.3 Example of two smoothly compatible charts over the same open subset U = {(x,y) € R? : 1/x2 +y2 < 5}\ (—o0,0] x {0} of
the plane: The identity chart ¥ = (x,y) as well as polar coordinates ' = (r, ). The change of coordinate map going from right to left,
for example, can be visualized by first collapsing the left boundary of the rectangle into the origin and then glueing the two boundary
components that touch the origin together on the negative x-axis.

put a ”smooth structure” on M. For instance, given a smooth m-dimensional atlas .27 on the space M, a function
f M — R is called smooth w.r.t. the atlas <7 if for any chart (U, ) that belongs to <7,

fo=fox ix(U) =R
is smooth in the usual sense (¥ (U) is an open in R™!). We will temporarily denote by
C” (M, ) (2.1.1)

the set of such smooth functions. However, there is a little ”problem”: the fact that two different atlases may give
rise to the same smooth functions.

Exercise 2.5. Returning to Example 2.3, show that

E(R™, cfon) = € (R, ofT3).
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2.1.2 Smooth structures

As we have pointed out, there is one aspect that requires a bit of attention: the fact that two different atlases may
give rise to the same ”smooth structure”. One way to overcome this “problem” is by using smooth atlases that are
maximal:

Definition 2.6. An m-dimensional smooth structure on a topological space M is an m-dimensional smooth
atlas ./ on M which is maximal, i.e. with the property that there is no smooth atlas strictly containing ..

Example 2.7. ((opens in) the Euclidean spaces) On R™ the collection of all its smooth charts in the sense of
Definition 1.31,
gm = {x : U — @, diffeomorphisms between opens U, Q, C R"},

is a maximal atlas and, therefore, it defines a smooth structure on R™. Similarly for opens 2 C R™ (just restrict to
charts with domain U C ). These will be called

[ the standard smooth structure on the Euclidean space R™/ on the open Q C R™. ]

Unless otherwise stated, from now, on the Euclidean spaces R™ and opens inside them will always be endowed
with this smooth structure.

Example 2.8. (submanifolds of the Euclidean spaces) Similarly, for an embedded submanifold M C R” the col-
lection of all smooth charts of M in the sense of Definition 1.36 form a smooth maxima atlas .27;** and therefore
defines a smooth structure on M- called the standard smooth structure on the embedded submanifold.

Here is a more direct characterization of the maximality condition:

Exercise 2.9. Show that, given any smooth atlas ./ on any topological space M, one has:

] ] any topological chart of M (see Def 1.3)
(«/ is maximal) <= | which is smoothly compatible with all the charts from .«
must belong to &/

Actually, starting with an arbitrary (maximal or not) smooth atlas .2# on M, the collection of all charts of M that
are compatible with all the charts that belong to <7,

/™ .= {charts y of M : x is smoothly compatible with all ' € o7},

is a new smooth atlas on M (exercise!), which is maximal (why?), and which contains <7 (why?). And the previous
exercise says that .7 is maximal if and only of &/ = .o7/™X,

Definition 2.10. Given a smooth atlas .27 on M, the smooth structure on M induced by the atlas .27 is the
associated maximal atlas .o7/™?X,
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Exercise 2.11. Show that for any smooth atlas .7 one has

C”(M, o) =€ (M, ™),
As we shall see a bit later (see Corollary 2.36 below), if .27 and 2% are two maximal smooth atlases, then

G (M, ) =€ (M, o) = o, = ch. 2.1.2)

One should keep in mind that very often a smooth structure is exhibited by describing a rather small atlas (ideally
”the smallest possible one”).

Example 2.12. (various atlases on Euclidean spaces) The standard smooth structure on R” (see Example 2.7) can
be induced by a very small atlas,
ﬂRm = {IdRm},

i.e. the one consisting only of the identity chart
x =Idgm : R" — R™.
And a lot more is possible. E.g. here are two new smooth atlases:
/) :={Idy : U —open in R"},
or o#; defined similarly, but using only open balls B C R™. Note that:
ofgm C o), ofgm N 2th = {0};
however, they all induce the same smooth structure on R (the standard one):

szlmax — %max — %ﬂg;lnax.

Example 2.13. Also for embedded submanifolds M C RE, there may be smaller and/or nicer atlases inducing the

standard smooth structure on M described in Example 2.8. E.g., in full generality, one has the atlas %Ae,}dapt arising
from adapted charts of R” (as in Example 2.4). But probably the nicest and most convincing example is provided
by the stereographic projections for the spheres- see below.

A slightly different way of understanding smooth structures is via equivalence classes of atlases where, in principle, two atlases are
equivalent if they induce the same smooth functions. Let us make this more precise.

Definition 2.14. We say that two smooth atlases <7 and <% are smoothly equivalent if any chart in <7 is smoothly compatible
with any chart in .2% (or, shorter: if .27} U <7 is again a smooth atlas).

This defines an equivalence relation on the collection of all smooth atlases. From this point of view, the main property of maximal at-
lases is that: in each equivalence class one can find one, and only one, maximal atlas (so that maximal atlases are in 1-1 correspondence
with equivalence classes of smooth atlases). This is made more precise in the following simple exercise:

Exercise 2.15. Show that, for any atlas <7, <7 is (smoothly) equivalent to .o7™#*; then show that for two atlases .| and %, one has
<) is smoothly equivalent to @ <= /" = o3,
We see that one obtains a 1-1 correspondence

smooth | ] maximal | 1-1 | equivalence classes of
structures ( — | atlases — smooth atlases ’
on M on M on M
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and, for this reason, some text-books introduce the notion of smooth structure as an equivalence class of smooth atlases. The bottom
line is that
any atlas </ on M induces a smooth structure on M

and, depending on the point of view on smooth structure that we adopt, the smooth structure associated to an atlas <7 is interpreted
either as the maximal atlas .&7™** associated to <7, or as the equivalence class [<7], respectively. The use of maximal atlases is more
”down to earth”- in the sense that it avoids the use of equivalence classes. However, as we have illustrated above (e.g. in Example
2.12), one should keep in mind that very often a smooth structure is exhibited by describing a rather small atlas (ideally ”the smallest
possible one”).

2.1.3 Manifolds

We now come to the main objects of study of this course.

Definition 2.16. A smooth m-dimensional manifold is a Hausdorff, second countable topological space M
together with am m-dimensional smooth structure on M.

Given a smooth m-dimensional manifold M, when saying that (U, ) is a chart of the smooth manifold
M we mean that (U, x) belongs to the maximal atlas <7 defining the smooth structure on M.

Example 2.17. [Euclidean spaces and its embedded submanifolds] As a conclusion of the discussions from Ex-
ample 2.7 and 2.8:

* R™ endowed with the standard smooth becomes an m-dimensional manifold; and its charts are precisely the
classical smooth charts of R™ in the sense of Definition 1.31.

* similarly, any embedded submanifold M C RE as above, endowed with its standard smooth structure, becomes
an m-dimensional manifold whose charts are the smooth charts from Definition 1.36. !.

Example 2.18. (Opens) Given an m-dimensional manifold M, any non-empty open U C M carries a natural (in-
duced) smooth structure that makes U itself into an m-dimensional manifold: the charts of U are, by definition, the
charts of M whose domain are contained in U.
In particular, any open
QCR"

comes with a standard smooth structure making it into an m-dimensional manifold. Note that, again, this smooth
structure can be induced by a very small atlas, namely

o = {lda};

actually, these are all the possible manifolds for which the smooth structure can be induced by an atlas consisting
of one chart only- see Exercise 2.48.

Exercise 2.19. Show that the unit circle S' (with the topology induced from R?) admits an atlas made of two
charts, but does not admit an atlas made of a single chart.

Exercise 2.20. Describe a smooth structure on the torus such that the underlying topology is the usual (Euclidean)
one (just intuitively, on the picture for now). How many charts do you need?
Can you do the same for the Moebius band?

I actually, one can prove that that is all there is- in the sense that any manifold M can be "embedded” in some Euclidean space.

This is a very interesting result, but the conclusion may be a bit misleading and it is not so important as it may seem: the ’general”
theory frees the embedded submanifolds from the ambient spaces and describe the geometry of the space that is independent of the
ambient space- shading light even on the notions that are described, originally, using those embeddings. Think e.g. of what happens
in Topology, when compactness was originally described for subsets of RE requiring them to be closed and bounded, and then turned
out to be a completely topological property (with important consequences). Moreover, some manifolds just do not come with "natural
embeddings” into some Euclidean spaces- see e.g. the projective spaces!
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Exercise 2.21. (product of manifolds) Let M and N be two manifolds of dimensions m and n, respectively and we
want to make M x N into a manifold of dimension m + n. For that, for any smooth charts ¥ : U — Q2 C R" of M
and ' : U' — Q' C R" of N we would like that their product

xxx UxU - QxQ CR"xR"=R"™" (p,q)— (x(p).x'(q))

becomes a smooth chart for M x N. Show that M x N carries a unique smooth structure satisfying this property.
(this is called the product smooth structure).

Exercise 2.22. In the definition of smooth manifolds show that the condition that M is second countable is equiv-
alent to the fact that the smooth structure on M can be defined by an atlas that is at most countable.

Remark 2.23 (Avoiding Topology?). In an attempt to avoid any reference to topology, one may give a definition of manifolds as a
structure on a set M rather than a topological space M. One problem with such an approach is that its ’directness” (avoiding topology)
is only apparent, and the various topological notions that inevitably show up over and over again would look even more complicated
and also rather mysterious (for instance, to hide the second countability axiom we would have to require countable atlases- as indicated
by the previous exercise). Another problem with such an approach (even more important than the previous one) is the fact that the
various manifolds that we encounter are, before anything, topological spaces in a very natural way. Not making any reference to such
natural topologies would be artificial and less intuitive.
However, here is an exercise that indicates how one could (but should not) proceed.

Exercise 2.24. Let M be a set and let .7 be a collection of bijections
x:U—x(U)CR"

between subsets U C M and opens x(U) C R™. We look for topologies on M with the property that each € <7 becomes a homeo-
morphism. We call them topologies compatible with o7

(i) If the domains of all the y € <7 cover M, show that M admits at most one topology compatible with 7.
(ii) Assume that, furthermore, for any x, x' € <7, x' o x ' (defined on ¥ (U NU'), where U is the domain of x and U’ is of x') is a
homeomorphism between opens in R”. Show that M admits a topology compatible with 7.

(Hint: try to define a topology basis).

2.1.4 Variations

There are several rather obvious variations on the notion of smooth manifold. For instance, keeping in mind that
smooth = of class €,

one can consider a €*-version of the previous definitions for any 1 < k < co. E.g., instead of talking about smooth
compatibility of two charts, one talks about €*-compatibility, which means that the change of coordinates is a
¢*-diffeomorphism. One arises at the notion of manifold of class €%, or ¥*-manifold. For k = « we recover
smooth manifolds, while for kK = 0 we recover topological manifolds.

Yet another possibility is to require “more than smoothness”- e.g analyticity. That gives rise to the notion of
analytic manifold. Looking at manifolds of dimension m = 2n, hence modeled by R” = %™, one can also restrict
even further- to maps that are holomorphic. That gives rise to the notion of complex manifold. Etc.

Another possible variation is to change the “model space” R™. The simplest and most standard replacement
is by the upper-half planes
H" = {(x1,...,xm) € R : x,, > 0}.

This gives rise to the notion of smooth manifold with boundary: what changes in the previous definitions
is the fact that the charts are homeomorphisms into opens inside H™.

For instance, the closed interval [0, 1] and the closed disk D?> C R? (with their standard Euclidean topology) can
be made into manifolds with boundary.
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Exercise 2.25. Go back to Exercise 2.20 and do again the second part.

Exercise 2.26. If M is an m-dimensional manifold with boundary:

1. while this may be clear intuitively, give a precise definition of “the boundary dM of M” (note that you cannot
use the notion of boundary from Topology, as M is not part of a larger space).
2. prove that dM is a smooth (m — 1)-dimensional manifold (without boundary).

Exercise 2.27. Return to products M x N of manifolds, as in Exercise 2.21. What if N is a manifold with boundary?
And what if both M and N are manifolds with boundary?

2.2 Smooth maps

2.2.1 Smooth maps

Having introduced the main objects (manifolds), we now move to the maps between them. The idea will always
be the same: use charts to move to Euclidean spaces, and use the standard notions there.

Definition 2.28. Let f : M — N be a map between two manifold M and N of dimensions m and n, respec-
tively. Given charts (U, x) and (U’,x’) of M and N, respectively, the representation of f with respect to y
and y' is

f%/ = x/ofox_l.

This map makes sense when applied to a point of type x(p) € R? with p € U with the property that f(p) € U’,
ie.pcUand p € f~1(U). Therefore, it is a map

f%/ : Domain(f%/) — R"
whose domain is the following open subset of R™:

Domain(f%/) =x(Unf YU cr™

Definition 2.29. Let M and N be two manifolds and
F:M—N

a map between them. We say that F is smooth if its representation Ff, with respect to any chart y of M and
x' of N, is smooth (in the usual sense of Analysis).

Exercise 2.30. With the notation from the previous definitions, let .27}y and 7y be two arbitrary (i.e. not necessarily
maximal) atlases inducing the smooth structure on M and N, respectively. Show that, to check that F' is smooth, it

suffices to check that F)?‘/ is smooth for y € @y and ' € <.

Example 2.31. If M C R" and M’ C R" are embedded submanifolds endowed with their standard smooth structure
(see Example 2.8) then the smoothness of a map f : M — M’ in the sense discussed here is equivalent to the
smoothness of f as a function between subsets of Euclidean spaces, i.e. in the sense of Section 1.2, Definition
1.34.
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£y
X
x(U) e
Domain }‘\\/ X/( /)
R™ R"

Fig. 2.4 A map f: M — N between an m- and n-dimensional manifold equipped with local charts y and }’ defined on opens U C M
and U’ C N, respectively, can locally be characterized by the representative ff : Domain ff — R". These maps commute wherever

they can be evaluated sensibly, i.e. ' o f = f%l ox holds on U N f~1(U").

Proof. Let us call ”A-smoothness” the notion from Section 1.2 of Chapter 1, and smoothness the one from this
chapter. It is clear that the two coincide when M and N are open in their ambient Euclidean spaces.

Assume first that f is A-smooth. We will consider charts 7 : U — Q of R™ adapted to M (see Chapter 1,
Proposition 1.37 from Section 1.2), and similarly 7’ : U’ — Q' adapted to N; they induce charts y := ¥|yru for M,
and similarly y’ for N. To prove that f is smooth around a point p € M it suffices to show that for any ¥ around p
and ¥’ around f(p), as above, fff, is smooth. Since f is A-smooth, we may assume that f|y = f|y with f: U — U’
is smooth; in turn, f induces F := ff, : Q — Q', whose restriction to 2 N (R™ x {0} C R™ is precisely f%, (and
takes values in Q' N (R" x {0} C R"). Hence we are in the situation of having a smooth map F : Q — Q' between
opens in R™ and R, taking 2y = Q N (R™ x {0} to 2, = Q' N (R" x {0} and we want to show that F|g, : £y — €,
is smooth as a map between opens in R and R”; that should be clear.

Assume now that f is smooth. Tho check that it is A-smooth, we fix p € M and consider charts ¥ and j’
and proceed as above and with the same notation. This time but we do not have £, but having it is equivalent to
having F extending Fp = ff,. Then we are in a similar general situation as above, when we have a smooth map
Fy:Qy— .Q(/) between opens in R” and R” and we want to extend it to a smooth map F between opens in R and
R”, defined in a neighborhood of x(p). Using the decomposition R” = R” x R”~" and similarly for R", we just

set F(x,y) = (Fo(x),0). =

Example 2.32. An extreme is when M =1 C R is an open interval (which, according to our conventions, is always
endowed with the standard smooth structure- see Example 2.7) and N is an arbitrary manifold. Then smooth maps

Y:I—N

are called (smooth) curves in N. On [ one can use the atlas consisting of the identity chart only, hence the smooth-
ness of v is checked using charts (U, x) for M; the resulting representation of y in the chart y,

yYXi=xoy:L,CR"

(with domain I,, = y~!(U) C I) will then have to be smooth in the usual sense.
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Example 2.33. In particular, when N = R” (again with the standard smooth structure) , one can use the small atlas
afgn (Example 2.12). We see that, for a map
f:M—R"

the smoothness of f is checked by using charts (U, x) for M and looking at the representation of f w.r.t. ¥

fr=Ffox 'ix(U)—R"

Exercise 2.34. Show that for any chart (U, x) of a manifold M, y : U — R™ is a smooth map (where U is endowed
with a smooth structure as in Example 2.18.

2.2.2 Observables (or: €~ (M))

Of particular interest is the collection of real-valued smooth functions on M:
¢”(M):={f:M—R: f—smooth},

denoted € (M, <) in the previous sections (see (2.1.1). Its importance is perhaps not so predictable at this point;
so let us mention that, in some sense, ¢~ (M) together with its algebraic structure (being able to take sums and
products) encodes entirely the manifold M. On step in that direction is the claim made in (2.1.2), which we are
able to prove now. Top that end, we need a lemma which is very important in various other places. Conceptually,
this is what makes smoothness more flexible then analytic, holomorphic, or polynomial functions.

Lemma 2.35 (the fundamental property of smooth functions). For any manifold M, for any p € M and
any open neighborhood U of p, there exists f € €~ (M) that is supported in U and such that f(p) # 0.
Actually, one may arrange f so that f =1 in a (small enough) neighborhood of p.

Proof. Given our discussion from R™ (namely the proof of Theorem 1.27), there is very little that we have to do:
we may assume that U is the domain of a coordinate chart y : U = R™ (why?) sending p to 0 € R™, then choose
a smooth function f : R — [0, 1] supported in the ball B(0, 1) and such that f(0) # O (as in the proof of Theorem
1.27), then move it to U via x, i.e. consider fo x : U — [0, 1]; given the support property of f, it follows that if we
extend f to M by declaring it to be zero outside U, we get a smooth functions f : M — [0, 1] satisfying the desired
property.

For the last part, we would need a function f on R™ as above, with the extra-property that f = 1 in a neigh-
borhood of the origin. For that, one has to slightly improve the choice of g in the proof of Theorem 1.27: choose

g : R — R is any smooth function that is 1 when |¢| < % and is 0 when ¢ > 1 and set f(x) = g(||x|?). &

Corollary 2.36. Let M be a set. Assume that we have two topologies 9 and 5 on M, a smooth structure
7y on the space (M, ) and, similarly, a smooth structure /5 on the space (M, ). Assume that the
two smooth structures give rise to the same notions of smoothness of R-valued functions, i.e., for arbitrary
functions f: M — R, one has:

f is smooth w.rt. &) <= f is smooth w.r.t. o/5.

Then 9 = 5 and <) = <b.

Proof. Let /) and <% be two maximal smooth atlases in M such that €= (M, o)) = € (M, <%). First we show
that the topologies .7} underlying 7, i € {1,2}, must coincide. Let U € 7. The previous lemma shows that, for
any p € U we find f, € C*(M, 7) such that
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V,:={qeM: f,(q) #0} CU.

and ¢ belongs to V,. Since C*(M, o) = C*(M, %), f, is smooth also w.r.t. 2% and, therefore, V, € 7. Since
U = UpeyV), it follows that U € 5 as well. Hence .97 C 25 and, similarly, the other inclusion holds as well.
Hence 71 = %.

We now show that @7 C . Let y € o, x : U — Q CR", with U € J] = 5. Then each component ¥, of y is
smooth w.r.t. ); however, we cannot say that it belongs to €~ (M, 7| ) because it is defined only on U. Therefore,
for any point p € U we apply the previous lemma to find 1, € €*(M, .o/ ) such that 1 = 1 in a neighborhood
V, C U of p, and is 0 outside the closure in M of a larger neighborhood V,, C U. It follows then that each 1, - X,
extended to the entire M by declaring to be 0 outside U, belongs to ¢ (M, ), hence also to (M, %). In
particular, Yt|v, = (1, ) lv, is smooth w.rt. o%. Since each p € U admits a neighborhood V,, C U on which
Xk is smooth (w.r.t. @% now), ¥ is smooth as a function on U, and so is ¥ (again, w.r.t. <%). Therefore, for any
X € b, xy = xox )~! will be smooth; the fact that .27 is maximal implies now that, indeed, y € .<%. This

proves the inclusion 7] C 4%, end then it suffices to invoke the maximality of 2. <

And here is another interesting consequence:

Exercise 2.37. Show that, for any manifold M, €>(M) is point separating, i.e. for any p,q € M distinct, there
exists f € € (M) such that f(p) =0, f(q) = 1.

The importance of Lemma 2.35 is best understood from the perspective offered by the general discussion on
subspaces of € (M), as discussed in the reminder on Topology, subsection 1.1.8. To apply Theorem 1.16 to &/ =
€ (M): one has to check some simple algebraic properties which were taken care of in Exercise ?? above, and
then there was the last, and more subtle, condition in that theorem; and that is precisely what the first part of the
previous lemma is taking care of! Therefore we deduce:

Theorem 2.38. On any manifold M, for any open cover % of M, there exists a smooth partition of unity
on M subordinated to U .

Diving a bit more into the details of subsection 1.1.8 one see that, from the various properties discussed there,
the one that is most subtle is “paracompactness”. But Theorem 1.18 immediately implies that any manifold is
automatically paracompact. One the other hand, when it comes to properties of subspaces & C C*(M) discussed
in subsection 1.1.8, the one that is more subtle is “normality”; from this perspective, the previous lemma checks
the criteria for normality provided by Theorem 1.19. Therefore one also obtains:

Corollary 2.39. On any manifold M, for any two disjoint closed subset A,B C M, there exists a smooth function
f M — [0, 1] with the property that f|s =0, f|p = 1.

Remark 2.40 (For the curious students: a smooth Gelfand-Naimark ...). The “Gelfand-Naimark message” from Topology is that,
for reasonable topological space X, the topological information on X can be completely recovered from the %'(X) and its algebraic
structure (the sums and products that make it into an algebra). As recalled in Remark 1.10, the way one “reconstructs” the space X
from the algebra ¢'(X) is by associating to any algebra A a topological space X (A), called the spectrum of A, and defined as the set of
all characters y : A — R (see Remark 1.10).

Since the notion of character makes sense for any algebra, we can apply it to

A:=¢"(M),
the algebra of smooth functions on a manifold M. As before, any point p € M gives rise to a character
XpA—=R, x,(f) = f(p):

and this gives rise to a map
GN:M —=X(A), p— xp.

Note that the previous exercise says precisely that this map is injective! What about surjectivity? L.e., is is true that any character
X 6" (M) =R

is of type ), for some p € M?
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Theorem 2.41. If M is a compact manifold then the map GN is 1-1.

Proof. We are left with proving surjectivity. Hence we start with a character y and we look for p € M such that y = y,,. First remark
that, for the last equality to hold (given p), it suffices to require something apparently weaker condition

if £ €€ (M)iskilled by ¥ (i.e. x(f) = 0) => f(p) =0.

Indeed, for an arbitrary f € €= (M), since f — x(f)- | is anyway killed by y, the previous implication would imply x(f) = f(p) for

all f,ie. x = xp-
Therefore, it suffices to show that there exists p € M for which the previous implication holds. We proceed by contradiction. If no
such p exists then we find, for each p, a function f, with

x(fp) =0, fp(p) #0.
We may actually assume that f,(p) > 0 (otherwise replace f, by its square). Since f,, is smooth (hence also continuous), for each p
we find a neighborhood U, of p s.t. f,, > 0 on the entire U,,. Then {U), : p € M} forms an open cover of M and, using the compactness

of M, we cab extract a finite subcover- corresponding to a finite number of points py,..., pr. Then the sum f of the corresponding
functions f},, will have the property that

fee¢=M), x(f)=0, f>0everywhereon M.

But then we can write the constant function 1 = f- l/ with both f and 1 so that

. . . . . . ~ 9
which provides us with a contradiction we were looking for. ‘&

Exercise 2.42. Adapt the previous proof to show that, if M is not necessarily compact then, for any character y on ¢ (M), there exists
p € M such that x(f) = f(p) for all f € €>(M) that are compactly supported (i.e. vanish outside some compact).

Exercise 2.43. Given two manifolds M and N, any smooth F' : M — N induces
F*: € (N)—> €~ (M),
which is a morphism of algebras (i.e. is linear, multiplicative and sends the unit to the unit). Prove that conversely, any morphism from

the algebra ¢ (N) to (M) arises in this way.
Then deduce that, for any two manifolds M and N,

M and N are diffeomorphic <= %~ (M) and ¢ (N) are isomorphic as algebras

2.2.3 Special maps: Diffeomorphisms, immersions, submersions

Like in the case of R™, there are certain types of smooth maps that deserve separate names. The first one describes
the correct notion of “isomorphisms” in Differential Geometry (analogous to linear isomorphisms in Linear Alge-
bra, isomorphisms of groups in Group Theory, homeomorphisms in Topology).

Definition 2.44. A diffeomorphism between two manifolds M and N is a map f : M — N with the property
that f is bijective and both f and f~! are smooth.
Two manifolds M and N are said to be diffeomorphic if such a diffeomorphism exists.

A diffeomorphism allows one to pass from whatever differential geometric object/property on M to N and
backwards; for that reason, two manifolds that are diffeomorphic are usually thought of as being “’(basically) the
same as manifolds”.

Exercise 2.45. As a continuation of Exercise 2.45, show that for any chart (U, x) of a manifold M, ¥ is a diffeo-
morphism between the domain U and its image 2 C R™.
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Exercise 2.46. In general, R™ has many smooth structures, though many of them (but not all!) are actually dif-
feomorphic. This exercise takes care of the simpler parts of these assertions. For a homeomorphism yx : R” — R™,
consider

oy ={1},

(the atlas on R™ consisting of one single chart, namely y itself).
Show that, for a general homeomorphism ¥, %7, defines a smooth structure different than the standard one, but
R™ endowed with the resulting smooth structure is diffeomorphic to the standard one.

Remark 2.47 (For the interested student: exotic smooth structures). As the previous exercise shows, the interesting question for R",
and as a matter of fact for any topological space M, is:

how many non-diffeomorphic smooth structures does a topological space M admit?

Even for M = R’ this is a highly non-trivial question, despite the fact that the answer is deceivingly simple: each of the spaces R”
with m # 4 admits only one such smooth structure, while R* admits an infinite number of them (called “exotic” smooth structures on
R*)!

Exercise 2.48. Show that if M is a smooth manifold with the property that its smooth structure can be induced
by an atlas consisting of only one chart, then M is diffeomorphic to an open subset 2 C R™ (endowed with the
standard smooth structure- cf. Example 2.18).

With the notion of diffeomorphism at hand, and the fact that opens inside manifolds are automatically manifolds
(as discussed in Example 2.18), one can now make sense of a smooth map f : M — N being a local diffeomorphism
around a point p € M: there are open neighborhoods U of p in M, and V of f(p) in N, such that f restricts to a
diffeomorphism f|y : U — V.

Exercise 2.49. First, convince yourself that the map
exp:R— S, 1+ e = (cost,sint)

is a local homeomorphism around any point. Put now a smooth structure on S! such that exp is a local diffeo-
morphism. Can you find more than one? Compare it with the smooth structure you found when doing Exercise
2.19.

The following shows how to reduce checking that a map is a diffeomorphism to the easier task of checking that
it is a local diffeomorphism.

Lemma 2.50. A smooth function f : M — N is a diffeomorphism if and only if it is a local diffeomorphism
around any point, as well as a bijection.

Proof. The direct implication is obvious. For the reverse one, the bijectivity assumption allows us to talk about the
inverse g : N — M of f. The question is whether f and g are smooth. But smoothness is a local condition, that can
be checked around points. Since f is a local diffeomorphism, it follows that both f as well as g are smooth around
any point in their domain. Hence they are both smooth and, therefore, f is a diffeomorphism.

Next, we export the notion of immersion and submersion form Euclidean spaces to the general setting; the
definition below is not the best one, but has the advantage that it can be given right away, before discussing tangent
spaces (however, we will return to it later on- see Proposition 3.11).

Definition 2.51. Let f : M — N be a smooth map between two manifolds. We say that f is an immersion/-
submersion at p if its local representations f%/ is an immersion/submersion at ¥ (p) (in the usual sense from
Analysis) for any chart y of M around p and x’ of N around f(p).

We say that f is an immersion/submersion if it is one at all p € M.
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Ty s
Fig. 2.5 Intuitively, an immersion at p is a map that locally around p does not crush the domain together, or in other words: wiggling
p infinitesimally always corresponds to (first-order) movement of f(p). Consider the map 7 : R — R3 from the rotating ribbon R on
the left that projects each point down to its shadow. It is an immersion at all points with x < xp, but fails to be one as soon as the ribbon
becoms exactly vertical for all x > xj. A submersion at p is a map such that small wiggling away from p corresponds to movement of
f(p) in all directions in the codomain. Take the map 4 : T?> — R on the right that assigns to every point of the torus its height. At the

marked point, it fails to be a submersion as any wiggling about p is horizontal, not changing the height to first order. Can you identify
all the points where £ is a submersion?

Exercise 2.52. Show that, in the previous definition, it is enough to check the required condition for (single!) one
chart y of M around p and one chart ' of M’ around f(p).

Remark 2.53. As indicated above, once we will discuss that notion of tangent spaces, we will have another char-
acterisation of the immersion and submersion conditions which does not make use of charts. That will provide
another proof of, and actually extra-insight into, the previous exercise.

From the submersion and immersion theorems on Euclidean spaces, i.e. Theorem 1.32 and Theorem 1.33 from
the previous chapter, we immediately deduce:

Theorem 2.54 (the submersion theorem). If f : M — N is a smooth map between two manifolds which is

a submersion at a point p € M, then there exist charts X of M around p and X' of N around f(p) such that
ff=xofox™

is given by

/
f)){( (xlv"'axnaxn+l,"'7xm) = (X],...,)Cn)~

Theorem 2.55 (the immersion theorem). If f : M — N is a smooth map between two manifolds which is
an immersion at a point p € M, then there exist charts X of M around p and )’ of N around f(p) such that

fF = ofox"is given by

f% (X1 ooy Xm) = (X1« X, 0,...,0).

Moreover, the charts ¥ : U — Q CR"™ and ' : U’ — Q' C R" can be chosen so that

fU)={q€U : 2p1(q) = ... = 2,(q) = O}

Corollary 2.56. Consider a smooth function f : M — N, p € M. Then the following are equivalent:

(1) fis a local diffeomorphism around p.

(2) f is both a submersion as well as an immersion at p.
(3) f is a submersion at p and dim(M) = dim(N).

(4) f is an immersion at p and dim(M) = dim(N).

Proof. Using coordinate charts one may assume M = R™ and N = R". The equivalence between (2), (3) and (4) is
immediate from linear algebra: for a linear map A : V. — W between two finite dimensional vector spaces, looking
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at the conditions: A is injective, A is surjective, dim(V) = dim(W), any two implies the third. Since these actually
imply that A is an isomorphism, making use also of the inverse function theorem, we obtain the equivalence with

(1) as well. ‘=

Exercise 2.57. Consider S! endowed with the smooth structure previously discussed (e.g. in Exercise 2.19) and R
endowed with it canonical smooth structure. Prove that there are no submersions or immersions f : S' — R.

Exercise 2.58. Let M and N be two smooth manifolds, consider their product (with the product smooth structure
as in Exercise 2.21). Show that the two projection maps pry, : M X N — M, pry : M x N — N are submersions.

Exercise 2.59. Let M be a manifold and consider the product M x M (with the product smooth structure as in
Exercise 2.21). Show that the diagonal inclusion A : M — M x M, A(x) = (x,x), is an immersion.

2.3 Immersions and submanifolds

2.3.1 Embedded submanifolds; the regular value theorem

The characterization of embedded submanifolds of Euclidean spaces in terms of adapted charts (Proposition 1.37
in subsection 1.2.6) allows us to proceed more generally and talk about embedded submanifolds M of an arbitrary
manifold N. Indeed, the notion of adapted chart that appears in Proposition 1.37 has an obvious generalization to
this context:

Definition 2.60. Given an n-dimensional manifold N and a subset M C N, we say that M is an embedded
m-dimensional submanifold of N if for any p € M, there exists a chart

7:U—QCR"
for N around p with the property that

UNM={peU: xns1(p)=-..= Zu(p) =0} 23.1)

or, equivalently, _ _
x(UNM)=QnN(R" x {0}).

A chart (U, %) of N satisfying this equality is called chart of N adapted to M.

For any such chart one can talk about the restriction of the adapted chart to M and denoted
Xm:U— Q.
Its domain is U := U NM , its codomain is
Q:=QN(R"x{0}),
interpreted as an (open) subset of R”. With these we obtain an induced smooth structure on M.

Exercise 2.61. Check that, indeed, the collection of all charts of type )~5| u obtained from charts ¥ of N that are
adapted to M, define a smooth structure on M.

Exercise 2.62. Assume that M C N is an embedded submanifold and let P be another manifold. Show that:

1. a function F : P — M is smooth if and only if it is smooth as an N-valued function.
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Fig. 2.6 Two examples of charts ¥ : U — & of an ambient manifold N adapted to an embedded submanifold M. The dimensions of
the manifolds M, N are (1,2) on the left hand side, and (2,3) on the right hand side. Can you draw a picture for dimensions (1,3)?

2. if a function F : M — P admits a smooth extension to N, then F is smooth.
3. if M is closed in N, then the previous statement holds with ”’if and only if”.

(Hint for the last point: use partitions of unity for N and don’t forget that N \ M is already open in N).

The notion of embedded submanifold allows us to introduce the smooth version of the notion of topological
embedding. Recall that a map F : M — N between two topological spaces is a topological embedding if it is
injective and, as a map from M to F (M) (where the second space is now endowed with the topology induced from
N), is a homeomorphism. The difference between the topological and the smooth case is that, while subspaces
of a topological space inherit a natural induced topology, for smooth structures we need to restrict to embedded
submanifolds.

Definition 2.63. A smooth map F' : M — N between two manifolds M and N is called a smooth embedding
if:

1. F(M) is an embedded submanifold of N.
2. as a map from M to F(M), F is a diffeomorphism.

Here is an useful criterion for smooth embeddings.

Theorem 2.64. A map F : M — N between two manifolds is a smooth embedding if and only if it is both
an immersion as well as a topological embedding.

Proof. The direct implication should be clear, so we concentrate on the converse. We first show that f(M) is an
embedded submanifold. We check the required condition at an arbitrary point ¢ = F(p) € N, with p € M. For that
use the immersion theorem (Theorem 2.55) around p; we consider the resulting charts y : U — Q C R™ for M
around p and ¥ : U — Q C R" for N around ¢; in particular,

FU)={q€U: Ymr1(q) = ... = Zu(q) = 0}.
Since F is a topological embedding, F(U) will be open in F (M), i.e. of type

F(U)=FM)NW
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for some open neighborhood W of ¢ € N. It should be clear now that U:=UNW and x:=17l i defines a chart for
N adapted to M.

We still have to show that, as a map F : M — F(M), F is a diffeomorphism (where F (M) is with the smooth
structure induced from N). It should be clear that this map continues to be an immersion. Since M and F (M) have

the same dimension, it follows from Corollary 2.56 that F : M — F(M) is a diffeomorphism. <

And here is a very useful consequence:

Corollary 2.65. Let F : M — N be a smooth map between two manifolds M and N, with the domain M
being compact. Then F is a smooth embedding if and only if it is an injective immersion.

Proof. Use one of the main properties of compact spaces: injective maps from compacts to Hausdorff spaces are

automatically topological embeddings! ‘<

The regular value theorem presented as Theorem 2.94 can now be generalized from Euclidean spaces to more
general manifolds. The setting is as follows: we are looking at a smooth map

F:M—N
and we are interested in its fiber above a point g € N:
F~'(q), (withg€eN).

The condition that we need here is that ¢ is a regular value of F' in the sense that F' is a submersion at all points
PEF ().

Theorem 2.66 (the regular value theorem). If ¢ € N is a regular value of a smooth map
F:M—N,
then the fiber above g, F~'(q), is an embedded submanifold of M of dimension

dim(F~Y(q)) = dim(M) — dim(N).

J

Proof. In principle, this is just another face of the submersion theorem. Let d = m — n, where m and n are the
dimension of M and N, respectively. We check the submanifold condition around an arbitrary point p € My :=
f~(q). For that we apply the submersion theorem to f near p to find charts ¥ : U — Q and ' : U’ — Q' of M
around p and of N around F (p), respectively, such that F(U) C U’ and

Ff/(x) = (x1,...,%,) forallxe Q.

After changing x and ' by a translation, we may assume that y(p) = 0 and x’(g) = 0. We claim that, up to a
reindexing of the coordinates, y is a chart of M adapted to M. Indeed, we have

x(UNMo) ={x(p'): P €UF(p')=q} = {x€ Q: Ff (x) =0},
or, using the form of F; X/,
x(UNMy) ={x=(x1,...,x0m) €EQR:x1=... =x, =0},

proving that M is an m — n-dimensional embedded submanifold of M. =

Finally, with smooth partitions of unity at hand one can use the same arguments as in the topological case and
obtain the smooth version of Theorem 1.14 from Section 1.1 of Chapter 1:
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Theorem 2.67. Any (smooth) compact manifold can be smoothly embedded into some Euclidean space. ]

Proof. We use the same map as in the proof of Theorem 1.14 from Section 1.1 of Chapter 1, just that we now make
use of smooth partitions of unity (which exist by Theorem 2.38). It suffices to show that the resulting topological
embedding

i= M M T ) M= Rx L x RXRY x . x RY = RK@HD),

k times k times

is also an immersion. We check this at an arbitrary point p € M. Since }; 1; = 1, we find an i such that 1;(p) # 0.
We may assume that i = 1. In particular, p must be in Uj, and then we can choose the chart )| around p and look at
the representation i,, with respect to this chart; we will check that it is an immersion at x := x;(p). Hence assume
that the differential of iy, at x kills some vector v € R? (and we want to prove that v = 0). Then the differential of
all the components of iy, (taken at x) must kill v. But looking at those components, we remark that:

¢ the first R-component is 1 := 1, oxl’l U — R
» the first RY component is the linear map f : Uy — R?, f(u) = n(u) - u.

Hence we must have in particular:
@n):(v) =0, (df)(v) =0.
From the formula of f we see that (df),(v) = (dn)x(v) -x+n(x) - v; hence, using that previous equations we find

that 17(x) -v = 0. But 11 (x) = 1; (p) was assumed to be non-zero, hence v = 0 as desired. ‘=
Exercise 2.68. Show that the map from Exercise 2.105 is an embedding of P? in R*.

Recall that, while S' x S! naturally embeds in R?> x R? = R?, the interpretation of S' x S! as a torus provides
an even better embedding: inside R3. In the following you are asked to show that this can be propagated to higher
dimensional tori. Here we use products of manifolds as discussed in Exercise 2.21

Exercise 2.69. Show that the n-dimensional torus,

T":=S'x... x5!

n times
(sitting canonically inside R?") can actually be embedded inside R"*+!.

Exercise 2.70. With the same notations as in Exercise 2.110, show that each fiber of the Hopf map % : §* — $? is
an embedded submanifold of > which is diffeomorphic to a circle.

Exercise 2.71. Consider the height function f : T — R on the torus as indicated in Fig 2.7. At which points does f
fail to be a submersion?

Exercise 2.72. Let M be a smooth m-dimensional manifold and let
f*M—R
be a smooth function. For A € R define
My =f7'(A), Mz :={peM:f(p)<A}.

Assume that A is a regular value of f (so that, by the regular value theorem, M), is an (m — 1)-dimensional manifold.
Prove that M, is an m-dimensional manifold with boundary (see subsection ??), with

How many manifolds do you obtain in this way for the height function from the previous exercise?
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T2

Fig. 2.7

Exercise 2.73 (part of the 2019/2020 exam). Consider
f:8 SR, fx,y,2,1) =4y 72—

(a) show that the zero-set My := f -1 (0) is an embedded submanifold of S3.
(b) show that M is diffeomorphic to the 2-torus.
(c) find all the points at which f is a submersion.

Exercise 2.74 (part of an exam from 2018; and you may want to skip (b) for now). Consider
My :={(x,y,z) eR*: x* +y* +74 =1} CR?,
and the map from M, to the 2-sphere S? given by
fiMy— S, flxyz) = (%2

(a) Show that My is a submanifold of R3 and f is a smooth map.

(b) Compute the tangent space of M at the point p = (%\/5, %2,0); more precisely, show that it is spanned by
(), (&), = (&),
— | — (= an = 4.
x/, a/, dz/, P

Similarly at the point g = ( AR %)
(c) Show that f is not an immersion at p, but it is a local diffeomorphism around gq.
(d) Show that My is not diffeomorphic to

My :={(x,y3,2) ER: > +y  +2 =1} C R>.

but it is diffeomorphic to S2.
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2.3.2 General (immersed) submanifolds

In Topology (or, if you do not like that generality, just take X = R") the leading principle for talking about ~a
subspace A of a space X was to make sure that the inclusion i : A — X was continuous, and we chose "the best
possible topology” on A doing that- and that gave rise to the induced (subspace) topology on any subset A C X.
Looking for the analogous notion of “subspace” in the smooth context (i.e. a notion of ’submanifold”), the first
remark is that “inclusions” in the smooth context are expected to be immersions. Furthermore, starting with a
subset M of a manifold N, there are several possible ways to proceed:

(1) try to make the space M (endowed with the topology induced from N) into a manifold such that the inclusion
i:M — N is an immersion.

(2) forget about the induced topology on M and try to make the set M into a manifold such that the inclusion
i:M — N is an immersion.
(yes, M will have a topology underlying the smooth structure, but it does not have to be the induced one).

(3) 1in the previous point choose ”the best possible”” manifold structure on M.

In (1), insisting that M has the endowed topology means that i : M < N is also an embedding (next to being an
immersion) means that we are in the setting of Theorem 2.64. In other words, the previous section implemented
precisely (1); gave rise to the notion of embedded submanifold.

The second possibility (i.e. item (2) above) gives rise to the notion of immersed submanifold.

Definition 2.75. Given a manifold N, an immersed submanifold of N is a subset M C N together with a
structure of smooth manifold on M, such that the inclusion i : M — N is an immersion.

We emphasize: an immersed submanifold is not just the subset M C N, but also the auxiliary data of a smooth
structure on M (and, as the next exercise shows, given M, there may be several different smooth structures on M
that make it into an immersed submanifold). Moreover, the required smooth structure on M induces, in particular,
a topology on M; but we insist: this topology does not have to coincide with the one induced from N!

Exercise 2.76. Consider the figure eight in the plane M = R?. Show that it is not an embedded submanifold of R,
but it has at least two different smooth structures that make it into an immersed submanifold of R2.

Immersed submanifolds may look a bit strange/pathological, but they do arise naturally and one does have to
deal with them. In general, any injective immersion

f:M—=N

gives rise to such an immersed submanifold: f(M) together with the smooth structure obtained by transporting the
smooth structure from M via the bijection f : M — f(M) (i.e. the charts of f(M) are those of type x o f~! with
a chart of M). And often immersed submanifolds do arise naturally in this way.

Example 2.77. For instance, the two immersed submanifold structures on the figure eight from the preceding
exercise arise from two different injective immersions fi, f> : R — R? (with the same image: the figure eight), as
indicated in the picture. Make pictures!

So: what happens for an embedded submanifold M C N? Endowed with “’the smooth structure induced from N
(notion that only makes sense when M is embedded submanifold!) it clearly becomes an immersed submanifold.
Can it be still given another smooth structure (as in the last example)? The answer is: no! Indeed, one has the
following result which is a simplified version of Proposition 2.80 below.

Proposition 2.78. If M is an embedded submanifold of the manifold N, then the set M admits precisely one
smooth structure such that the inclusion into M becomes an immersion.
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To see the difference between “immersed” and “embedded” one just has to stare at the meaning of “immersions”.
If M (... together with a smooth structure on it) is an immersed submanifold of N, the immersion theorem tells us
that there exist charts (U, ) of N around arbitrary points p € M such that Uy :=MN{g €U : xpt1(q) =... =
Zm(q) = 0} is open in M and yy = x|u,, is a chart for M. However, when saying that “Uy is open in M”, we
are making use of the topology on M induced by the smooth structure we considered on M, and not with respect
to the topology induced from N (look again at the previous exercise!). This is the difference with the notion of
“embedded submanifold”.

Moving now to item (3), the best possible scenario would be when the subset M C N has the following property:
M admits a unique smooth structure that makes it into an immersed submanifold of N. When this happens we say
that M has the unique smooth structure property. In this case there is no ambiguity what smooth structure we
put on M, M becomes an immersed submanifold, and we are looking at those immersed submanifolds that are
encoded just in the subset M C N and no extra-data prescribed beforehand. There are two remarks here:

* but, again, even in this case, the underlying topological structure need not be the induced topology from N.
* on the other hand, embedded submanifolds do have this property (this is implied by the next result).

Of course, there are other examples of submanifolds with unique smooth structure besides the embedded ones: e.g.
the “dutch figure eight” (exercise); for one more see Example 2.81 below.

However, it turns out that there is a smaller and more interesting class of submanifolds with unique smooth
structures (and still includes the embedded submanifolds, as well as most of the other interesting examples):

Definition 2.79. An immersed submanifold M of a manifold N is called an initial submanifold if the fol-
lowing condition holds: for any other manifold P and any map f : P — M, f is smooth if and only if it is
smooth as a map with values in V. In other words,

f is smooth <= io f is smoooth,

where i : M — N is the inclusion; here one may want to think on the diagram:

What happens is that, while this condition is easier to check than the uniques smooth structure property, one has:

Proposition 2.80. For a subset M of a manifold N one has the following:

embedded submanifold = initial submanifold = the unique smooth structure property.

Proof. Consider the inclusion i : M < N. For the first implication the main point is to show that if M is embedded
and f : P — M has the property that io f : P — N is smooth, then f is smooth. To check that f is smooth, we we
use arbitrary charts y of P and charts y’ of N adapted to M; we also use X}, = x'|u. Note that

(iof)k = f¥ . Q 5 R" = R" x {0} C R,

for some open 2 C R”. Hence it suffices to remark that if a function g : 2 — R™ is smooth as a map with values
in the larger space R", then it is smooth.

For the second part assume that M is initial. In particular, it comes with a smooth structure defined by some
maximal atlas <7, making the inclusion into N an immersion. To prove the uniqueness property, we assume that
we have a second smooth structure with the same property, with associated maximal atlas denoted «7’. Applying
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the initial condition to P = (M, /') with f being the inclusion into N, we find that the identity map id : (M, <7 ) —
(M, <) is smooth. Applying the definition of smoothness, we see that any chart in ./ must be compatible with

any chart in «7. Therefore &' = o/ . '©
Example 2.81. When N is the 2-torus and one draws a curve in N winding around, there are two interesting cases:

* the curve closes up after a few turnings. That give a subset My C N.
* the curve keeps on winding around infinitely, densely inside the torus. That gives another M| C N.

"
avi?,

The picture shows My. Draw a picture for M ! Note that the two types of curves are not even that far apart: any one
that closes up, if perturbed a little, will become of the second type. However, My and M, are quite different:

* My is embedded in the torus.
* M is only immersed.

For the last point, there is a map which should be clear on the picture f : R — N with image precisely M; and
which is an immersion. Therefore making M; into an immersed submanifold. However, we are in the better case:
M, is an initial submanifold (... exercise!).

Exercise 2.82. In the previous example show that Mj is diffeomorphic to S' while M, is diffeomorphic to R.
Using arguments similar to those from Proposition 2.80 you can try the following:
Exercise 2.83. Let M be a subset of the manifold N. Then:

(i) For any topology on M, the resulting space M can be given at most one smooth structure that makes it into an
immersed submanifold of N.

(i1) If we endow M with the induced topology, then the space M can be given a smooth structure that makes it into
an immersed submanifold of N if and only if M is an embedded submanifold of N; moreover, in this case the
smooth structure on M is unique.

2.4 Submersions and quotients

2.4.1 Quotient smooth structures: uniqueness

Another interesting corollary of the submersion theorem is that, for submersions f : M — N, smooth maps on N
can be detected by looking up on M (see below for the precise statement). That is interesting because, in practice,
whenever we have a set N that we would like to make it into a a manifold in a “satisfactory way”, very often N is
closely related to an actual manifold M, through a surjective map f : M — N. In such situations, the “satisfactory
way” often means: such that f is a submersion.

Corollary 2.84. If © : M — N is a surjective submersion then, for functions f : N — R, one has:
fECT(N) <= formecC”(M).

In particular, if ®©: M — N is a surjective map from a manifold M to a set N, there is at most one way to
make N into a manifold such that ® : M — N is a submersion.
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Proof. The direct implication is clear, hence we concentrate on the reverse one. We will make use of the fact that
smoothness of a map is a local property: for our f, it suffices to show that for any point y € N, there exists a
neighborhood Vj of y such that f \vy is smooth. Fixing y € N, we choose the coordinate charts around x and y that
follow from the submersion theorem, and we set V, to be the domain of the chart around y. Moving by those charts
to opens inside Euclidean spaces, we may assume that 7 is the projection onto the first n coordinates-situation in

ys
><
Y

which the fact that f o -smooth implies that f is smooth is clear. The (pedantic) details are left as an exercise.

For the last part, one just invokes Corollary 2.36. ‘<

Exercise 2.85. Show that having a submersion 7 : M — N also forces the topology on N to coincide with the
so-called quotient topology induced by 7 on N, defined by:

V —openinN <= 1 '(V)—openin M

(which arises when looking for topologies on N making 7 continuous, and choosing the largest one among those;
this was discussed also in the introductory course in Topology).

2.4.2 The case of group actions

Next, we look at actions of groups on manifolds. You have probably seen the notion of group actions (and quotients)
in the Group Theory and Introduction to Topology courses, hence it is not a surprise that they will show up in
differential geometry as soon as we start looking at the first examples (next chapter). So, let us discuss group
actions in the realm of differential geometry, where sets or topological spaces are replaced by manifolds.

Let M be a manifold. We denote by Diff(M) the set of all diffeomorphisms from M to M. Together with compo-
sition of maps, this is a group. Let I" be another group, whose operation is denoted multiplicatively. An action of
I' on a manifold M is a group homomorphism

¢ : I — Diff(M), v — ¢,.
Hence, for each y € I', one has a diffeomorphism ¢, of M (“the action of ¥ on M”), so that
Gy = Oyo 0y Vv,7 EM.

Sometimes @y (x) is also denoted y(x), or simply ¥-x. In other words, one encodes/think of an action as a map

I'sM—M, (y,x) = 7-x.

Exercise 2.86. Show that the fact that each ¢y is a diffeomorphism is equivalent to the fact that the map (y,x) = y-x
is smooth, where I' x M — M is endowed with the smooth structure defined by charts of type {y} x U — R™,
(7,x) — x(x), one for each y € I" and each chart (U, x) of M.

Given an action of I" on M, the I"-orbit through x is defined as (I" - x) := {y-x: y € I'}, and the collection of
all orbits forms the so-called orbit space

M/ :={(I-x):xeM}.
Hence a single point of M /I" is an entire orbit. Such points arise from points in M via the canonical projection
Tean : M —M/T', x+— ([ -x),
just that two different points of M may give the same point in the orbit space; more precisely, one has:

(I'x)=(Ty)<= Jyelsty=7-x. (2.4.1)
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In what follows, an action of a group I" on M is said to be free if, for y € I" and x € M, the equality 7-x = x can
occur only when y = e is the identity element of I".

Theorem 2.87. If I is a finite group acting freely on a manifold M, then the set M/I" can be made into
a smooth manifold in precisely one way such that the canonical projection Tiq, - M — M /I is a local
diffeomorphism.

Remark 2.88. M/I" always carries a “natural topology”, without any assumption on the group or on the action. It
arises as “the best” topology on M /T" that turns 7.4, into a continuous map, and it is precisely the quotient topology
induced by 7., mentioned in Exercise 2.85.

In the smooth context however, M /I" may fail to carry a similar “best smooth structure” (meaning, of course,
that we require 7 to be a submersion). Corollary 2.84 shows that, if it exists, then it is unique, but the problem
is with the existence. This problem arises already in simple situations such as I" = Z, (... finite!) acting on R by

> - .oy (B8
k-r = (—1)kr; we leave this as an exercise! =

Remark 2.89. Some of the discussion here may remind you of the introductory course on topology, where equiv-
alence relations are discussed. If that is the case, you will notice that one can look at the entire discussion a bit
differently: the very last condition in (2.4.1) defines an equivalence relation R between the points of M, the I'-
orbits are precisely Ry-equivalence classes and the orbit space M /T is precisely the quotient w.r.t. this equivalence
relation. On the other hand, finding conditions on more general equivalence relations R on manifolds M to ensure
that the quotient M /R can be made into a manifold into a satisfactory fashion (like the last theorem does for group
actions) is more difficult.

Proof. 1t is interesting to point out the following consequences to the condition that I” is finite s that the action is
free, and that I' is finite, respectively:

1. if the orbits through x,y € M do not coincide, then there exist neighborhoods U of x and V of y such that
UNny-V=~0forallyer.

2. if the action is also free then, around any x € M there exists an open neighborhood W which is I"-small in the
sense that WNy-W =0 for all y € I" distinct from the unit element e.

The first item is proven/used in Topology, when proving the quotients modulo finite groups are Hausdorff; briefly,
it goes as follow: the orbits must be disjoint, hence x # -y for any 7; using that M is Hausdorff one finds neighbor-
hoods Uy of x and V, of y such that UyNy-V, = 0; finally, one sets U = NyUy, and similarly for V, which, since I"
is finite, is a finite intersection of opens hence open. This proves the existence of the desired U and V. Notice that,
while the condition on x and y is precisely that they induce two distinct points in M /I, the resulting U and V give
rise to two disjoint subsets 7(U ), w(V). Since when endowing M/I" with the quotient topology, fean : M — M /T
becomes an open map- i.e. sends opens to opens (why?), £(U) and 7(V) will be disjoint opens and, therefore,
M/T is Hausdorff.

For the second item we proceed similarly, but using that x # y-x for all y # e (freeness). For each such y we find
neighborhoods Wy and W, of x such that W, Ny- Wy = 0 and consider

W = (NyeWy) N (N Wy) -

It contains x, it is open (as a finite intersection of opens) and is I"-small. Notice that being I"-small is equivalent
to the fact that x|y : W — m(W) being a bijection and then, since 7 is continuous and open, to 7|y being a local
homeomorphism.

The second item can be used to exhibit the desired smooth structure on M/I". To that end, we consider charts
(W, x) on M that are I"-small in the sense that W is. Item 2. implies that, around any point, one does find a I"-small
chart. Combining x with the inverse of 7|y, one obtains a homeomorphism

Xo: (W) — x(W)CR™

We claim that these fit into a smooth atlas for M/I". So, let us fix two I'-small charts on M, and prove that the
induced charts (W, ) and (W', x') on M/I" are smoothly compatible. We have to investigate the smoothness of
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Xoox5 " =20 (mlw) ™ o (mlw) o,
on the domains where it is defined. Since ) and y’ are already smooth, we have to investigate the smoothness of
Tww! = (zlw) " o (nlw) : D — D/
where D C W and D' C W’ are the preimages of the overlap (W) N w(W’) by 7|y and 7|y, respectively:
D={xeW:rn(x)eaW)}cW, D ={xeW :xkx)ernW)cw.

We now check the smoothness of T = Ty y around an arbitrary point xo € D. Let yo = 7(xo). Since xo and yy are
mapped by 7 to the same point in M/I", we find 9 such that yp = }p - xo. One then finds a neighborhood Dy C D
such that Dy := ¥ - Dy sits inside D" and the, on Dy, T must be given by the multiplication by ¥ (hence smooth!).

In conclusion, we have a smooth structure on M/I" which, by construction, makes the projection into a local
diffeomorphism. Moreover, M /I" is smooth. We leave it to the reader to prove that M /I" is also second countable.

Remark 2.90. The proof above only used the properties mentioned in items 1. and 2. (well, 2. does imply that the
action is free, but 1. and 2. may hold also when I is infinite):

1. if (I" - x) # (I" - y) then there exist neighborhoods U of x and V of y such that UNy-V =0 forall yeI.
2. around any x € M there exists an open neighborhood W such that WNy-W =0 forall y e I' \ {e}.

Some authors call such actions “properly discontinuous”, but we find that a very unfortunate choice. We prefer
to call them free and proper actions. Our choice also indicates the fact that it is not one single property, but
a combination of two. More precisely, there is also the notion of proper action, defined without assuming any
freeness: the condition is that, for any K C M compact, the set of elements y € I" with the property that Y- KNK # 0
is finite. In particular, actions of finite groups are automatically proper. We leave it as an exercise (in Topology) to
show that, indeed, an action satisfies 1. and 2. if and only if it is both free as well as proper.

Corollary 2.91. The conclusion of the theorem holds more generally, for free and proper actions.

Example 2.92. Giving an action of the group (Z,+) on a manifold M is equivalent to giving a diffeomorphism
¢ = ¢1 : M — M. For instance, the translation R — R, » — r+ 1 encodes the action

RxZ—R, (rn)— ¢,(r)=r+n.

The map f : R — S, t — (cos(2mt), sin(27r)) induces a bijection f : R/Z — S' making the diagram below com-

mutative
R

Tcan \f\\

R/7Z ——— §!
!
This action is both free as well as proper, hence R/Z carries a smooth structure making ey, into a submersion.

Actually, such a smooth structure can be obtained by transporting the smooth structure from S' via f By the
uniqueness of such smooth structures, it follows that f is a diffeomorphism.

Example 2.93. Giving an action of the group (Z,+) on a manifold M is equivalent to giving an involution of
M, i.e., a diffeomorphism ¢ : M — M with the property that ¢ o ¢ = Idy,. Interesting examples are provided by
reflection maps 7(x) = —x, defined on various subspaces of the Euclidean space. E.g.:

* on R, where it encodes a non-free action of Z; (with quotient R>¢);
« on the circle S! C RZ, or even on R? \ {0}, to provide free actions of Z, (what are the quotient ... manifolds???);
* on the higher dimensional spheres ... but that takes us to the next chapter.
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2.4.3 Quotient smooth structures: general crieteria
2.5 Examples

2.5.1 Submanifolds of R" via the regular value theorem

The regular value theorem is an immediate consequence of the discussion from subsection 1.2.6 (more precisely,
of Theorem 1.38), which is the main tool to check whether a given subset of an Euclidean space, M C RE, is an
embedded submanifold- and, therefore, a manifold on its own. Of course, in specific examples, there is a lot more
to say about those manifolds hence, when interested in such specific example, this theorem is just the first step. A
more general version will be presented a bit later, in Theorem 2.66.

Theorem 2.94 (the regular value theorem in R"). Assume that M C R" can be written as the zero-set of
a smooth map f : Q — RF defined on an open subset Q C R" and assume that f is a submersion at each
point p € M. Then M is an m = n — k dimensional embedded submanifold of R".

Here are some

Exercise 2.95. Show that the sphere
§*={(x,y,2) ER*: X +y* + 2 =1}
is an embedded submanifold of R?; and similarly for the higher dimensional spheres.

Exercise 2.96. Show that
M={(x,y,z) eR}: ¥ +y + 72 —3xyz =1}

is a 2-dimensional embedded submanifold of R3.

Exercise 2.97. Denote by .#,,.m(R) the set of m x m matrices with real coefficients, and let O(m) be the subset
consisting of orthonormal matrices

O(m) ={A € Muxm(R):A-AT =1,.}

m(m—1)

Identifying .#,xm(R) with R’”Z, show that O(m) is a submanifold of dimension o

2.5.2 The spheres S™

The first example in our list are the m-dimensional spheres
§" = {(x0, -, xm) €R™ 1 (x0)* + (x1)* 4. 4 (xn)* = 1}

Of course, this example fits into the general discussion of embedded submanifolds of Euclidean spaces mentioned
already in Example 2.17 and is a consequence of the regular value theorem that we just discussed. However, it is
one of the many examples which are instructive to consider separately, even as abstract manifolds, and notice their
rather special properties.

First of all, as with any subspace of a Euclidean space, we endow it with the Euclidean topology: opens are
intersections of §™ with opens in R”*!. In this way, S is a Hausdorff, second countable space (... even compact).

Intuitively it should be clear that, locally, S looks like (opens inside) R™- and that is something that we use
everyday (we do live on some sort of sphere, remember?). For instance, drawing small disks on the sphere and
projecting them on planes through the origin, one can easily build charts. For instance, the upper hemisphere

U(;r :{(xoa'“vxm) e S":x >0}
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not even so small!) and the projection into the horizontal plane {0} x R” ¢ R™H! gives rise to
proj p g
x&L:UJ—HRm, X(X0y- - Xm) = (X1, y Xm)-

Considering the similar charts with xo < 0 or using the other coordinates, and putting them all together, we get a
smooth atlas

U x5)s WUy 25)s --os U 28)s e s o) (2.5.1)

defining a “natural” smooth structure on S, called the standard smooth structure on S™.

One can actually use the intuition to build similar charts and atlases; however, if you really follow your intuition,
you will obtain the same smooth structure (and therefore the name “’natural”). Here is an example of another smooth
atlas on the sphere (... describing the same smooth structure). It is probably the most elegant one; at least it uses the
least amount of charts: two. These are the so-called stereographic projections w.r.t. the north and the south poles,

py =(0,...,0,1), ps=(0,...,0,—1) € 8™,
respectively. The one w.r.t. to py is the map
av 8" \{pn} = R"

which associates to a point p € S” the intersection of the line py p with the horizontal hyperplane (see Figure 2.5.2).

Py

The sterographic projection (sending the red points to the blue ones)

Fig. 2.8

Computing the intersections, we find the precise formula:

X Xm—
XN:Sm\{PN} _>Rn7 XN(XO»XI»ume) = < 0 ! )

[ .

(while for ys we find a similar formula, but with +s instead of the —s). Reversing the process (i.e. computing its
inverse), we find

2u; 2y |u2—1>

—1 m m —1
LR > § e yt) =
xN Mewye 2y () (|u2+1’ TuP 1 uP

and we deduce that yy is a homeomorphism. And similarly for ). Computing the change of coordinates between

the two charts we find "

xsoxy' R™\ {0} = R™\ {0}, xsoxy'(u)= ek

This is clearly smooth, composed with itself is the identity, therefore it is a diffeomorphism (... therefore also
solving Exercise 1.58 from Chapter 1). We deduce that the two charts

(" \{pn},an), (8" \{ps}, xs) (2.5.2)

define a smooth m-dimensional atlas on §™.
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Exercise 2.98. Show that the stereographic projections give rise to the standard smooth structure on S”. Or, more
precisely, show that the smooth atlas (2.5.2) induces the same smooth structure as (2.5.1).

Exercise 2.99. Consider the height function
[ =R, f(xyz)=z

At which points in the sphere does f fail to be a submersion?

Remark 2.100 (For the curious students: exotic spheres). As for the Euclidean spaces, it becomes very interesting (and exciting!)
when we ask about the existence of other smooth structures on " (endowed with the Euclidian topology). Of course, for the reasons
we explained, we only look at non-diffeomorphic smooth structures. Again, the answers are deceivingly simple (and the proofs highly
non-trivial):

« except for the exceptional case m = 4 (see below), for m < 6 the standard smooth structure on S is the only one we can find (up

to diffeomorphisms).
« S7 admits precisely 28 (12!) non-diffeomorphic smooth structures.
+ % admits precisely 2.

« and S'! admits 992, while S'? only one!
« and $3! more than 16 million, while S°! only one (and actually, next to the case $™ with m < 6, SO is the only odd-dimensional
sphere that admits only one smooth structure).

Moreover, some of the exotic (i.e. non-diffeomorphic to the standard) spheres can be described rather simply. For instance, fixing
€ > 0 small enough, inside the small sphere of radius &, Sg € C?,

Wi == {(21,22,23,24,25) €S2 : S+ B+ 2+ 5 +2 =0} c CO =R
(one for each integer k > 1) are all homeomorphic to s7, they are all endowed with smooth structures induced from the standard (!) one
on R!%, but the first 28 of them are each two non-diffeomorphic (and after that they start repeating). In this way one obtains a rather
explicit description of all the 28 smooth structures on S”.
While the number of smooth structures on S is well understood for m # 4, the case of $* remains a mystery: is there just one

smooth structure? Is there a finite number of them (and how many?)? Or there is actually an infinite number of them? The smooth
Poincare conjecture says that there is only one; however, nowadays it is believed that the conjecture is false.

2.5.3 The projective spaces P

Probably the simplest example of a smooth manifold that does not sit naturally inside a Euclidean space (therefore
for which the abstract notion of manifold is even more appropriate) is the m-dimensional projective space P™.
Recall that it consists of all lines through the origin in R"*!:

P" = {I ¢ R™*! : ] — one dimensional vector subspace}.

Each point x = (xo, . ..,X,) € R\ {0} gives rise to the line /, through the origin and x, hence [, := R-x C R, so
that we can write

P" = {l,:xe R™"\{0}}, where (I, =1,) <= (y=2A-x for some A € R*¥)
P™ is best understood by relating it back to R™*+!\ {0}, via the map
RPN\ {0} 5 P xe L.

For instance, this gives rise to a natural topology on P"*: the quotient topology w.r.t. & (already mentioned before,
see e.g. Exercise 2.85)- that is, the largest one that makes 7 continuous, explicitly described as follows:

UcCPm"isopen <= 7 '(U)isopeninR"™"
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All these define P" as a set, and as a topological space. For the smooth structure, it is handy to change the
notation for the lines /, to

Xo:xy:...ixm] =L =R-x, forx=(xp,...,x,) € R™" "\ {0}.
The use of the symbol : in the notation should suggest “division” and is motivated by
[xo:x1 i o ixm] =01 .. Ym] < yr = A -x; for some A € R* and all &s. (2.5.3)

The coordinate notation is also more appropriate when one is searching for coordinate charts. The natural smooth
structure on P is obtained starting from a simple observation: the last equality above allows us in principle to
make the first coordinate equal to 1:

X1 Xm
[x0:x1 ... ixp] = {1::...:],
X0 X0

i.e. to use just coordinates from R”; with one little problem- when xy = 0 (this "little problem” is what forces us
to use more than one chart). We arrive at a very natural chart for P”: with domain

U():{[X()ixlZ...me]E]P’mZ)Co#O}

and defined as

X X
XOZU()—)RM, XO([x():xl:...:xm]): (17...,’").
X0 X0

And similarly when trying to make the other coordinates equal to 1:

Sy s yeens
Xi Xio X Xi

2 U =R 2O :x:.. . ix]) = <xo Lirl Xitl x’”>7

defined on U; defined by x; # 0.
Exercise 2.101. Show that, indeed,
(U07%0)7 (Ulaxl)a [ER) (Umvxm)v
is, indeed, a smooth atlas (hence it gives rise to a smooth structure on P").
Remark 2.102 (gluing the antipodal points of the sphere). By rescaling elements x € R™*1\ {0} to force them to

be of norm one or, more geometrically, by intersecting the lines through the origin with the unit sphere, one can
replace R™*1\ {0} by S™ in the discussion above. Hence

P"={l,:xeS"} where,forx,yeS" (I,=1)<= (y=xory=—x) (2.5.4)

and it is not very difficult to show that the quotient topology induced by 7 coincides with the one induced by its
restriction
7'E|Sm 8" — Pm, x = 1.

These allow us to think of P as being obtained from S by gluing any point x € §™ to its antipodal —x. More
elegantly, one may say that we deal with an action of Z, on S, and

P = Sm/Zz,

at least as topological spaces. Notice that one of the gains of using S™ is that it follows right away that P is
compact (as the quotient of a compact space). On the other hand, one could also invoke Theorem 2.87 to make P™
into a smooth manifold. Using the uniqueness part of the theorem, the following should be a rather easy exercise:

Exercise 2.103. Show that the smooth structure induced by the charts (Uy, xx) coincides with the one obtained by
applying Theorem 2.87 to the action of Z, on S given by the reflection x — —x.
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The following exercise show that, when m = 1, P! is not really new: it is diffeomorphic to the circle S! C R?.

Exercise 2.104. Consider the function

2 _\2 2xy
. P! ! ) I (..
f =S8 ) f([x yD <x2+y2 ax2+y2

and do the following:

. show that f is well-defined and smooth.

. show hat f is actually a diffeomorphism.

. after identifying P! with S! using f, what does the map H : S' — P! become?
. explain f with a picture.

RGOS I NS R

Exercise 2.105. Let f : P2 — R* be the function given by

Fx:y:2]) = (xy, yz, 26, > = 2%)  for (x,y,2) € S

Please do the following:

1. check that f is well-defined and write the general formula for f (not only for (x,y,z) in the sphere).
2. compute the representation of f with respect to the charts x of P? (and the identity chart for R?).
3. show that f is an immersion.
4. we also compose f with the projection R* — R? on the first three coordinates,
g::prOf:]P’zﬁ]R%
Show that its image is the following explicit subspace of R3:
1
R:= {(X,Y,Z) eR3:[X],|Y],|Z| < T (XY)? 4 (YZ)? + (zX)? XYZ}
5. ... but this is not an embedded submanifold of R.
6. show that, however, g : P> — R is an immersion everywhere except for six points py,..., pe ...
7. ... but even after removing those six points, g(P?>\ {p1,...,ps}) is not an embedded submanifold of R3.
8. show that, on the other hand,

Ro={(X,Y,Z) €R:XYZ#0}

is an open dense subset of R which is an embedded submanifold of R3, and there is open dense subset P3 C P>
such that g|pz : P§ — Ry is a diffeomorphism.

The image R of g is know as ”the Roman surface”, or the ”Steiner surface” (discovered by Steiner in Rome in
1844, according to Wikipedia). One can actually show that P?> cannot be embedded in R>. The g and R above can
be seen as an attempt to find an immersion of P? in R (non-injective, of course). You may be surprised to hear
that such immersions actually exist. Finding an explicit one is quite a bit more difficult but also very interesting,
and gives rise to Boy’s surface in R3 ... but I let you google this one ...

Exercise 2.106. Show that the smooth structure on P discussed here makes the canonical map
H:S"—=P" H(xp,...,%m) =[x0: ... Xn]
into a submersion.

Exercise 2.107. As a continuation of the previous exercise: show that it is the unique smooth structure on P for
which H is a submersion.
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Remark 2.108 (For the interested students: minimal number of charts). Note that this smooth structure on P is also a first example
in which, at least intuitively, we need many more than just two charts to form an atlas. The question, valid for any manifold M, asking
what is the minimal number of charts one needs to obtain an atlas of M, is a very interesting one. In general one can show that one
can always find an atlas consisting of no more than m + 1 charts where m is the dimension of M (not very deep, but not trivial either!).
Therefore, denoting by Ny(M ) the minimal number of charts that we can find, one always has Ny (M) < dim(M) + 1. The atlas described
above confirms this inequality for P". However, in concrete examples, we can always do better. E.g. we have seen that No(S™) =2
(well, why can’t it be 1?). The same holds for all compact orientable surfaces. Thinking a bit (but not too long) about P”* one may
expect that No(P™) = m+ 1; however, that is not the case. The precise computation was carried out by M. Hopkins, except for the cases
n =231 and n = 47. For those cases we know that N()(IP”) is either 3 or 4, while N()(P‘“’) is either 5 or 6. For all the other cases, writing
m = 2¥a — 1 with @ odd, one has

the least integer > 7’(’[:]1) otherwise

No(B™) = {max{Q.u} ifke{1,2,3}

2.5.4 The complex projective spaces CP™"

Returning to the basics, note that there is a complex analogue of P"; for that reason P is sometimes denoted RIP"
and called the real projective space. The m-dimensional complex projective space CP" is defined completely
analogously but using complex lines , € C"*+!, i.e. I-dimensional complex subspaces of C"*! (and 1-dimensional
is in the complex sense). Again, one can write

CP"={[z0:21 . 2m) : (20,21, --,2zm) € C"T\ {0} }
where [z0: 21 : ... : Z) is just a notation for the line through the origin and the point z = (zp, .. ., z») € C"*!. Hence

zo:z1:.-oizm]=[A-z0:A-z1:...: A 2y fordeC”.
Analogously to the real case, one can realize

CP" = (€™ {0}) /C".
Using R?™ = C™ we can also represent the (2m + 1)-dimensional sphere as:
S = {20, ,zm) € C™MFL 2P 4 H |zwF = 1)
and there is an obvious map
H S 5 CP", H(z0,--,2m) =20 - Zm)-

Intersecting the (complex) lines with this sphere we can realize each line as as [z] with z € $*"*!; two like this,
[z1] and [z5], are equivalent if and only if zp = A - z1, where this time A € S'; i.e. the group Z, from the real case is
replaced by the group S' of complex numbers of norm 1 (endowed with the usual multiplication). We obtain

CP" = S2m+1/Sl.

As for the smooth structure one proceeds completely analogously, keeping in mind the identification C” = R>":
we get a (smooth) atlas made of m+ 1 charts.

o ={(U0, %), Un, ™)}
given by
U={[z0:21:-..:2m) € CP" : z; A0},
xi . Ui S om :RZm’
Ul B2 B

Xzo:z1:eizm)) = (=, —, e,
Zi Zi % Zi
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Remark 2.109 (For the interested students: minimal number of charts for CP™). Note that the change of coordinates is actually given
by holomorphic maps- therefore CP” is also a complex manifold (see Section 2.1.4). Note that m is the complex dimension of CP";
as a manifold, it is 2m-dimensional. As a curiosity: for the minimal number of charts needed to cover CPP", the answer is much simpler
in the complex case:

No(CP™) =

m+1 if miseven
mil o if mis odd

Similar to Exercise 2.104, the following exercise show that, when m = 1, CP! is not really new: it is diffeomor-
phic to the 2-sphere. This will be discussed together with the map

H:S®— CP', H(z0,21) = [z0 : z1]-
The notation H (and A for the map in the next exercise) are related to the name of Hopf (... fibration).
Exercise 2.110. Consider the map
h:S*— 8% h(z0,21) = (|20]* — 213, 2i- %5 21)
or, using real coordinates, & sends (x,y,z,¢) = (x+i-y,z+i-7) to
h(x,y,2,t) = (* +y* — 22 —12,2(yz — 1), 2(xz + yt)).

Show that:

1. h is well defined and it is a smooth submersion.
2. H is a smooth submersion.
3. There exists and is unique a map @ : CP' — 2 such that h = ® o H i.e. a commutative diagram:

/\

—>52

4. @ is smooth.
5. @ is actually a diffeomorphism.

Exercise 2.111. Returning to arbitrary dimensions and the canonical map H : S?"+! — CIP" then, as in Exercise
2.106, show that the smooth structure on CPP™ discussed here is uniquely determined by the condition that the
projection H becomes a submersion. Try to further generalize, and eventually deduce something about smooth
structures on quotients of smooth manifolds.

2.5.5 The torus T*

We now concentrate on 2-dimensional manifolds (surfaces). Some of them (e.g. the 2-sphere and the 2-torus) sit
rather canonically inside Euclidean spaces, but others (e.g. the projective plane or the Klein bottle) do not. The
point is that each one of them is an interesting manifold on its own (completely independent on how it may sit
inside an Euclidean space), each one of them can be “embedded” in an Euclidean space (providing “concrete
models”), but while some of those embeddings are very natural (e.g. the concrete realization of the sphere in R?),
other are not (e.g. any model of the Klein bottle). Therefore, it is interesting to free our mind and to think of them
as abstract manifolds.
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We start with “the torus”- which is the standard name for subspaces of R which look like the surface of
a doughnut; we use it generically for any manifold that is diffeomorphic to such a doughnut surface (or just
homeomorphic, if you are doing Topology ...). There are various ways to produce explicit models and, for each
one of them, the mathematics to make it precise.

Knutsel model: All the surfaces can be obtained from a planar figure, usually a square, after gluing some of its
sides. For the torus, one simply glues each pair of opposite sides of a square, as shown in Figure 2.9. The outcome
is a real-life torus.

Fig. 2.9

The mathematical tool to make this precise is the notion of equivalence relation: given a set/space/manifold M,
an equivalence relation R on M can be thought of as encoding the ”gluing information” (so that we will be gluing
precisely the equivalent points of M), and the the quotient space M /R can be thought of as the result of the gluing.
Recall that

M/R={R(x):x €M},

where R(x) is the R-orbit through x € M (also called the equivalence class of x), R(x) = {y € M : (x,y) € R}. Hence
an element/point of M/R is an entire equivalence class, and the intuition that “we glue precisely the equivalent
points” takes the precise form:

R(x) =R(y) < (x,y) € R.

The fact that “the points of M /R are obtained from those of M” is made precise by/encoded in the surjective map
Tean - M — M/R

that sends x to R(x), called canonical projection. This projection is very important since it allows one to under-
stand/study the quotient M /R by relating it to M For instance, if M is a topological space, then it is natural to look
for topologies on M /R that make 7.,, continuous and, among those, pick up “the most interesting one”. That is
what is known in Topology as the quotient topology on M /R, defined by:

V —openin M/R <— n_]

can

(V) —openin M.

When M is a manifold, the question of whether M /R admits a “canonical smooth structure” is more subtle; we will
return to it later on.

Back to the torus, the relevant space is M = [0, 1] x [0, 1], two points x,y € M are (declared) equivalent if they
get glued to each other, i.e. if

R1: x=y,or
R2: x=(#,0) and y = (¢,1) with ¢ € [0, 1], or the other way around, or
R3: x=(0,s) and 7 = (1,s) with s € [0, 1], or the other way around.

This defines an equivalence relation Rorys and the conclusion is that [0, 1] X [0, 1] /Ryors is @ precise (though quite
abstract) version of the torus, defined now as a topological space.
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One way to exhibit a smooths structure on the abstract model without making use of the concrete ones (to be
discussed below) is by noticing that the equivalence relation Ry, comes from a group actions on the entire plane
R?. The group is (Z?,+) acting on R? by

(n7m) ’ (xay) = (x—i—n,y—i—m)

Notice now that the corresponding equivalence relation R,> on R? has the following properties:

« each point in R? is equivalent with at least one point in the square [0, 1] x [0, 1];
p q p q ) )
* the restriction from R? to the square is precisely the equivalence relation Ryys from the knutsel model.

It follow that
[0,1] % [0,1]/Riorus = R* /7.
Finally, R?/Z? has a smooth structure (unique, by Corollary 2.84) with the property that the projection 7 : R> —

R? /77 is a submersion. This can be seen directly, or one could now invoke Corollary 2.91.

Remark 2.112 (“knutsel models” for S* and P?). For the surfaces that arise in the last two sections, the sphere $2
and the projective plane IP?, one can describe similar “knutsel models”. For S2, the procedure is pretty clear and is
described in Figure 2.10.

x

Fig. 2.10

For P2, since it cannot be realised inside R3, it is a bit harder to use the intuition; actually, one may even claim
that a “knutsel model” helps in picturing how the projective plane actually looks like.

The model is shown in Figure 2.11 but it still requires a little explanation: the disk in the picture is the unit disk
D? C R?. The reason that it appears is that it can be used to “parametrise” P>. More precisely, any y € D? gives
rise to a line /(y) C R? as follows: the perpendicular on the horizontal plane x, = 0 going through y intersects the
northern hemisphere S2 = {x € § : x, > 0} into a point y, and then [(y) is the line through the origin and y. All
lines arise in this way, just that some different ys may give the same line. Actually, one remarks right away that

I(y)=1(y") <= y=y"orycdD*(=Sl)andy = —y’.

Fig. 2.11

Therefore, P? can be thought of as obtained from D? by gluing any point in the boundary with its opposite. This
is precisely what the disk in the picture describes, while the passing to a square model should be clear. v/

Beweging model: For the next model of the torus one has to move a bit as follows: place yourself perpendicularly
on the XOY plane with your chest at the origin O, take a circle of some radius r (... smaller than the length 7 of
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your hand), hold it by its center (you find a way to do that ...) and then rotate yourself a full 360 degrees. The locus
spanned by the circle will be a torus. This description translates mathematically into a parametrised version of the
torus. To that end, notice that the points in the resulting tous are determined by the angles a and b as shown in the
picture.

Fig. 2.12

Computing the resulting coordinates, one obtains the parametric description:
T? = T%r = {((F+r-cosa)cosb, (F+r-cosa)sinb, r-sina) : a,b € [0,2n]} C R>. (2.5.5)

Denoting the coordinates by x,y,z and eliminating a and b using sin® +cos> = 1 one finds the implicit description

2
T? = {(x,5,2) €R’: (\/x2+y2—?) +22=r}. (2.5.6)
Exercise 2.113. Use the regular value theorem in R3 (see Theorem 2.94) to conclude that Trzr is a manifold.
This concrete model of the torus is related to quotient one as follows. First of all, it is related to the square via
F:00,1]x[0,1] = T2, (1,5) — ((F+r-cos 2mt)cos2ns, (F+r-cos 271)sin27s, r-sin 271).

This map has the property that f(x) = f(y) holds precisely in one of the cases (R0)-(R2) described above, hence it
induces a bijection between [0, 1] x [0, 1]/R and T2, (and one can also check that this is actually a homeomorphism).

The geography model: But probably the shortest description of the torus is simply S x S!. The fact that such a

product, a priori sitting inside R? x R? = R*, can be realised inside R?, is interesting on its own. On the other
hand, the fact that the standard models inside R3 can be interpreted as such a product amounts to realising that
the torus carries a longitude X latitude grid. This is indicated in Figure 2.13, where the red/blue circles stand for
“longitude/latitude lines”; looking at a general point in the torus one sees that, through it, there passes precisely one
blue and one red circle. Fixing some reference point on the torus (which will play the role of ’null Island point™)
one obtains a 0-longitude (red) circle and a 0-latitude (blue) circle, which will play the role of ’coordinate axes”:
any point on the torus will have a ”longitudinal coordinate” obtained by intersecting the red circle through it with
the O-latitude (blue) circle and, similarly, a "latitudinal coordinate”. We see that the coordinates are now elements
of the circle and, therefore, one gets a pair (z1,2) with z;,z, € S ' 8! as coordinates.

In the explicit description (2.5.5), the coordinates of a point in the torus will be simply z; = ¢ and z, = ¢'?.
To emphasise that everything works out smoothly we formulate the next exercise, but we should also mention that
the most elegant way to do it can be carried out only later on, after we discuss tangent spaces (Exercise 2.114 to
come).

Exercise 2.114. Prove that
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Fig. 2.13

fo:S' xSt = T?  (e,e") = ((F+r-cosa)cosh, (F+r-cosa)sinb, r-sin a)
is a diffeomorphism, where 7% = T2 .
All together, one obtains a sequence of diffeomorphisms

R?/Z* =2 S' xS' = T2 (t,5)+Z* — (e*™,*™) s (F+r-cos 27t)sin27s, r-sin 27t).

r,r

Notice however that that the description of the torus as R? /Z? is closest to the one provided by the knutsel model.
Indeed, the square [0, 1] x [0,1] C R? interacts with equivalence relation Ri- (I" = Z,) on R? as follows:

» each point in R? is equivalent with at least one point in the square [0, 1] x [0, 1];
« the restriction of the equivalence relation from R? to the square is precisely the equivalence relation Riorys from
the knutsel model.

The full torus: The torus also comes with a "full-version”. Playing the game from Fig 2.12, one would now need
to grab and rotate a full 2-dimensional disk of radius r,

D} ={(x,y) € R*: " +y* <7}

The outcome will be a subspace
T2

r,r,soli

3
q C R
Extending the computation we did for the torus to the full torus, one obtains a parametrization

{(F+ru)cosa, (F+ ru)sina,v) : a € [0,27], (u,v) € D*},

2 —
r,rsolid —

where D? is the unit disk; this gives rise to the following analogue of (2.5.6):

2
Frsoia = {60 € B (V@472 =7) 42 < 72,
as well as to a diffeomorphism

f:S'xD* =712 (e, (u,v)) — (F+ru)cosa, (F+ ru)sina, rv). (2.5.7)

7,rsolid?

Exercise 2.115. Show that 72

wolia is a manifold with boundary, and that it is diffeomorphic to § 1'% D%

Of course, the diffeomorphism from the exercise, when restricted to the boundary, will become the diffeomor-
phism between 72 and S! x S' discussed above.
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And here is a very nice property of the solid torus, that one sometimes states simply as: the 3-sphere can be
obtained by gluing together two solid tori along their boundary. The following exercise explains this process and
its interaction with the Hopf map from Exercise 2.110.

Exercise 2.116. Consider again the Hopf map in the explicit form
h:S3— 8% h(x,y,z,t) = (P +y* =2 —12,2(yz—xt),2(xz+yt)).
Consider also the decomposition of S? into the open upper and lower hemispheres,
2 ={(u,v,w) €S :u>0}, % ={(u,v,w)€S*:u<0}
with the common intersection the circle identified with
§'=52Nn8% = {(u,v,w) €S* 1 u=0}.

Show that:

1. each of the hemispheres are manifolds with boundary diffeomorphic to the unit disk D?.
2. the pre-image of the common circle S' via 4 is homeomorphic to the torus.
3. the pre-image of the upper/lower hemisphere via & is homeomorphic to the solid torus.

Therefore, the pre-image via & of the decomposition > = Si US? becomes a decomposition of S3 into two copies
of the solid torus.

Note that we do not quite have yet the theoretical foundation to make this exercise into a ”smooth one”; but,
with the right concepts, all the homeomorphisms will become smooth (diffeomorphisms).

2.5.6 The Moebius band

The most popular manifold with boundary is the Moebius band. According to wikipedia, it “is a surface that can
be formed by attaching the ends of a strip of paper together with a half-twist. As a mathematical object, it was
discovered by Johann Benedict Listing and August Ferdinand Moebius in 1858, but it had already appeared in
Roman mosaics from the third century CE.” Here we look at it following the same lines of the discussion of the
torus.

Fig. 2.14

Knutsel model: Most probably, the way that the Moebius was first shown to you was by using a long strip of paper
and gluing two of its edges not in the most obvious way (that would give you a cylinder), but first twisting the
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strip creating a ribbon. Of course, “long strip” is so as to have a nice model made of paper (without rupturing the

paper); in principle, this is again about the unit square [0, 1] x [0, 1], where we now glue two of its opposite edges
while changing their orientation, as shown in Figure 2.15.

LY

I: Start with [0, 1]x[0, 1] II: approach the vertical sides
(the orientations do not match!)
TII: twist so that the orientations of the IV: the Moebius band

sides match

Fig. 2.15

More precisely (from a mathematical viewpoint), we deal with the quotient space [0, 1] x [0,1]/Rmoe Where
RMoe is the equivalence relation described as follows: two points x = (¢,s),x’ = (',5') € [0,1] x [0, 1] are declared
equivalent if:

R1: (¢,5) = (¢,s), or
R2: t=0,'=1ands =1—s, or
R3:t=1,/=0ands =1—s.

This makes sense of the Moebius band as a topological space, living on its own (independent on how we choose to
embed it inside an Euclidean space).

Beweging model: To produce a model inside R? that can be described in formulas, we proceed like we did for the
torus. We place ourselves in the same position (perpendicular on the XOY plane, etc), but now holding a stick by
its middle, ands while rotating ourselves a full 360 degrees, we rotate the stick by 180 degrees (turning it upside
down). Of course, we assume the rotations to be uniform (constant spead). See Figure 2.16. To write down explicit
formulas then, again, we denote by 7 the length of the arm, and by r half of the length of the stick. The starting
position is the segment AgBy perpendicular on XOY with middle point Py = (7,0,0). At any moment, the segment
stays in the plane through the origin and its middle point, which is perpendicular on the X OY plane.

We parametrise the movement by the angle a shown in the picture. At any moment a, the segment stays in the
plane perpendicular on the X OY plane that goes through the origin and the middle point

P, = (¥cos(a),rsin(a),0).

At this moment, the precise position of the segment, denoted A,B,, is determined by the angle that it makes with
the perpendicular on the plane X OY through P,; call it b. This angle depends on a. Due to the assumptions (namely
that while a goes from 0 to 27, b only goes from 0 to 7, and that the rotations are uniform), we have b = a/2 (see
2.16). We deduce

Ay = ((7+r sing) cos(a), (7+r sin%) sin(a), r cos g) .

and a similar formula for B, (obtained by replacing » by —r). One obtains the following explicit model for the
Moebius band:
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o
45

RN
Polf r

B, rsin(a/2)

Explicit realization of the Moebius band in \Rl M Rt

Fig. 2.16

M;, = {((7+tr sing) cos(a), (7+tr sin%) sin(a), tr cosg) ta€l0,2n],t € [—1, l]} (2.5.8)
= {((F+1trsinb)cos2b, (F+trsinb)sin2b, tr cosh) : b € [0, 7], € [—-1,1]}

Exercise 2.117. Show that M;, C R3 is, indeed, a manifold with boundary, and a different choice of r and 7
produces diffeomorphic manifolds.

To fix one concrete model, one usually takes 7 =2 and r = 1.
Exercise 2.118. Consider f : [0,1] x [0, 1] — R3 given by
ft,s) =((2+ (2s—1) sin(7mr)) cos(2nt), (24 (25— 1) sin(xt)) sin(27t), (25 — 1) cos(mt)).

Check that f(¢,s) = f(¢',s") holds only in one of the situations R1-R3 above. Deduce that the abstract Moebius
band [0, 1] x [0, 1]/Ryoe is homeomorphic to the Ms | C R3.

The model inside the tautological bundle over P': The explicit model M;, clearly lives inside the solid torus 75,

and, via the identification of the solid torus with S! x D?, see (2.5.7), it is clear that M5, will be identified to the
following subspace

{(ei“,te%) ceheste [—1,1]} cS'x D%

Now, the key remark is that the appearance of ¢/“ and e together is at the very heart of the diffeomorphism
between P! and S' mentioned in Exercise 2.104; indeed, that diffeomorphism takes the line through e? precisely
to the point ¢ € S'. Therefore, pairs (ei“7te%) as above may be interpreted as a pairs (,¢z) with z € S' and

t € [—1,1]. We discover the so-called tautological line bundle over P!,
E={(,v) eP' xR?*:vel} cP'xR%

Inside it there are various subspaces obtained by posing conditions on |v|, such as

E<qi={(,v)eE:|v|<1}, Eci={(l,v)€E:|v| <1}, etc,
and the conclusion is that we have a diffeomorphism

E<i — M;,, (l,z)— ((F+trsinb)cos2b, (r+trsinb)sin2b, tr cosb),
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where b € [0,7] and ¢ € [—1, 1] are chosen so that / is the line through the origin and ¢, and z = te®. Of course,
E . corresponds to the open Moebius band, while the smaller E<¢ — Ej correspond to thiner Moebius bands.
The model inside P?: Another copy of the Moebius band can be detected inside the projective plane P?. To visu-
alise it, we use the model for the projective plane that was mentioned in Remark 2.112: as the space obtained from
D? by gluing the antipodal points on its boundary. Consider inside D? the “band”

1 1
B:{(x,y)EDZ:—E §y§5}.CD2.

The gluing process that produces P? affects B in the following way: it glues the “opposite curved sides” of B as in
the picture (Figure 2.17), and gives us the Moebius band.

v

The Moebius band inside the projective plane

g

Fig. 2.17
Paying attention to what happens to D?> — int(B) in the gluing process, you see that it contributes with a copy of
the closed disk.

Exercise 2.119. Fill in the details and deduce that P? can be obtained by starting from a Moebius band and a disk,
and gluing them along the boundary circle.

As a quotient modulo a group: To continue the analogy with the discussion from the torus, let us point out that

the Moebius band can also be realised as a quotient modulo a group action. Again, the group is Z> acting on the
space R?, but with the action:

2.5.7 The Klein bottle

A good friend of the torus is the so called Klein bottle, call it K.

Knutsel model: As for the torus, it can be obtained from a square by gluing each pair of opposite edges, as shown
in Figure 2.18, i.e., changing the orientation in one of the pairs.

Beweging model: We leave it to the imagination of the reader to find motions that produce the Klein bottle. One
ends up with an explicit model of K as a subspace of R*:

K ={((2+cos(a))cos(b), (2 + cos(a))sin(b),sin(a)cos(b/2),sin(a)sin(b/2)) : a,b € [0,27]} . (2.5.9)
Exercise 2.120. Explain why this subspace of R* can be interpreted as the result of the gluing from Fig. 2.18.

Crafting the torus: Next, we point out that the Klein bottle is to the torus what the projective space is to the sphere:
a quotient which is obtained by gluing “antipodal points”. To see this, we go back to the square used to obtain the
Klein bottle. Since the gluing is so problematic, let us mirror the square as in the picture; to get the Klein bottle we
would first have to fold the longer square back (a gluing process itself) and perform the original gluing. However,
in the longer square, the gluing that of the opposite side (which was problematic at the beginning) disappears: we
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e/

Fig. 2.18 Construction of the Klein bottle by gluing: Take a rectangle and glue the sides b together to get a cylinder. Then twist one
end around so that the remaining a sides can be glued together in opposite orientation from what we would do to get a torus. Note
that when visualizing this in R3, we are forced to create a self intersection when pulling the a sides close, but this does not affect the
abstract topological gluing procedure.

can perform it and we get precisely the torus! However, to get the Klein bottle we see we have to keep on going
and finish gluing the rest. Inspecting the picture, it will eventually be clear that what we still have to do is to glue
points in the torus which are “antipodal” (reflections of each other with respect to the origin).

This can be further interpreted as a quotient of the torus modulo a Z,-action, similar to P> = 52 /Z,:

K=T/Z,.

Realising the torus as 7 = S' x §!, the action of Z, is simply given by (z1,22) + (—z1,—22). While part of this
discussion is purely topological and “hand waving”, the last description we achieved is precise and makes sense in
the realm of smooth manifolds. Actually, one can now apply Theorem 2.87 right away and make K into a smooth
manifold.

Gluing two Moebius bands: In general, given two manifolds with boundary (subsection 2.1.4) N| and N,, if they
have the same boundary, they can be glued along their boundary producing a new manifold,

Nl U8N27

(now a manifold without boundary!). Making this precise is not completely trivial, but the statement should be
clear intuitively. For instance, if Nj is the unit disk, and N, C R2 consists of vectors of norm > 1, then N, Uy N, is
precisely R2.

This construction can be applied in particular to Ny = N, = M the Moebius band. Using the knutsel model for
M, Figure 2.19 indicates that the outcome is precisely the Klein bottle.

Still to glue: the green (u) and the violet (v),
¢. the boundary circles of the Moebius bang

Fig. 2.19
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Exercise 2.121. Explain how the picture describes the Klein bottle as the result of gluing two Moebius bands.

2.5.8 ... and the rest

Of course, the spaces that we have mentioned here: the torus, the Klein bottle, the 2-sphere S> and the projective
plane P2, they are all examples of surfaces or, in our language, of 2-dimensional manifolds. One may remember
from other courses (Meetkunde een Topologie?) that, at least topologically, surfaces are classified into:

* orientable ones: the sphere S2. the torus T and then, for each g, the torus with g-wholes 7, (g-times connected
sum of T with itself).

* non-orientable ones: the projective plane P2 and, similar to T, the spaces P, obtained as the connected sum of
h copies of P2.

The same classification result holds also in the smooth context. But, before that, one has to make sense of all
these spaces as smooth manifolds. And that can be done using some basic very general operations with manifolds:

* Manifolds with boundary (subsection 2.1.4), N and N,, if they have the same boundary, they can be glued
along their boundary producing a new manifold,

Nl U() N27

now a manifold without boundary!

* Given an m-dimensional manifold without boundary M, after removing a small open ball (in a coordinate
chart) one obtains a manifold with boundary; let us denote it M° and call it cut-M". It boundary is just §"!.
Hence, if we have two m-dimensional manifolds M; and M, and we consider their cuts, we can just apply the
gluing from the previous point. Hence one gets a new m-dimensional manifold,

MMy := M7 Ugn1 M5,

called the connected sum of M; and M.

To do all of this in detail and properly (e.g. to see that the connected sum does not depend on how we remove the
balls) requires a bit of work which goes beyond the scope of this course. But the intuition should be clear. And it
can be applied right away: in this way all the surfaces

T, =Tt...4T
——
g times

and
P, =P?4.. tP?
N—_——

h times

become smooth manifolds. Furthermore, various constructions that you may have seen already in Topology,
makes sense in the context of smooth manifolds. For instance the fact that the projective space P? can be described
as obtained by gluing a disk D? to the Moebius band:

P? = Moebius U, D.

In turn, this property can be read a bit differently: the cut projective space (i.e. after removing a ball) is the Moebius
band. Therefore, for any 2-dimensional manifold M, the operation of taking the connected sum with P2,

P2$M
means: remove a ball from M and, along the boundary circle, glue back a Moebius band.

Exercise 2.122. You should convince yourself now that the Klein bottle can also be described as



2.5 Examples 75

glue the f
Cut a small [ <——> 1|
disk from U circles |

each tori

Fig. 2.20

K = P*4P2.

2.5.9 Grassmanians

Similar to considering lines through the origin (i.e. 1-dimensional vector subspaces) in R"*! like we did for P",
Grassmannians are obtains when considering higher dimensional subspaces. More precisely, one defines

Gi(R™™) := {V C R"* . V is a k-dimensional vector subspace of R"™*}.

To introduce the smooth structure, we fix an point V € G;(R"*) and look at “nearby points”. Using the standard
inner product on R"**, we consider the orthogonal V- C R"**, so that we have a direct sum decomposition

Rn+k — V@VL

The key idea is based on the intuition that, if V is thought of as an “OX” axis (and V' as OY), k-dimensional
sub-spaces that are “close to V" look like graphs of function (from our OX to our OY). This takes the precise form
of associating to any linear map L : V — V- the k-dimensional subspace of R"**:

Vpi={v+L(v):veV} R,

Of course, V corresponds to L = 0. We now define

Op(V) := {VL :L € Lin (V,vi) } :

2.5.10 More examples: classical groups and ... Lie groups

One very interesting (and special) class of manifolds are the so-called Lie groups: they are both groups, as well as
manifolds, and the two structures are compatible:

Definition 2.123. A Lie group G is a group which is also a manifold, in a compatible fashion, i.e., such that
the multiplication m : G x G — G, m(g,h) = gh, and the inversion 1 : G — G, 1(g) = g~ ', are smooth maps.
A Lie group homomorphism between two Lie groups G and H is any group homomorphism f : G — H

which is also smooth. When f is also a diffeomorphism, we say that f is an isomorphism of Lie groups.
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Example 2.124. The unit circle S', identified with the space of complex numbers of norm one,
S'={zeC:|z =1},
is a Lie group with respect to the usual multiplication of complex numbers. Actually, we see that
st=su(1).

Example 2.125. Similarly, the 3-sphere S> can be made into a (non-commutative, this time) Lie group. For that
we replace C by the space of quaternions:

H={x+iy+ jz+kt:x,y,z,t € R}

where we recall that the product in H is uniquely determined by the fact that it is R-bilinear and i = j*> = k* =
—1,ij =k, jk =i ki = j. Recall also that for

u=x+iy+jz+kt €

one defines

w=x—iy—jz—kt € H, |u|=Vuu*=/x2+y>+22+12€R.
Then, the basic property |u-v| = |u| - |v| still holds and we see that, identifying > with the space of quaternionic
numbers of norm 1, §* becomes a Lie group.

Remark 2.126 (For the interested students: spheres, Lie groups, etc). One may wonder: which spheres can be made into Lie groups?
Well, it turns out that S, S! and $* are the only ones!

On the other hand, it is interesting to understand what happens with the arguments we used for S! and S° (and which were very
similar to each other) in higher dimensions. The main point there was the multiplication on C and H and the presence of a norm such
that

x-y| =[x |yl (2.5.10)

(so that, for two elements in the sphere, i.e. of norm one, their product is again in the sphere). So, to handle S” similarly, we would need
a “normed division algebra” structure on R"!, by which we mean a multiplication - on R"*! that is bilinear and a norm satisfying
the previous condition. Again, it is only on R, R? and R* that such a multiplication exists. If we do not insist on the associativity of
the multiplication, there is one more possibility: R® (the so called octonions). But nothing else! And this was known since the 19th
century! But why did people care about such operations in the 19th century? Well ... it was number theory and the question of which
numbers (integers) can be written as a sum of two, three, etc squares. For sum of two squares the central formula which shows that a
product of two numbers that can be written as a sum of two squares can itself be written as a sum of two squares is:

(X* +y*)(a* + b*) = (xa — yb)* + (xb+ ya)*.

Or, in terms of the complex numbers z; = x + iy, z2 = a;b, the norm equation (2.5.10). The search for similar “magic formulas” for sum
of three squares never worked, but it did for four:

P+ 2+ (PP P+ d?) =

(xa+yb+zc+1d)? + (xb — ya —zd +1c)*+
+(xc+yd — za—th)? + (xd — yc +zb — ta)>.

This is governed by the quaternions and its norm equation (2.5.10).

Example 2.127 (GL,). Probably the most important example is the general linear group GL,(R), consisting of
n X n invertible matrices with real entries:

GLA(R) = {A € Myun(R) : det(A) # 0}

They sit inside the space of all n x n matrices (for some n natural number)- which is itself a Euclidean space (just
that the variables are arranged in a table rather than in a row):
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2

Myxn(R) 2R .
Furthermore, since the determinant is continuous as a map
det: Myxn(R) = R,
it follows that GL,(R) is open inside .#,(R). Therefore GL,(R) inherits a natural smooth structure: the one
induced by the atlas consisting of one single chart (with image open in an):

GL.(R)3A=(A); X5 (Al ALA},... A2 A%,... ,Al) €R".

Hence, indeed, GL,(R) is a Lie group of dimension n2. A similar discussion applies to matrices with complex
coefficients, giving rise to a similar Lie group GL,(C); identifying C with R?, one has:

%Xn(c) I~ R(Z")z,
so that GL,(C) will be a Lie group of dimension 4n°.

Example 2.128 (subgroups of GL,). Inside the GL,s one can find several interesting Lie groups such as

* the orthogonal group: O(n) = {A € GL,(R) : A-AT =1} (where AT denotes the transpose of A).
* the special orthogonal group: SO(n) = {A € O(n) : det(A) = 1}.

* the special linear group: SL,(R) = {A € GL,(R) : det(A) = 1}.

* the unitary group: U(n) = {A € GL,(C) : A-A* =1} (where A* is the conjugate transpose).

* the special unitary group: SU (n) = {A € GL,(C) : A-A* =1 ,det(A) = 1}.

» the symplectic group: Sp,(R) := {A € GLy,(R) : ATJA = J}, where

J= <I(i _0[") € GLy,(R). (2.5.11)

Each one of these caries a natural smooth structure; actually, they are all embedded submanifolds of the corre-
sponding (Euclidean) spaces of matrices (see below). Since the group operations are restrictions of the ones of the
GL,s, they will continue to be smooth- so that all these groups will be Lie groups.

For the claim that they are embedded submanifolds of GL, C .#,x,, since they are all given by (algebraic)
equations, there is a natural to proceed: use the regular value theorem (Theorem 2.66). As an illustration, we
provide the details for the case of O(n).

Example 2.129 (the regular value theorem approach in the case of O(n)). The equation defining O(n) suggest
we should be looking at
f:GLy(R) = Mypxn(R), f(A)=A-AT.

However, it is important to note that the values of this function takes values in a smaller Euclidean space. Indeed,
since in general, (A-B)” = BT - AT the matrices of type A-A” are always symmetric. Therefore, denoting by .7,
the space of symmetric n X n matrices (again a Euclidean space, of dimension w), we will deal with f as a
map

f:GLy(R) = .%,.

(If we didn’t remark that f was taking values in .}, we would not have been able to apply the regular value
theorem; however, the problem that we would have encountered would clearly indicate that we have to return and
make use of ., from the beginning; so, after all, there is no mystery here).
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Now, f is a map from an open in a Euclidean space (and we could even use f defined on the entire ., «,(R)),
with values in another Euclidean space; and it is clearly smooth since it is given by polynomial expressions. So, at
each point A € GL,(R), the differential of f at A,

(df)A : %nxn(R) —

can be computed by the usual formula:

d d
(@f)aX) = = flA+1X) = - (A-AT +1(A-XT+AT X)+2X XT) =A- X" +x-AT.
t=0 t=0

Since O(n) = f~1({I}), we have to show that (df)4 is surjective for each A € O(n). Le., for Y € .#,, show that the

equation A-X7 +X -AT =Y has a solution X € Muxn(R). Well, it does, namely: X = %YA (how did we find it?).

Therefore O(n) is a smooth submanifold of GL,, of dimension n? — @ = @

Exercise 2.130. Do the same for the other groups in the list. At least for one more.

On the other hand, instead of doing a case-by-case analysis, one can also invoke the following general result:

Theorem 2.131. Any closed subgroup of GL,(R) or GL,(C) is automatically an embedded submanifold
and, therefore, becomes a Lie group.

Of course, this theorem is very useful and one should at least be aware of it. A proof will be given at the end of
this section.

Example 2.132 (low dimensions). For n small, the classical subgroups of GL, have can be further recognized as
manifolds/groups that we have already looked at. Here are a couple of examples which we leave as exercises:

Exercise 2.133. Show that

f:8'=50(2), f(xy)= (:;i)

is an isomorphism of Lie groups.
Exercise 2.134. Show that
-Ba

where we interpret S° as {(a, ) € C?: |a|*> +|B|*> = 1}, is an isomorphism of Lie groups.

F:$*—SU(2), F(O"ﬁ):( aﬁ)

By analogy with the last example, one may expect that $* is isomorphic also to SO(3) (at least the dimensions
match!). However, the relation between these two is more subtle:

Exercise 2.135. Recall that we view S inside H. We also identify R> with the space of pure quaternions
R3S {veH:v+v* =0}, (a,b,c) — ai+bj+ck.

For each u € 3, show that Ay, (v) := u*vu defines a linear map A, : R3 — R3 which, as a matrix, gives an element
A, € SO(3). Then show that the resulting map

0:5° —>5S03), u—A,

is smooth, is a group homomorphism, is a surjective local diffeomorphism, but each fiber has two elements (it is a
2-1 cover). Finally, deduce that SO(3) is diffeomorphic to the real projective space P3.
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Exercise 2.136. The aim of this exercise is to show how GL,(C) sits inside GL,(R), and similarly for the other
complex groups. Well, there is an obvious map

j:GLu(C) = GLon(R), A+iB s (_AB/’D.

Show that:

1. j is an embedding, with image {X € GLy,(R) : J-X = X -J}, where J is the matrix (2.5.11).
2. j takes U(n) into O(2n).
3. actually j takes U(n) into SO(2n).

(Hint for (3): prove that det(j(Z)) = |det(Z)|? for all Z € GL,(C). For this: show that for B invertible, there exists

a matrix X € GL,(R) such that
A B\ (XO0\(1 X "\(BO
—BA) \OI)\-1I X 0B

Proof (of Theorem 2.131 ... for the interested students). We will be using the exponential map of matrices (exp(4) =Y, f;—’;), which
can be seen as a smooth map
exp: '//nxn —GL, C '%nxn

Since its differential at the zero-matrix is

d
(dexp)g : Muxn = Muxn, X+ 7 exp(rX) =X,
=0

the inverse function theorem implies that exp restricts to a diffeomorphism between some open neighborhood of 0 € .7, to an open
neighborhood of I € GL,,. The resulting inverse, that could be called "logarithm”, can then be interpreted as chart for GL,,.
For closed subgroups G C GL,, there is a rather simple idea to exhibit a smooth structure on G: looking for matrices whose expo-
nential lands in G one introduces
9:={X € Myxn:exp(tX) €GV 1 ER} C Myxn(R), (2.5.12)

and the idea is to use exp|q to produce a chart for G around exp(0) = / (the identity matrix); for charts around other points A € GL,,
one uses the group structure to move from / (and around) to A. Of course, exhibiting charts on G to make G into a manifold would
not be necessary if we manage to prove (as stated) that G is an embedded submanifold. The point of the simple idea above is that it
can actually be adjusted to provide not only charts for g but also adapted charts- therefore proving the stronger statement that G is an
embedded submanifold. Time to start the proof!

Therefore, assume that G C GL,,; for simplicity, assume we work over R. We introduce g given by (2.5.12). It is handy to realize
what G being closed implies about g: to ensure that exp(zX) € G holds for all t € R, it suffices that it holds for a sequence #; — 0 of
nonzero real numbers. The proof actually reveals something slightly stronger:

Lemma 2.137. Given a matrix X, if there exists a sequence of nonzero real numbers with t; — 0, and a sequence of matrices X; — X
such that exp(t;X;) € G for all i, then exp(tX) € G for all t (i.e., X € g).

Proof. Since exp(—Y) =exp(Y )’l for all Y, after eventually changing the signs of some #;s and ¢, we may assume that #; > 0 for all i
and that we are looking at exp(#X) with # > 0. Fix ¢. For each i, the positive number 7 /#; sits in an interval [k;, k; + 1] for some integer
ki. One finds that r —#; < k;t; <t, i.e. we managed to write our 7 as a limit of integer multiples of the #;s- namely # = lim;_, k;f;. In turn,
this allows us to write exp(zX) as a limit of elements of G:

exp(tX) = limexp(kit;X;) = lim exp(1;X;)~.

i—o0 i—o0

Since G is closed, we obtain exp(tX) € G.

With this lemma at hand one can now show that the sum of two matrices X,Y € g is again in g. Indeed, writing

' t
Xt = em), with  lim & =X+Y,
=0 f
fta)

take f, to be any sequence of real numbers converging to 0 and X, = . It follows that g is a vector subspace of .#,,. In turn, this

n
allows us to choose a complement g’ of g in .., (R)- which is needed to adapt the original idea we mentioned above to proving that
G is an embedded submanifold. More precisely, we aim to show that one can find an open neighborhood V of the origin in g, and a
similar one V' in g/, so that

¢:VxV = GL,0(X,X') =X -
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is a local diffeomorphism onto an open neighborhood of the identity matrix and so that
GNo(VxV)={p(+,0):veV}. (2.5.13)

This means that the submanifold condition is verified around the identity matrix and then, using left translations, it will hold at all
points of G. Note also that the differential of ¢ at O (with ¢ viewed as a map defined on the entire g x g') is the identity map:

d !
(d§)o:gx g — TiGLy, = Mpxn(R), (X, X') 0 XX =X 4 X'
=0

In particular, ¢ is indeed a local diffeomorphism around the origin. Hence the main condition that we have to take care of is (2.5.13),
i.e. thatif X € V, X’ € V/ satisfy eX X' € G, then X' = 0. Hence it suffices to show that one can find V' so that

X eV, eG=Xx =0

(then just choose any V small enough such that ¢ is a diffeomorphism from V x V' into an open neighborhood of the identity in GL,).
For that we proceed by contradiction. If such V/ would not exist, we would find a sequence ¥, — 0 in g’ such that ¢ € G. Since ¥,
converges to 0, we find a sequence of integers k,, — oo such that X, := kY, stay in a closed bounded region of g’ not containing the
origin (e.g. on {X € g’ : 1 <[|X|| <2}, for some norm on g’); then, after eventually passing to a subsequence, we may then assume that
X, — X € ¢’ for non-zero X. On the other hand, setting t,, = ki,,’ we see that e"*n = ¢"» € G hence Lemma 2.137 would imply X € g,

providing the desired contradiction. é

For closed subgroups G C GL,, the spaces g used in the proof above (given by (2.5.12)) are not just a tool but, as we shall see above,
are of fundamental importance: they are are the linear counterpart of Lie groups and, together with the relevant algebraic structure, they
contain almost all the information on G. The relevant structure is, besides that of vector space, the one provided by the commutator of
matrices:

[X,Y]=XY -YX.

Using an argument similar to the one we used to prove that g is a vector subspace of .#,,, you can now try to show the following:
Exercise 2.138. Given a closed subgroup G C GL,, show that g is closed under the commutator bracket of matrices:
XYeg=[X,Y]eg

(Hint: use an argument similar to the one we used to prove that g is a vector subspace of .#,,,, making use of Lemma 2.137).



Chapter 3
Tangent spaces

3.1 Intro

So far, the fact that we dealt with general manifolds M and not just embedded submanifolds of Euclidean spaces
did not pose any serious problem: we could make sense of everything right away, by moving (via charts) to opens
inside Euclidean spaces.

However, when trying to make sense of “tangent vectors”, the situation is quite different. Indeed, already intu-
itively, when trying to draw a “tangent space” to a manifold M, we are tempted to look at M as part of a bigger
(Euclidean) space and draw planes that are "tangent” (in the intuitive sense) to M. The fact that the tangent spaces
of M are intrinsic to M and not to the way it sits inside a bigger ambient space is remarkable and may seem coun-
terintuitive at first. And it shows that the notion of tangent vector is indeed of a geometric, intrinsic nature. Given
our preconception (due to our intuition), the actual general definition may look a bit abstract. For that reason, we
describe several different (but equivalent) approaches to tangent spaces. Each one of them starts with one intuitive
perception of tangent vectors on R™, and then proceeds by concentrating on the main properties (to be taken as
axioms) of the intuitive perception.

However, before proceeding, it is useful to clearly state what we expect- i.e. a list of “wishes” for whatever we
are looking for:

* TWI. Tangent spaces: for M-manifold, p € M, have a vector space T,M.

* TW2. Differentials: for smooths map F : M — N (between manifolds), p € M, have an induced linear map
(dF)p : TpM — TF(p)N,

called the differential of F' at p. For the differential we expect, like inside R":
— F =1Idy : M — M is the identity map, (dF), should be the identity map of 7,M.
— The chain rule: for M 5 N % P smooth maps between manifold and p € M,

(dGoF)p=(dG)p(y o (dF)p.

¢ TW3. Nothing new in R™: Of course, for embedded submanifolds M C R™ these tangent spaces should
be (canonically) isomorphic to the previously defined tangent spaces 7,M and dF should become the usual
differential.

We also expect that embeddings N < M induce injective maps T,N < T,M, but this will turn out to be the case
once one imposes the milder condition that, for any open U C M, the resulting maps 7,U — T,M are isomorphisms.

81
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\\_// T/uzw\v

(df),

Fig. 3.1 Tangent space at p of a manifold M as well as at the image f(p) under a smooth map f : M — N. We want the differential
(df)p of f at p to be a linear map between these.

Exercise 3.1. Show that, whatever construction of the tangent spaces 7,M we give so that it satisfies the previous
properties, for any diffeomorphism F : M — N and any p € M, the differential of F at p,

(dF)p : TpM — Tp(p)N,
is a linear isomorphism. Deduce that for any m-dimensional manifold M, T,M is an m-dimensional vector space.

However, even before these properties, one should keep in mind that the way we should think intuitively about
tangent spaces is:

This is clear and precise in the case when M C R™, where the embedding was used to make sense of ’speeds”.
For conciseness, we introduce the notation

Curves, (M) := {y: (—€,€) — M smooth, with € > 0,y(0) = p}
(valid for all manifold M and p € M). Therefore, one would like to add to the previous list of wishes the following:

* TWA4. Speeds of curves (leading principle!): for any curve y in M that starts at p, ’the speed ‘;—3’(0)” should
make sense as an element of 7,M, and

M= {”62/(0)” (Y€ Curves,,(M)}, (3.1.1)

so that we can think of tangent vectors at p as ’speeds of curves that start at p”.

e M
/

N

Fig. 3.2 We want to construct the tangent space in a point p € M in such a way that vectors correspond to the speeds % (0) of curves
Y: (—€,€) — M that pass through p at time 7 = 0. Note that the image of the curve determines the direction of the vector, but not it’s
length: A reparametrized curve that passes through the same image twice as fast will correspond to a vector of twice the size.
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Remark 3.2 (Extra-for the interested student: tangent spaces very abstractly: via equivalence relations). One way to introduce tangent
spaces is by realizing the ”leading principle” mentioned above by “brute force”, starting from the following remark: although “the
speed of ¥~ (at r = 0) is not defined yet, we can make sense right away of the property that two such curves y;,7% € Curves,(M) have
the same speed at t = 0: if their representations yf and yzx with respect to any chart y around p have this property:

9 (0) - 42 (o)

at * dt V7

(recall that, for y : U — Q C R", y[x = Yo% isacurve in Q C R™). It is not difficult to see (exercise!) that it suffices to check this
condition for one chart . When this happens, we write

n~p P,
and another simple exercise is to check that ~, is an equivalence relation. The "brute force” approach to tangent spaces would then be
to define:

* T,M as the quotient of Curves, (M) modulo the equivalence relation ~ ,.
dy

* the speed

(0) as the ~, equivalence class of 7.

Then equality (3.1.1) that corresponds to our intuition is forced in tautologically. Although this does work, and it is sometimes taken
as definition in some text-books/lecture notes, we find it too abstract for such an intuitive concept. Instead, we will discuss the tangent
space via charts, as well as via derivations. Nevertheless, one should always keep in mind the intuition via speeds of paths (and make
it precise in whatever model we use). [J

3.2 Tangent vectors via charts

The brief philosophy of this approach is:

while a chart x for M allows one to represent points p by coordinates,
it will allow us to represent tangent vectors v € T,M by vectors in R™

3.2.1 The general notion

Concentrating on the tangent vectors rather than on the charts, the previous ’slogan” reads:

a tangent vector to M at p can be seen

through each chart, as a vector in the Euclidean space R™

Remark 3.3 (bla, bla, bla- leading to the actual motivation/first definition of tangent spaces; i.e., while this is
hopefully insightful, in principle you may just skip this and jump right to the definition). The actual definition can
be discovered as the outcome of “wishful thinking”: we want to extend the definition of T,M from the case of
embedded submanifolds of Euclidean spaces to arbitrary manifolds M, satisfying the “wish list” TW1 and TW2
above. We see that, for a general manifold M and p € M, choosing a chart (U, x) for M around p and viewing x
as a smooth map from (an open inside) M to (an open inside) R™, the wishful thinking tells us that we expect an
induced map (even an isomorphism)
(dx)p: T,M — R™.

Therefore, an element v € T,M can be represented w.r.t. to the chart y by a vector in the standard Euclidean space:
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vE = (dy),(v) e R™.

What happens if we change the chart ¥ by another chart )’ around p? Then vZ' should be changed in a way that

is dictated by the change of coordinates
!
c:c% :%’ox‘l.

Indeed, since ¥’ = c o ¥ and we want the chain rule still to hold, we would have:

V¥ = (dy),(v) = (d )y ((d)p(v)),

ie.
V¥ = (dc)y(p) (VF). (3.2.1)

Therefore, whatever the meaning of 7,M is, we expect that the elements v € T,M can be represented w.r.t local
charts y (around p) by vectors v¥ € R” which, when we change the chart, transform according to (3.2.1). Well, if
that is what we want from 7, M, let us just define it that way! []

X' (U")

Rm Rm

Fig. 3.3 A tangent vector v at a point p € M assigns to every chart y : U — x(U) around p a representation v¥. When changing
coordinates to a new chart x' : U’ — x’(U’) along ¢ , this representation transforms into v’ by applying the differential (dc%) 1)

!
Note that for a map between Euclidean spaces such as c% , the differential is just the total derivative in the usual sense.

Definition 3.4. Given an m-dimensional manifold M and p € M. We denote by
Chart, (M)

the collection of all charts } of M whose domain contains the point p. A tangent vector of M at p is a
function v
v:Chart,(M) —» R", x—%,

with the property that, for any two charts x, x" € Chart, (M) one has
V¥ = (dc) g (VF), (3.2.2)

!
where ¢ = c% is the change of coordinates from ¥ to x'.
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We denote by 7,M the vector space of all such tangent vectors of M at p- made into a vector space using
the vector space structure on R™ (i.e. (v+w)¥ := vX +w¥, etc. )

Some comments are in order here. First of all, vZ is the notation that we use for the value of v on the chart J; the
vector v¥ € R™ is also called the representation of the tangent vector v with respect to the chart y, or simply
v on the chart y. Note also that, as above, ¢ = ¥’ o x ! is a smooth map from an open in R™ containing % (p), to
another open in R™), so that (d c),(,) appearing in the condition (3.2.2) is the usual differential defined as a linear
map

(dC)X(P) :R™ — R™.

In more detail, the vector space structure on 7,M is defined as follows: for v,w € T,M, and a scalar A € R, the
sum v+w and the multiplication A v,
vtw, AveT,M,

are defined using the similar operations + and - from R™:

(w) = v 4+ wk o (Av)E =A%,

Staring for a minute at the condition (3.2.2) imposed on tangent vectors v € T,M, we see that once we know v4
for one single chart y € Chart, (M), we completely know v. Actually, we obtain:

Lemma 3.5. If we fix a chart yo € Chart, (M), then
T,M —R" v
is an isomorphism of vector spaces.

Proof. As we just pointed out, once we fixed Yo, and given vo € R™, the element v € T,M such that v20 = vy is
unique (if it exists) and it must be given by the formula

v = (dcﬁo)ﬂm(l)) (vo),

for any other chart ¥ around p. Strictly speaking we still prove (3.2.2) but that follows from the chain rule and the

X _ XXz
remark that Co =Cy OCxy- &

We deduce in particular that any chart y € Chart, (M) gives rise to a basis

a), ()
= soosl 53— | €T,M (3.2.3)
<a%1 p a%m P
of the tangent space T,M, which corresponds to the canonical basis ey, ..., e, of R™ via the isomorphism from the
previous lemma. In other words,

J : . . . J \*

=— | € T,M is the unique vector which, on the chart y,is | =— | =e;.

In/, Ini/,

The basis (3.2.3) is called the canonical basis of 7,M with respect to y.

Exercise 3.6. If y and y’ are two charts of M around p, ¢ = cﬁ,, show that
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x(x,yy Yﬁ(n )
YA O A €2
T—> X ()

X(U) A %

> T

) 4

Fig. 3.4 In the situation of Fig. 2.3, we fix a point p € U and can consider the vectors based at p that are represented by unit vectors
within the identity and polar coordinates. They always point in the direction in which the corresponding coordinate increases.

2N g% (2
(axi)p _)J: 7 X (P) (a%;)p- (3:2.4)

3.2.2 The case of R™ (the standard identifications)

For M =R"™ (or an open in R™) and p € M, one can use the previous lemma combined with the fact that R” comes
with a standard chart (around any point!): the identity chart Id. One obtains

* an isomorphism
standard,, : T,R™ —5R™ v VM (3.2.5)

P) P i
(a)q)]’,...,(axrn)peTpR

These will be called the standard identification of the abstract tangent space 7T,R"™ with R™, and standard
basis of T,R™. Of course, the standard identification just picks up the coefficients with respect to the standard

basis:
E vil=— ] = iyeeeyvm).
- 1 9 ; bl yvm

The inverse map translates into the fact that any vector w € R™ gives rise to a tangent vector

e a canonical basis, denoted

e TR

uniquely determined the condition that, with respect to the identity chart, w'¢ = w. Explicitly, on an arbitrary chart
x of R™ around p (now just a smooth map from an open in R containing p, to R™),

W= (dy)p(w) € R™.
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As pointed out at the begining, the same discussion applies to any open inside Euclidean spaces (why open?),
giving rise to standard identifications

standard;? (T,Q 5 R™ v ! (for Q C R™ open). (3.2.6)

3.2.3 Speeds of curves

Let us show that, indeed, the definition of the tangent spaces from this section accommodates the leading principle:
we can make sense of

dy 0) e T,M
O €T
for y € Curves,(M). The actual definition should be clear: the representation of this vector with respect to a chart
x should be the speed (at t = 0) of the representation y* of y with respect to x. In more detail: if y : U — Q is a
chart of M around p, consider the resulting curve y* = y oy in 2 C R™, and take its derivatives at 0- which is a

vector in R™. This gives an function

Chart,(M) - R", x+— —(0)= —

which is clearly linear and satisfies the Leibniz identity; therefore we obtain a tangent vector denoted

dy
E(O) eT,M.

(Z0) =20,

Of course, there is nothing special for # = 0, and in the same way one talks about

In a short formula:

dy
E (Z) S Ty(t)M~

for all ¢ in the domain of 7.

Exercise 3.7. For M = R™ show that the abstract derivative ‘;—2/(0) € T,R™ defined above corresponds, via the

standard identification (3.2.6), to the usual derivative at 0 of 7.

Then check that for any w € R™, the corresponding tangent vector at p (i.e. w € T,R™ corresponding to w
via the standard identification (3.2.6)) coincides with the speed (in the sense we have just defined) of the curve
t—p+t-w:

W—i (p+t-w)
_dtzzop .

3.2.4 Differentials

Finally, let us show show that, as desired, smooth maps induce differentials at the level of tangent spaces.

Lemma 3.8. Given a smooth map F : M — N between manifolds, and given p € M, there exists a linear map

(dF)p:TyM —= Tp(,)N, v (dF)p(v)
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unique determined by the property that, for any x € Chart,(M) and %' € Chartg(,,)(N), one has:

(dF)p () = (dFf )40 (V¥)
forallv € T,M.

Proof. Fixing v and J, the required condition forces the definition of (d F),(v); to see that one ends up with a
tangent vector to N at F(p) (i.e. the condition (3.2.2) is satisfied in this context) one uses again the chain rule. One
still has to check that the resulting map does not depend on the choice of y- but that follows again from the chain

rule. &

Definition 3.9. For a smooth map F : M — N and p € M, the resulting linear map (dF), : T,M — Tg(,)N is
called the differential of F' at the point p.

Exercise 3.10. Show that the differential of smooth functions has the following properties:

1. the chain rule continues to hold: for M i N g P,peM,
(dGoF),=(dG)p(po(dF)p.

2. if F is a (local) diffeomorphism than (d F),, is an isomorphism.
3. when F : M — N with M and N opens in Euclidean spaces then, via the standard identifications (3.2.6) for M
and N, d F is identified with the standard differential D F.

(dF)p
TyM ———— Tp(N

M |~ ~ N
standard;, \L \Lstandard‘,( )

V4

R" —— = R"
(DF)p

4. (dF), is uniquely characterized also by the condition that, for any y € Curves,(M), one has:

@m, (F0) =20

dt dt

Note that, with the general notion of tangent spaces and differentials at hand, one has a neater characterization
of immersions and submersions (which is actually taken as definition in some text-books- with the disadvantage
that one has to wait until those concepts are introduced).

Proposition 3.11. A smooth map F : M — N between two manifolds is an immersion (or submersion) at a
point p € M if and only if (d F), is injective (or surjective, respectively).

Proof. Choose coordinate charts (U, x) for M around p (U’, ') for N around q := F(p) such that F(U) C U’, so
that we can consider the restriction
FlU:U—U

It suffices to prove the statement for this restricted map (why?). On the other hand, since y : U — Q and y' : U’ —
Q' are diffeomorphism, (d x), and (d x'), are isomorphisms.
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(ﬂ)Q %Tl

” @2
(dFy )

2(p)

We see that we can pass further to Euclidean spaces- i.e. it suffices to prove the statement for
!
Ff:Q—q

(around the point ¥ (p)). However, the differential of this function is identified, via the standard identifications, to
the usual differential (cf. the previous exercise) therefore, what we have to check becomes the actual definition of

immersions/submersions. =

3.2.5 Submanifolds M C N

We apply the previous discussion to the inclusion of embedded submanifolds: whenever M C N is an embedded
submanifold of a manifold N, the inclusion i : M < N is a smooth map and, therefore, at each p € M, it induces an
injective map

(di), : ToM — T,N.

This allows one to promote a vector v € T,M tangent to a submanifold M to a tangent vector for the larger manifold
N. Actually, while for p € M, i(p) € N is still (denoted by) p, a tangent vector v € T,M is still denoted by v when
interpreted as a vector tangent to N (i.e. (d i), (v) is still denoted by v); in particular, we think of 7,,M as a subspace
of T,N:

T,M C T,N.

This makes the notation somehow simpler and agrees with the intuition. Note that, thinking of tangent spaces as
consisting of speeds of curves, the previous inclusion is rather tautological as the curves in M are curves also in N:

d d
{011/(0) as Curvesp(M)} C {di/(O) as Curvesp(N)} .
Exercise 3.12. With the previous identifications and notations in mind show that, for M C N embedded submani-
fold, p € M, v € T,M, v interpreted as a vector tangent to N has the following property that determines it uniquely:
on any chart ¥ of N adapted to M, it is precisely v on the induced chart |5 for M.

The previous discussion can be applied in particular to embedded submanifolds of Euclidean spaces
MCR".

The resulting inclusion of 7,M C T,R" combined with the standard identification of 7,R" with R" from (3.2.5)
gives rise to:
standardy := standard |7,y : TyM — R". 3.2.7)

Lemma 3.13. For any embedded submanifold M C R", the map (3.2.7) is injective and its image is precisely the
classical tangent space Tlfl‘mM from Chapter 1 (Definition 1.43). In other words, it becomes an isomorphism
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standard’l‘,’l :T,M AN TPCI“”M .

Proof. Defined as a composition of an injective map with an isomorphism, standardﬁ” is injective. By the very
definition of the map we see that, choosing a chart (U, ) for R" around p, adapted to M, with induced chart on M

denoted x|y, =

Exercise 3.14. Please revisit some of the previous exercises on immersions/submersions and find now more ele-
gant/simpler arguments:

1. The height function on % (Exercise 2.99) and on the torus (Exercise 2.71),
2. The explicit Hopf map & from Exercise 2.110,

3. Part (c) of Exercise 2.73,

4. And then also parts (b) and (c) of Exercise 2.74.

3.3 Tangent vectors as directional derivatives

Here is another approach to the tangent spaces; the brief philosophy of this approach is:

3.3.1 The general notion

To implement the previous “’slogan” we return to the differential

(df)p(v)

of a smooth function f: Q2 — R (2 C R™ open) at a point p € £, applied to a (tangent) vector v € R™, that we
reinterpreted it as a v-derivative at p
of

(df)p(v) = =7 (p) = %u(f)(p)-
Hence, if we want to understand what the (tangent) vector v really does (at p), one may say that it defines a function
d
o0y = —
Y 9y

What are the main properties of this function? Well, it is clearly linear and, moreover, it acts on the product of
functions according to the Leibniz rule at p:

d(fg) = f(p)-d(g)+&(p) d(g) (3.3.1)

forall f,g € (). Note that here we are making use of the following algebraic structures on C*(£2): the vector
space structure (for linearity) and the product of functions (to make sense of the Leibniz identity at p); all together,
we are making use of the "algebra structure” on C*(£). The main point is that, conversely, any map

LE(Q) - R;

9:67°(Q) >R

which is linear and satisfies the Leibniz identity at p is of type d, for a unique vector v € R™ (this will follow from
the discussion below). This gives another perspective/possible approach to tangent spaces.
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Definition 3.15. Given an m-dimensional manifold M and p € M, a derivation of M at p is any linear map
2:¢"(M) =R

which is linear and which satisfies the Leibniz identity (3.3.1) at p.
We denote by T,?e"VM the vector space of all such derivations M at p- made into a vector space using the
usual addition and multiplication by scalars from R.

In more detail, the vector space structure on T;'e‘iVM is defined as follows: for 9,9’ € T[?eriVM , and a scalar

A €R, the sum 049’ € TlferivM and the multiplication A-d € Tlﬁleri"M , are defined using the similar operations +
and - from R:

(@+)(f) :=a(f)+9'(f), (A:9)(f):=2-9(f).

3.3.2 The case of Euclidean spaces

When M = € is an open in R™ (endowed with the canonical smooth structure), p € €2, then the operation of taking
the usual partial derivatives at p,

d oo af
(wjf%<W+R,fHa$m

are derivations at p- hence they can be interpreted as vectors

a a deriv
(2) () erima

As it will follow from the discussion below, they form a basis of TlferiV.Q.
Similarly, for any manifold M, a chart x : U — © C R™ of M around p induces partial derivatives at p w.r.t.
the chart %,

af __dfy
where f; = fox ' : Q — R. And then vectors
0 2 deri
2 € Tdetvpy 332
<a%1)p (a%’”>p P ( )

which form a basis of TpderiVM - but that is still to be proven; here we take care of the case M = R"™:

[ Proposition 3.16. For any p € R, the vectors (3.3.2) form a basis of Tlﬁl" R™, ]

Proof. For notational simplicity we assume that p = 0. For the linear independence we assume that A;,..., 4, € R

are scalars with the property that
d d
M)+t (50-) =0
a)Cl 0 axm 0
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and we have to prove that each A; vanishes. For that one applies the left hand side of the previous equality (a
derivation at p!) to the coordinate function x — x; and we obtain that, indeed, A; = 0.
We still have to check that any derivation at 0,

96" ([R™) - R,

is a linear combination of the standard partial derivatives at 0:

d
d=) Al =— ith A; € R.
Xi: l(‘)xi)o MR AE
We will show that 4; := d(x;) € R do the job. To show this, we use the fact that any f € ¢°(R™) can be written as

f(x) = £(0)+ ) xigi(x), with g; € € (R") (33.3)

(see below). Using the Leibniz identity (which also implies that d is 0 on constant functions) we obtain

2(f) = Y 2izi(0),

while g—){l(O) = g;(0). Hence we are left with proving that any f can be written in the form (3.3.3). For this we use
the identity

h(1) — h(0) :/01 %(t)dt

for all smooth functions 4 : [0, 1] — R; of course, we want to choose & such that 2(1) = f(x) and 2(0) = £(0).
Choose then i(r) = f(tx) and we obtain the desired identity (3.3.3) with

.1 8f

8= | &—Xi(tx)dt.

3.3.3 Speeds of curves

Let us point out, right away, that also this model for tangent spaces serves the original purpose: we can make sense
of speeds

dy

dt
for v € Curves,(M). The bold colour is here to distinguish this notion of speed from the one from section 3.2.3.
It is true that the two will be identified but, even then, we sometimes still prefer a different notation for the speed
when we want to interpret it as a derivation. Therefore, from now on, for (3.3.4), we will be using the notation
8% )" The actual definition should be clear: just consider the variation of functions along v (at t = 0):

(0) = a%y 0 € T M (3.3.4)

d

0 €M) =R, duy (f) = | f(¥(1)).

0
& dt|,_

dt (
Of course, one can use the derivative at any ¢ on the domain of ¥, giving rise to

deriv
3%(” E T)/(t) M.
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3.3.4 Differentials

Let us also explain show how smooth maps induce differentials at the level of tangent spaces as in TW2 above,
denoted (dF), : T;eﬁvM — TIQ(c;i)V N, where we use a slightly different green notation to distinguish it from the
differentials from the previous section (soon to be identified with each other). Although the discussion is a bit
tedious, especially if you never looked at duals of duals, or functions on a set of functions, everything is based on a
simple remark: any smooth map F : M — N between two manifolds induces a map at the level of smooth functions,

F*:€”(N) > €M), g— F*(g):=goF,
that is compatible with the algebraic structures. It follows that if
0:¢"(M) =R
is a derivation of M at a point p € M then
doF*:€¢”(N)—R, g—d(F'(g))=d(goF)
is a derivation of N at F(p). Denoting this derivation by

(dF),(9) € TENN,

one obtains the desired differential (of F at p)

(dF),: T)™M — TN, 9 (dF),(d) = doF*.

Exercise 3.17. Fill in the missing details and prove that this construction has the desired properties from TW2
above (including the chain rule).

3.3.5 Extra-for the interested student: the algebraic nature of the construction

It is clear that the model for the tangent space provided by TI‘,je"i"M is more algebraic. Let us make this a bit more explicit. This
discussion fits in very well with the previous discussions on the algebra of smooth functions (Remark 2.40), going back all the way to
the "Gelfand-Naimark philosophy” (see also Remark 1.10).

Looking at the definition of 79"VA/ and remembering that evaluation at p can be seen as a character x,, of € (M), there is a clear
way one can proceed in general: for any algebra A and any character ¥ on A we introduce the notion of )-derivation on A, by which
we mean a linear map x : A — R satisfying the derivation identity:

d(ab) = x(a)d(b) + d(a)x (b)

for all a,b € A. We denote by Dery (A) the (vector) space of all such derivations. Intuitively, this may be interpreted as “the tangent
space of X (A) at x”.

When applied to A = ¢ (M), while we know (when M is compact) that any character on A is necessarily of type y,, for some p
(unique), the corresponding derivations give

Der, (¢ (M)) = T, M.

For this reason, for a general algebra A, one may think of its characters as “points”, while for a character y one may think of Der, (A)
as “the tangent space of X (A) at x”.
Exercise 3.18. When A = R[X|,...,X,,] is the algebra of polynomials in m variables show that any character is the evaluation ) at
some point x € R™, and then show that Dery, (A) is a finite dimensional vector space and exhibit a basis.

Then consider another A: the algebra of polynomial functions on the circle S'. And, again, consider the characters Xp forp e S! and
compute Dery, (A).

One warning however: while when looking at characters/points it does not make a difference whether we use the algebra (M) or
the one of continuous functions, the situation is dramatically different when it comes to tangent vectors:
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Exercise 3.19. Show that Dery, (¢ (M)) = 0. (Hint: the proof is much shorter than the bla-bla preceeding the exercise)

3.3.6 The local nature of derivations

We now discuss another aspect that Tlferi"M reveals: the local nature of derivations.

Lemma 3.20. Any derivation of M at p, d € Tpd” VM, has the following local property: for fi,f> € €= (M) one
has:
f1 = f2 in a neighborhood of p = 9d(f1) = d(f2).

Proof. Let f = fi — f>. We know that f = 0 in a neighborhood U of p and we want to prove that d(f) = 0. We
may assume that U is chosen so that it is diffeomorphic to a ball B(0,&) C R™, by a diffeomorphism that takes
p to 0. As we have already noticed, one can find a smooth function on R™ that is supported inside B(0, €) and is
non-zero at 0 (e.g. take x — g(gi2 ||x]|?), where g : R — R is the function from Exercise 1.28). Moving from B(0, )
to U, and extending by zero outside U, we find a function n € C*(M) which is supported inside U and n(p) # 0.
Then 71 f = 0, and applying the Leibinz identity for 11 f we find 1(p)d(f) = 0 hence, since n(p) # 0, one must

have d(f) =0. =

Assume that U C M is an open containing p. Then any derivation d € Tl;ieriVU gives a derivation de TlflcriVM
simply by

I(f) :=d(flv)-

Of course, the resulting map ' _ _
TNU — TM, 9+ 0

is just the map induced (cf. Exercise 3.17 above) by the inclusion U — M.

Lemma 3.21. Given p € U C M with U open, the canonical map T;je’ vy — T;’” M is a linear isomorphism.

Proof. For injectivity, let d : €= (U) — R be a derivation at p such that d(f|y) = 0 for all f € €*(M); we must
show that @ = 0. This follows immediately from the following:

* J(f) depends only on f in an arbitrarily small neighborhood of p. This is the content of the previous lemma.
* forany f € € (U), there exists f € €~ (M) s.t. f = f in some neighborhood of p.

To prove the last item, we take f := 1 - f where € €>(M) is supported inside U (so that f is defined and smooth
on the entire M) and 11 = 1 in some (smaller) neighborhood of p. The existence of 1) is a local problem- therefore
it suffice to build a smooth function 1 on R that is supported in the ball B(0,1) and is 1 in a neighborhood of 0
(say on B(0, %)); for that one takes again 1 of type 1(x) = g(||x||>) where g : R — R is any smooth function that
is I when |t| < { andis O whent > 1.

For the surjectivity, we start with 0:¢" (M) — R and we want to build d. By now the definition should be clear:
or f € €= (U), choose any f € € (M) that coincides with f near p (possible by the first part) and set d(f) := 9 (f).
The previous lemma shows that the definition of d(f) does not depend on the choice of f. And this can used also
to check that @ is still a derivation at p. E.g., for the Leibniz identity, choosing extensions f or f and g or g, then

use the extension g or fg and use the Leibniz identity for 9( f8). =

Remark 3.22 (Extra- for the interested student). Lemma 3.20 can be packed into a more conceptual conclusion: any derivations d at p
descends to the quotient space
C (M) =G (M) [1, = C* (M) ~, .

where I, is the space of functions that vanish around p and ~, is the associated equivalence relation:
f1 ~p f <= fi = f> in a neighborhood of p.

For f € €% (M), its equivalence class is denoted
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germ, (f) € €, (M)
and is called the germ of f at p. The space of germs at p, i.e. our quotient ‘Aé’j“(M), is still an algebra (since I, is an ideal of €~ (M));
explicitly, the operations are induced from € (M):
germ,,(f +g) = germ,, (f) +germ,(g), etc.
The locality property from the previous lemma can now be interpreted as an isomorphism

T3 M = Der, (¢, (M))

between the tangent space and the space of all derivations of ‘6;“(/\/1) with respect to the evaluation at p; note that the main difference
with the similar discussion using 4" (M) is that, this time, ¢°(M) has a unique character (the evaluation at p). [J

3.3.7 Comparing with the previous definition of tangent spaces

There is also a very natural interaction (which turns out to be an isomorphism) with the tangent space from the
previous section. The starting remark is that any v € T,M gives rise to a derivation at p, d,. To define 9, (f), we fix
achart y : U — Q C R™ of M around p; then we can use the representation of f with respectto x, f) : 2 — R, as
well as the one of v, v € R™ and set:

_ 9
T owx

o(f): (2(p) = (dfy)y(p) (VF)-
Similar to previous arguments, using the chain rule one checks that this quantity actually does not depend on the
choice of ). Therefore we obtain

d,: 6" (M) = R,

it should be clear that it is a derivation of M at p, hence
dy €T M.

This defines a linear map _
D T,M = TEM, v 0,

Remark 3.23 (getting some more insight into Ig” ). To get a better feeling about this map, note that:

« It sends the speeds of curves in the sense of the previous section (i.e. v = Z—T(O)) to the speeds of curves as

discussed in this section (subsection 3.3.3):

e For a chart y around p, Ig” sends the induced basis induced by yx as discussed in the previous section, i.e.
(3.2.3), to the similar vectors (3.3.2) discussed in this section.

* This construction is also compatible with the differentials: if F : M — N is a smooth map and we consider the
differential of F' defined on T,M as in the previous section (subsection 3.2.4) and the one defined on Tlﬁieri"M
as in this scetion (subsection 3.3.4) one has

dF
P

m Iy (dF)poly=Ippo(dF),
deriv deriv
T M — = TN
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Exercise 3.24. Check/prove these assertions.

Theorem 3.25. The map Ig” T,M — Tlf‘f”'VM is a linear isomorphism.

Note that we could have discussed this theorem earlier on and then transfer, via I, all the properties/constructions
that we knew for 7,M to TlferivM . Giving the proof of this theorem earlier would not have been completely trivial;
however, the main reason for not doing that is that it was instructive to look at T]?eriVM independently and check
that it does satisfy the properties that we want. In particular, that revealed the advantages of T[feri"M as well as the
further nature of tangent spaces.

Proof (Proof of Theorem 3.25). Fix a chart } : U — R™ around p. The argument lives on the following diagram

T.-M 124 TderiVM
)

(di)p (di)p
I’l’/ deriv
M Tévy
(dy) P (dx) r
Q

1 .
T o) 0 S Toderlv Q

(dj)o (dj)o
m ]3@'" derivipm
HR" ———— TR

where i: U — M and j : 2 — R™ are the inclusions. The vertical maps on the left hand side are all isomorphism
because of the properties of the tangent spaces and differential (inclusions of opens induce iso in tangent spaces,
and the differential of a diffeomorphism is an isomorphism- as a consequence of TW2). Similarly for the vertical
maps on the right hand side: (d), for exactly the same reasons as for (d),, while (di), and (d j)o was proven in
Lemma 3.21 (and is certainly more involved than (di), and (d)o). By the properties of I discussed above, all the
squares are commutative. Notice that, in a commutative square, if three of the maps are isomorphisms, then so is
the fourth. Therefore, we see that by moving up on the diagram, to prove that Ig” is an isomorphism, it suffices to
prove that the bottom horizontal map is. But, since that map sends the basis ((%,) ) to the similar collection (3.3.2)

in 79 Proposition 3.16 implies that the map is indeed an isomorphism. <
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3.4 Tangent spaces: conclusions

Let us put together the main conclusions on tangent spaces.

3.4.1 Via charts, or as derivations

For any m-dimensional manifold M, p € M, we have two ways of looking at the tangent space 7,M:

» T1: its elements v € T,M can be represented w.r.t. any chart X around p by vectors vX € R™; the passing from
one chart to the other was given by

V= (dc)y(py V%),  where c = C%I =y oyl

* T2: its elements v € T,M can be interpreted as derivations on €~ (M) at p.

The equivalence between the two is given by the isomorphism
I, : T,M — T3 M

of Theorem 3.25. From now on we will identify the two (via I,,) and use only the notation 7, M. The upshot is that,
when describing a vector v € T,M we have the choice to describe it w.r.t. a chart, or as a derivation at p.

3.4.2 Speeds

Most importantly, any curve y € Curves, (M) has a speed

il .M
[(0) €T,

Explicitly:

* Tl-description: w.r.t. a chart y, it is ‘%(0) e R™,
» T2-description: as a derivation at p it sends a smooth function f to d{;Y(O).

(and, with the same descriptions, one has %’ (t) € Ty )M for any t in the domain of ).

And this gives the best way to think (and even to work with) tangent spaces:

* T0: T,M = {%(0) : ¥ € Curves,(M)}, where we know that two such curves have the same speed at t = 0 if
and only if that happens for their representations w.r.t. a/any chart.
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3.4.3 Basis with respect to a chart

The tangent space is an m-dimensional vector space- hence isomorphic to R™. Each chart )y around p gives rise to
a basis of T,M (hence to a specific isomorphism with R™):

0J )
=) ... (=) erMm,
<8X1>l7 (axm>p g

* T1-description: w.r.t. x, (%) corresponds to ¢; € R™.
p

called the canonical basis w.r.t. x:

* T2-description: as derivations, they are given by the partial derivatives w.r.t. x:

d
L ip)i= o). )

9

* TO-description: as speeds, ( %

) are induced by the paths
P

t= 2 (x(p) +tei).

The way that these vectors change when we change the chart is easiest read off from the point of view of [T1],
which gives the formula (3.2.4). Or, using the partial derivatives given by the point of view of [T2], we have the
more compact formula:

ac] ) m 9}(} P o
h == .
<9Xl> Z axl <8x,> j:Zl o (p) (ax})p (wherec =y ox ™)

Or, if one denotes by x and y the charts y and y’, respectively, and ¢ by y but interpreted as a function of x, one
come across the more compact (but a bit sloppy) formula:

9 _yWid

8x,- ; 8x,~ 8y j

3.4.4 Differentials

One can talk about the differential
(dF)p: TyM — Tp(,)N  for any smooth map f: M — N.

Again, this can described from the three points of view:

* TO-description: It sends the speed (at t = 0) of ¥ € Curves, (M) to the one of F oy € Curvesg,(N).
* T1-description: For v € T,M represented w.r.t. ¥ by v&, (dF),(v) is represented w.r.t. a/any chart ' around

£(p) by the image of v¢ by (dFF )1, -
* T2-description: (dF),(v), as a derivation, acts on a function g € € (M) by acting with v on go F.

Or, if we want to write down (dF),, w.r.t. bases induced by charts x around p and %’ around F(p):

d ) (aF), i dF} d
’ x(P) | 5= ;
<87(,- P =1 dxi 9%, Fp)
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1

!
where we use the representation Ff =y oF oy ! of F wr.t. the two bases. Or, in other words, the matrix

!
corresponding to (dF'), w.r.t. the two bases is precisely the matrix of the partial derivatives of Ff at x(p).
And we should also keep in mind the characterization of immersions/submersions from Proposition 3.11:

F is an immersion/submersion at p <= (d F),, is injective/surjective,

and this should be the way to think about immersions/submersions from now on!

3.4.5 Submanifolds

Let us restrict for simplicity to embedded submanifolds. Given such a submanifold N C M of a manifold M, the
inclusion i : N < M is an immersion, therefore, for each p € N,

(di)p : TyN — Ty, M
is an injection. In the same way that we do not write i(p) but p, this injection will be viewed as an inclusion
T,N C T,M.
This inclusion can be described using any of the three viewpoints:

* TO-description: this is completely clear/tautological: since any curve in N is also one in M, the speed :TZ (0)

T,N is now identified with %(O) € T,M (we do not even have a notation to distinguish the two!).

* T1-description: for v € T,N, when viewed in T,M it is the unique tangent vector with the property that, w.r.t.
any chart y of M adapted to N, the representation of v w.r.t. x is the representation of v € T,N w.r.t. X|n.

* T2-description: as derivations, if v € T,N, it acts on f € € (M) by acting with v on f|y.

In this way tangent spaces give us (linear) information on the way that N sits inside M (near p).

Finally, here is the full version of the regular value theorem proven in Chapter 2 (Theorem 2.66 there), this time
with exra-information on the tangent spaces. Recall that a regular value of f: M — N is any g with the property
that f is a submersion at all points p € f~!(g).

AR

Th 14

Fig. 3.5 The regular value theorem visualized for the case of the pair of pants manifold P, together with the map 4 : P — R that assigns
to each point its height over the ground. For the regular value g, the level set h~'(g) is an embedded submanifold of codimension one.
The tangent space at p € h~!(g) consists exactly of Ker (dh) p» 1.€. those directions in P that get smashed together by 4. After all, small
movement in these directions does not change the value of /, so we remain in 2~!(g). The set 1~ ! (') fails to be a manifold since / is
not a submersion at p’ (so ¢’ is not a regular value).
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~

Theorem 3.26 (the regular value theorem- with tangent spaces). If ¢ € N is a regular value of a smooth
map
F:M—N,

then the fiber above g, F~'(q), is an embedded submanifold of M of dimension
dim(F~'(q)) = dim(M) — dim(N)

and the tangent spaces T, (F = (q)) as subspaces of T,M, coincide with the kernel of the differential
(dF)p o TpM — TF([,)N.'

T, (F_l(q)) = Ker(dF), ((forall pcF~'(q)).

Proof. Nice exercise (hint: just look back at our reminder on Analysis). =

3.4.6 Back to Euclidean spaces and their embedded submanifolds

Back to Analysis, i.e. for a manifold of type R™ (or an open inside it), the general/abstract theory of this chapter
tells us that the tangent spaces 7, R™ come with a canonical basis

d d
() (). s

which, again, can be looked at using the three view-points:

* TO-description: as speeds, they correspond to the curves parallel to the coordinate axes, t — p +te;.
* T1-description: with respect to the identity chart, they are represented by the canonical basis ey, ..., e, of R™.

» T2-description: as derivations, they are the usual partial derivatives at p.

One obtains an isomorphism that will be treated from now on as an identification:
k k
T,R* =R",

but we will still keep the notation (3.4.1) for the canonical basis. This is in order to indicate that we are thinking
about/using tangent vectors.

Exercise 3.27. Check that, via this identification, the speeds % (¢) discussed in this chapter are identified with the
standard ones from Analysis.

As in the previous exercise for curves, we have a similar problem for embedded submanifolds:
Exercise 3.28. For an embedded submanifold M C R", p € M we have the corresponding tangent spaces
T,M C T,R"=R"

that can now be described using the three view-points (T0), (T1), (T2). Show that this coincides with the tangent
spaces from the Analysis reminder, trying to find as many different arguments as you can; e.g. one using the
previous exercise, one using the regular values theorem, etc.
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By now, it should also be clear that for smooth maps between embedded submanifolds of Euclidean spaces, the
differential discussed in this chapter becomes (identified with) the one from Analysis (e.g. as recalled in Section
1.2 from Chapter 1, Exercise 1.48).

Exercise 3.29. With the identification above, whenever we have a smooth map f: M — R¥, we talk about its
differentials as maps (df), : T,M — RX.
For f € € (M) and v € T,M, check that the action of v (as a derivation) on f is precisely

o (f) = (df)p(v)-

3.5 Vector fields

We now discuss vector fields. The brief philosophy is:

Looking back at the previous sections of this chapter, we see that we insisted in making sense of T,M as vector
spaces independently of the way that M may sit in some larger Euclidean space. Now, just as a vector space,
T,M is rather boring: it is isomorphic to R™. And the same is true for any finite dimensional vector space V;
however, one should keep in mind that, for a bare m-dimensional vector space V, realizing an explicit isomorphism
with R amounts to extra choices (namely a basis of V). In particular, for the tangent spaces T,M, we obtained
identifications with R™ once we fixed a chart ¥ (and these identifications work for p in the domain of } only!).
Actually this is a ”problem” (or better: ’interesting phenomena”) not only for general Ms, but even for embedded
submanifolds M C R¥: while isomorphisms

R"~T,M C R

can be chosen for each p, often cannot be chosen so that they depend smoothly on p € M. The “hairy ball theorem”
implies that this is the case already for M = §? C R>:

Exercise 3.30. Assume that for each p € S? one can find a linear isomorphism

.2 2 3

P,:R°=T,5°CR
so that the @,s vary smoothly with respect to p, in the sense that the map
2 w2
D:S*xR2RY (pv) = @y(v)

is smooth. Show that there exists a nowhere vanishing vector field on S2, i.e. a smooth map

X:8* 5 R,

nowhere vanishing, such that X (p) € T,S? for all p € S2. Try now to construct such an X! Then state the “hairy
ball theorem”.
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More generally, for an embedded submanifold M C R, a vector field on M is a function
M3 pw—X(p) € T,M CRF

which, when interpreted as a function with values in R, is smooth. What if an embedding into some Euclidean
space is not fixed (or if we use a different one)?

3.5.1 Smooth vector fields

Continuing the last discussion, for general manifolds M: first of all, we can still look at maps
X:M>5p—X,eT,M

(interpreted also as families X = {X}, } pem). These will be called set-theoretical vector fields on M. To make sense
of their smoothness, we use charts x : U — Q C R” of M. Recall that any such chart induces a basis (%) of
"p

T,M hence any set-theoretical vector field X can be written as

d

&zi@uwmh) (3.5.1)
= vt/ p

for all p € M, where each Xalc is a function
X, : QR

These will be called the coordinate functions of X w.r.t. the chart y.

Xi(p)

Xlld(p) X1

Fig. 3.6 Let M be the Euclidean plane drawn here with the identity chart Id = (x1,x). The vector field X assigns a vector X, to every

point p. The components of X, with respect to the basis vectors (%) of the identity chart are its coordinate functions X{d.
Jp

Definition 3.31. A vector field on a manifold is any set-theoretical vector field X,

X:M>p—X, eT,M,
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with the property that its coordinate functions X;C w.r.t any chart ¥ are smooth.
We denote by X(M) the set of all vector fields on M.

Exercise 3.32. Show that, for the smoothness condition, it is enough to check it only for charts in a/any atlas of M
inducing the smooth structure of M.

Note the algebraic structure on X (M) that is present right away:

* itis a vector space, with the addition + and multiplication by scalars - defined pointwise:
(X+Y)p:=X,+Y,, (AX),=1-X,.
* itis a ¥ (M)-module, i.e. there is an operation of multiplication of vector fields by smooth functions,
CT(M)xX(M) = XM), (f,X)—fX.
Again, this is defined pointwise by the obvious formula:
(f-X)p:=f(p)-Xp.

Example 3.33. (in R"™) Of course, considering the standard basis (3.4.1) at each point one obtains the correspond-
ing standard vector fields on R™:

d d
— ., = € X(R™); 352
x| oxp, (R™) ( )
and, using the basic operations described above, one obtains vector fields
d d
C— C— R™
fi FI + fn 7 € X(R™)

for any smooth functions f; on R™. And the fact that the standard basis (3.4.1) is actually a basis implies that any
vector field on R™ is of this type. In a more algebraic language: (3.5.2) forms a basis of X(R") as a C*(R"™)-
module. Of course, the same discussion applies to any open 2 C R™.

Remark 3.34 (the chart representation). The discussion from the previous example allows one to slightly re-
interpret the coordinate functions of a vector field X € X(M) w.r.t. a chart y : U — Q discussed above: they
will be precisely the coefficients of a vector field X, on £ obtained by pushing forward X (restricted to U) via £:

X:(X) € X(Q), x(X)x:=(dx)p(X,) € . where p= 2 ().
This deserves the name of the representation of X in the chart y. More on ”push-forwards” will be discussed in
subsection 3.5.6.

Exercise 3.35. In R? we consider the vector fields

_9 ,_9 L__ 9 9 2
Xi=- Y_ay, Ei=x —+y ayex(R).

And we also consider the polar coordinates chart x : (x,y) — (r,0) where
r=r(x,y) €Rso, 6 =0(x,y) € (0,27)

are determined by the usual formulas:
x=r-cos@, y=r-sinf

on U =R?\ {0}. Compute the representation of X,Y and E in the chart y. (since the outcome are vector fields in
R0 x (0,27) where we use r and 6 for the coordinates, please use the notations % and % for the standard basis
there).
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Example 3.36. (on submanifolds M C R") When working in an embedded submanifold M C R” it is, of course,
natural to use the coordinates (xi,...,x,) that are there anyway, from the ambient space. Actually, there may even
no be any other coordinates available without any extra-choices (think e.g. of the spheres).

Similarly, since T,M C T,R", it is natural to write the tangent vector to M as

X, = fi(p)- (ﬁ)lﬁﬁf"(l’)' (a‘i)P

But one should be aware that the vectors % are, in general, not tangent to M. Actually only some expressions of
1

this type are tangent to M (also, in principle, the functions f; are defined only for p € M).

A very good example is the one of the spheres S C R”*!. To have actual manifold coordinates one needs
to choose some smooth chart (e.g. stereographic projection), but one also use the coordinates (xo, . ..,x,) of the
ambient space. And then, when looking at tangent vectors (and vector fields) one deals with expressions

0 0
Ao~ (8xo>x+"'+l’"' <8Xm)x

and remembers that such a vector is tangent to the sphere if and only if
Ao xo+ ...+ A X, =0.

Exercise 3.37. Show that the following defines a smooth vector field on S':

Viey) = V3 +x87y'
And make a picture. And try to see the relationship with complex numbers.

Exercise 3.38. Show that the following defines a smooth vector field V on §3:

d d d d

V(X,)’,z,t) = _yg +xaiy _tafz +ZE

Hence a “hairy ball theorem” does not hold on S$3. Can you go further and find two more, similar and equally
interesting vector fields on $37 (hint: rebaptise V to [, and call the other two J and K.)

Exercise 3.39. In the last two exercises, in principle, to show that those vector fields are smooth you applied the
definition and looked into charts. However, isn’t there something more general going on? What if M C N is an
embedded submanifold and X € X(N) has the property that X, € T,M for all p € M?

Exercise 3.40. On S™ consider the stereographic projection w.r.t. the north pole:
x:S"\{pn} = R", (%0, %m) = (U1, Um)

with
X0 _ Xm—1
ey Uy = ——

uy =

T 1l-x, T l—x,

Find a vector field X € X(S™) which, represented in this chart, becomes

X PR
=ul— . Uy —.
x ! Juy " Qup,
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3.5.2 Vector fields as derivations

Next, we look for alternative ways to characterize the smoothness of vector fields; as a bonus, these will reveal
more of the structure that vector fields carry. First of all, while tangent vectors could be interpreted as derivations
(at given points p € M), for any X € X(M) and f € C*(M) one has dx, (f) € R for each p € M, therefore a function

Lx(f):M =R, px,(f) = (df)p(Xp).

This is called the Lie derivative of f along the vector field X. Of course, we expect that Ly (f) is again smooth.

Proposition 3.41. A set-theoretical vector field X on M is smooth if and only if

Lx(f) € C*(M) forall f € C*(M).

Proof. Assume first that X is smooth in sense of the definition. For f € C*(M), we can check the smoothness
of Lx(f) locally: for an arbirary chart ¥ we have to make sure that Ly (f) o x~! is smooth. But applying the
definitions, we see that this expression is precisely

x 8x,»

5

and then smoothness follows.

For the converse, by the type of arguments we have already seen, it suffices to show that for any point p € M
there exists a chart around p such that the coefficients Xix are smooth. For an arbitrary chart y : U — Q C R"
around p, we choose f; € €= (M) such that, in a smaller neighborhood Uy C U of p, f; coincides with y;. By
hypothesis, Ly (f;) is smooth; but over Up, this function is precisely Xl-% . Hence taking Yo := x|y, the coefficients

Xl-%O will be smooth. =

Hence each vector field X gives rise to an operation
Ly : 6= (M) — €~ (M).

The interpretation of tangent vectors at p as derivations at p can be pushed further to a similar characterization
of vector fields. The algebraic objects are derivations of (M), by which we mean maps

L:E=(M) = €M)

which are linear and satisfy the derivation low (Leibniz identity):

L(fg) = L(f)g+fL(g) forall f,g € C™(M).

We denote by Der(%6(M)) the (vector) space of such derivations.

Note: again, this is a purely algebraic construction, that applies to any algebra.
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Theorem 3.42. For any X € X(M), the Lie derivative along X,
Ly : €7 (M) —> €M), [+ Lx(f)

is a derivation. Moreover,
I[:X(M) — Der(¢~(M)), Xw—Lyx

is an isomorphism of vector spaces.

Proof. The fact that Ly is a derivation follows right away from the similar property of the dy,s. The injectivity of
I follows from the fact that, if a tangent vector v, € T,M is non-zero, there exists a smooth function f on M such

that 9, (f) # 0 (why?).
For the surjectivity of 7, let L be a derivation. Then, for each p € M,
Xp: €M) =R, f—=L(f)(p)

is a derivation at p, hence defines a tangent vector X,, € T,M. Since Lx (f) = L(f) is smooth for any smooth f, the

previous proposition implies that X is smooth. =

Exercise 3.43. For the vector field X € X(5?) that you found in Exercise 3.40, compute Lx (f) for the function
[ =R, flopz) =xy 42

Again, you will probably use here the fact that, although we make reference to f only as a function on S2, you will
be using its extension to the entire ambient space R>. Is there something more general to learn from this?

Exercise 3.44. Consider the vector field V € X(S?) from Exercise 3.38, the Hopf map / : §> — S? (Exercise 2.110)
and denote by hy,h, and hj3 its components. Show that Ly kills all these components. Can you reformulate this
without referring to the components of /4, but to # itself?

3.5.3 The Lie bracket

And here is one clear advantage of the point of view of derivations: the presence of yet another structure on X(M).
More precisely, given two derivations on " (M), necessarily of type Ly and Ly, their composition

LxoLy: %N(M) — %N(M)
is not a derivation anymore. Indeed, what we have is:

(LyoLy)(fg) = (LxoLy)(f)g+ f(LxoLy)(g) +Lx(f)Ly(g) +Ly(f)Lx(g),

i.e. a ”defect term” Lx (f)Ly(g) + Ly (f)Lx(g) which spoils the Leibniz identity. However, the other composition
Ly o Lx comes with the same “defect term”; therefore, their difference

[Lx,Ly] :=Lyoly—LyoLx: %W(M) — %W(M)

is again a derivation.
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Definition 3.45. Given X,Y € X(M), we denote by [X,Y] € X(M), called the Lie bracket of X and Y, the
(unique) vector field on M with the property that

L[X7yl =LyoLy—LyolLy.

The following exercise should convince you of the advantage of the point of view of derivations.

Exercise 3.46. Compute the coordinate functions of [X,Y] with respect to a chart y, in terms of the coordinates
functions of X and Y defined by (3.5.1).

Exercise 3.47. In this exercise we point out the main properties of the Lie bracket operation [-,-] on X(M).
First of all, the way it interacts with the other structure present on on X(M)- show that:

* w.r.t. the vector space structure: it is a bilinear and skew-symmetric operation
[, : X(M) x X(M) — X(M).
* w.r.t. the ¥~ (M)-module structure: it satisfies the derivation rule:
X, f-Y]=f- X, Y]+ Lx(f)-Y,
forall X,Y € X(M), f € €= (M).
And then a property that [-, -] has on its own- the Jacobi identity:

[1X,Y],Z]+[[Y,Z],X] +[[Z,X],Y] =0 forall X,Y,Z € X(M).

Exercise 3.48. On R3 we consider the vector fields

A R C UL R BN

— —, X'=y——x—.
dy a9z oz “ox Yox Yoy
Show that:
in two different ways:

* using the definition of the Lie bracket via commutators of derivations.
* using the properties of the Lie bracket described in Exercise 3.47 (and the fact that the Lie bracket between
any two of the standard vector fields %, % and % is zero).

Exercise 3.49. Consider the following three vector fields on the sphere S3:

o) =2\ Vox T 0y Tz %o )

3 _,2..9.,9
“ox oy o Vo )
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Compute [V!, V2], [V2,V3] and [V3,V!]. As a test, please also check the Jacobi identity for V!, V2 and V3.

(But please be aware that we ask you for a computation with vector fields on S3; so just working formally with
symbols may require some explanations- e.g. because simple vector fields like % are not tangent to S>. We are not
saying the result is not correct at the end, but please explain why what you do is correct. Any way, you should be
getting [V, V2] = V3, V2 V3] =V [V3 V] =V2)

3.5.4 The tangent bundle/the configuration space

Back to the the very definition of vector fields and of X (M), here is another way to characterize smoothness. The
idea is to put all the spaces T,M (disjointly) in one big space

™ = I—lpGMTpM: {(pavll):peMavP € TI’M}

and make this into a manifold, so that the smoothness of a set-theoretical vector field X is the same as the smooth-
ness of X viewed as a map between manifolds:

X M—=TM, p—X,.

T,M=7"(p)

P

> d=o 7\ 1
L <«

Fig. 3.7 Visualization of the tangent bundle 7M of a manifold M (here: an interval). Note that points in 7M correspond to vectors
in M. The vertical projection map 7 : TM — M assigns to every vector v € T,M the point p at which it is based. Each tangent space
T,M is therefore the preimage 7! (p) and also called the fiber over p. A vector field can be seen as a map X : M — TM such that
moX =1Idy (we say it is a section of TM). A canonical example of this is the zero section 0 : M — T'M that sends each p € M to the
zero vector based at p.

To put a smooth structure on TM, i.e. to exhibit charts, we need to understand how to parametrize the points of
TM by coordinates. Of course, we should start from a chart

x:U—QCR"
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for M. The point is that such a chart also allows us to parametrize tangent vectors v, € T,M, for p € U, by

coordinates f;(v,) w.r.t. to the induced basis ( 2 ) of T,M: just decompose v, as

I

vy = ZA,- (ai) and set g;(vp) := A;. (3.5.3)
i tp

Therefore, on the subset 7U C TM, we have a natural “’chart”:

7:TU = Q xR™ C R,
Z(p’vp) = (ll(p)w--axm(p)’il(vp)""72m(vp))'

Proposition 3.50. TM can be made into a manifold in a unique way so that, for any chart (U,Y) of M,
(TU, %) is a chart of TM.

Moreover, this is also the unique smooth structure with the property that a set-theoretical vector field X on
M is smooth if and only if it is smooth as a map X : M — TM.

Proof. We first compute the change of coordinates between charts of type (TU, ¥ ). We start with two charts (U, x)
and (U’,x') for M, with change of coordinates ¢ = x’ o x~!. We want to compute ¢ := ¥’ o 7 ~!. Hence we try to
write ¥'(p) as a function depending on ¥ (p). While the first m coordinates are c(x(p)), we need to understand the

last m. For that we use: 5 5
CJ
(5%), " ()

(see (3.2.4)). Then, for a tangent vector p € M, replacing this in (3.5.3), we find that

Vﬂ le Vp (p))-

Denoting by (x,£) the coordinates in R*" = R™ x R™, we find that
_dc
9. L4

Hence the changes of coordinates is smooth.

However, strictly speaking, to show that TM is a manifold, there are still a few things to be done. First of all, we
should have made it into a topological space. But, as pointed out in Remark 2.23 from Chapter 2, the topology can
actually be recovered from an atlas. Let us give the details, independently of our earlier discussion. Given

achart y : U — Q for M, € —openin Q xR" (3.5.4)

we would like y
2N Q)cTM

to be open in M. We denote by Z the collection of subsets of TM of this type. We will declare a subset D C TM
to be open if for each (p,v,) € D there exists B € & such that

p,vp) EBCD.
P

Of course, what is happening here is that & is a topology basis, and we consider the associated topology (hence
one can also say that a subset of TM is open iff it is an union of members of %).

It should be clear that the resulting topology is Hausdorff. For 2nd countability, note that, in (3.5.4), we can
restrict ourselves to y belonging to an atlas inducing the smooth structure on M and, for each x, to Q belonging
to a basis of the Euclidean topology on © x R™. As long as the domains of the charts from <7 for a basis for the
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topology of M, the resulting & would still be a topology basis for the topology we defined on 7M. Since M and
the ©2 x R™s are 2nd countable, we are able to produce a countable basis for the topology on 7M.

The fact that a set-theoretical vector field is smooth if and only if it is smooth as a map X : M — T M should be
clear (one just has to check it locally, and then it is really the definition of the smoothness of X). The uniqueness is

left as an exercise for the interested student. <

Note the object that results from this discussion: 7M. It is now a manifold that relates to M by an obvious
projection map”
n:TM —M, (p,vp)+—p.

And the fibers 77 !( p) are vector spaces (precisely the tangent spaces of M). This is precisely what vector bundles
are- but we will return to them later on.

3.5.5 Extra-for the interested student: cool stuff with vector fields

Here are some very simple questions about vector fields whose answer is non-trivial question but very exciting. Let us start from the
“hairy ball theorem” which can be seen as an interesting property of the two-sphere $?: it does not admit a nowhere vanishing vector
field. The first question in our list is now obvious:

Question: Which manifolds admit a nowhere vanishing vector field?

It is worth looking at this question even for the spheres S” C R"*!. Then the question becomes pretty elementary: does there exist
a smooth function
X -5y Rm+l \{0}

with the property that
xo0-Xo(x) +x1 - X1 (X)+ ...+ X X (x) =0 Vx= (x0,X1,..,Xm) € e

For S! the answer is clearly yes (think on the picture!) and, as we have already mentioned, for S? the answer is no. What about §3?
Well, using quaternions as in Example 2.125 we see that the answer is yes. More precisely, viewing $° ¢ H = R*, the multiplication
by i, j and k provide three nowhere vanishing (and even linearly independent!) vector fields on S°:

X(x)=i-x, X'x)=jx Xx)=k-x

(why are these vector fields on spheres?).

It turns out that, among the spheres, it is precisely the odd dimensional ones that do admit such vector fields.

For general manifolds the answer to the previous question is closely related to the topology of M- namely to the Euler number
x(M) of M. We will briefly discuss the Euler number later on when we will introduce DeRham cohomology and we will see that
x(S™) = 14 (—1)™. For now, let us mention that this number is, in principle, easy to compute using a triangulation of M, by the Euler
formula

X (M) = #vertices — #edges + #faces — ...

(using this you should convince yourself that, indeed, x(S”) = 1+ (—1)"). The answer to the previous question is: a compact manifold
M admits a no-where vanishing vector field if and only x (M) = 0!

What about more than one no-where vanishing vector fields? Of course, the question is interesting only if we look for linearly
independent ones- and then the number of such vector fields will be bounded from above by the dimension of the manifold. E.g., on
$3, there are at most three such; and the vector field X’, X/ and X* described above show that the upper bound can be achieved. More
generally:

Question: An m-dimensional manifold M is said to be parallelizable if it admits m vector fields which, at each point, are linearly
independent.

For instance, we already know that S' and §? are parallelizable. One possible explanation for this is the fact that both S as well as
$3 are Lie groups (and they are the only spheres that can be made into Lie groups- see Example 2.125 from Chapter 2). More precisely:

Exercise 3.51. Show that all Lie groups are parallelizable. Here is how to do it. Let G be a k-dimensional Lie group. Consider its
tangent space at the identity, g := 7, G (a k-dimensional vector space). For v € g, we define the vector field VonG by

V= (dLg)e(v)
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where L, : G — G is given by L, (h) = gh and (dLg). : g — T,G is its differential.

. . L - - . . .

Show that if {vy,..., vy } is a basis of the vector space g, then vy,..., vy are k-linearly independent vector fields on G.

While the only spheres that can be made into Lie groups are S°,S' and S3, are there any other spheres that are parallelizable? Can
one reproduce the argument that we used for S3 so that it applies to other spheres S? We see that we need some sort of “product
operation” on R”*! 5o that we can define vector fields X! by

X' (x)=¢-x, 1€{l,....m}
where {eg,eq,...,en} is the canonical basis. We end up again with the question mentioned in Example 2.125 from Chapter 2, of
whether R”*! can be made into a normed division algebra. And, as we mentioned there, the only possibilities were R, R? and R* for
associative products, and also R®(octonions) in full generality. However, while the failure of associativity was a problem in making the
corresponding sphere into a Lie group, it is not difficult to see that it does not pose a problem in producing the desired vector fields.
Therefore: yes, the arguments that used H works also for octonions, hence also S is parallelizable.

And, as you may expect by now, it turns out that $°, ', $* and §7 are the only spheres that are parallelizable!

So far we have looked at the extreme cases: one single nowhere vanishing vector field, or the maximal number of linearly indepen-
dent vector fields. Of course, the most general question is:

Question: Given a manifold M, what is the maximal number of linearly independent vector fields that one can find on M ?
Already for the case of the spheres S, this deceivingly simple question turns out to be highly non-trivial. The solution (found half

way in the 20th century) requires again the machinery of Algebraic Topology. But here is the answer: write m + 1 = 2%+’ with n/
odd, a > 0 integer, r € {0,1,2,3}. Then the maximal number of linearly independent vector fields on S™ is

r(m)=8a+2"—1.

Note that r(m) = 0 if m is even- and that corresponds to the fact that there are no nowhere vanishing vector fields on even dimensional
spheres. The parallelizability of $™ is equivalent to 7(m) = m, i.e. 8a +2" = 2%/, which is easily seen to have the only solutions

m=1, a=0, re{0,1,2,3},

giving m = 0,2,4,8. Hence again the spheres S°, 5!, 53 and 7.

3.5.6 Push-forwards of vector fields

We now discuss how vector fields can be pushed forward from one manifold to another. The best scenario is when
we start with a diffeomorphism F' : M — N between two manifolds; then it induces a push-forward operation:

F.:X(M)— X(N), X~ F.(X)
where, for X € X(M), F.(X) € X(N) is defined by describing how it acts on functions f € €~(N):
L, x)(f) :=Lx(foF)oF~" forall f € €7(N). (3.5.5)
Or, with a bit more insight: F induces a pull-back operation on functions
F*:€"(N)—> € (M), [+ foF,

this works for any smooth F' but, for diffeomorphisms, this is an isomorphism (which is the inverse?). And then
one can just use it to transport derivations on %= (M) to derivations on ¥ (N)
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And that is precisely what formula (3.5.5) does; and you check yourself that the resulting dotted arrow is, indeed,
a derivation, i.e. (3.5.5) does define a vector field F,.(X) € X(N). A more explicit description of F,(X) (that gives
F.(X)4 € T,N for each ¢ € N) is obtained using the formula Ly (g)(p) = (dg),(Y,) for vector fields ¥ and smooth
functions g.

Rz A F
— —>|> > N

— > > > >
— = > >

B2

- = | > >
— > | >
0xq *\0x

Fig. 3.8 Consider a map F : R? — B? that diffeomorphically compresses R? into the open disc B>. The push-forward of the canonical
coordinate vector field 8371 along F is exactly the vector field that intuitively gets compressed along with the surrounding space. Can

you choose an explicit map F and calculate the components of F, ( 3‘971) with regard to the canonical identity chart of B> C R??

Exercise 3.52. Deduce that, for all g € N,
F.(X), = (dF),(X,) where p=F'(q). (3.5.6)

Also show that, if G : N — P is another diffeomorphism, then (Go F). = G, o F,.

Proposition 3.53. The push forward operation preserves the Lie bracket of vector fields: for any X;,X; €
X(M), one has
F.([X1,X3]) = [F(X1), Fe (X2)].

Proof. We start with the definition of [F, (X)), F,(X2)]:
Lir, (x,).7.0)) () = Le.(xy) (Le, ) () = LE, () (L (xy) ()
(for all f € €~(N), in which we plug in the definition of F,(X;) to obtain
Ly, (x,) (Lx,(f o F) OF_l) — the similar one = Ly, (Lx,(foF))oF ' — the similar one ;
using again the formula defining [X},X>], and then the one for F, the last expression is
Liy, x,) (f o F) o F~' = Li (ix, x) ()

Exercise 3.54. By similar arguments define also a pull-back operation F* : X(N) — X(M). And show that this
makes sense not only for diffeomorphisms F : M — N, but for all local diffeomorphisms. Also: is it true that
(GoF)*=G*oF*?

The construction of push-forwards cannot be extended for arbitrary smooth maps F' : M — N. Instead, one can
talk about a vector field X € X(M) being “related via F” to a vector field Y € X(N):
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Definition 3.55. Given a smooth map F : M — N, we say that X € X(M) is F-projectable to Y € X(N) if

(dF)p(Xp) =Yp(p) forallpeM.

Note that, when F is a diffeomorphism, this corresponds precisely to ¥ = F,(X). However, in general, there may
be different vector fields on M that are F'-projectable to the same vector field on N (think e.g. of the case when N is
a point) or there may be vector fields on M that are not projectable to any vector field on N. However, Proposition
3.53 still has a version that applies to this general setting:

Exercise 3.56. For any smooth map F : M — N, if X; € X(M) are F-projectable to ¥; € X(N) for i € {1,2}, then
[X1,X] is F-projectable to [¥;,Y>]. (Hint: proceed locally and remember the formula that you obtained when you
solved Exercise 3.46).

Exercise 3.57. Exercise 3.48 and Exercise 3.49 give you three vector fields X’ on 2, and V' on §3, respectively;
you have surely noticed that, mysteriously enough, they satisfy the same types of formulas for their Lie brackets.
How are they related?

Well, here is one more piece of data: to move from S° to S? you can use the Hopf map 4 from Exercise 2.110.
Do some computations and explain what is going on.
(warning: not to get confused by the symbols, better use different letter for the coordinates in the two spheres- e.g.
(x,3,2,1) in $3 and (u,v,w) in $2; in particular, the vector fields from Exercise 3.48 will be V! = w% - v% etc.)

3.5.7 Application: the Lie algebra of a Lie group

We now discuss the infinitesimal counterpart of Lie groups.

Definition 3.58. A Lie algebra is a vector space a endowed with an operation
[,]:axa—a
which is bi-linear, antisymmetric and which satisfies the Jacobi identity:

[[u,v],w] + [[v,w],u] + [[w,u],v =0 for all u,v,w € a.

Example 3.59 (commutators of matrices). The space .#,.,(R) of n x n matrices, together with the commutator
of matrices,
[A,B] := AB— BA

is a Lie algebra. More generally, for any vector space V, the space Lin(V,V) of linear maps from V can be made
into a Lie algebra by the same formula (just that AB becomes the composition of A and B).

Example 3.60 (vector fields). As we have already pointed out, for any manifold M, the space of vector fields
X(M) endowed with the Lie bracket of vector fields becomes a (infinite dimensional) Lie algebra.

Exercise 3.61. What is the relationship between the previous two examples?
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We now explain how a Lie group G gives rise to a finite dimensional Lie algebra g. As a linear space, it is defined
as the tangent space of G at the identity element e € G:

g:=T.G.

For the Lie bracket, we will relate g to vector fields on G, and then use the Lie bracket of vector fields. Hence, as a
first step, we note that any v € g gives rise to a vector field

Ve X(G).
defined as follows. For g € G, to define 7g€ T,G, we use the left translation by g:
L,:G— G, Lg(h)=gh.
This is smooth (and even a diffeomorphism!) and make use of its differential at e, (dLg), : g — T,G. Define then
78:: (dLg)e(v) € T,G.

Exercise 3.62. Show that, indeed, v is smooth.

Proposition 3.63. With the same notations as above (a Lie group G and g := T,G), for any u,v € g, the Lie
bracket [777
an operation

| € X(G) is again of type wfor some w € g. Denoting the resulting w by [u,v] € g, we obtain

[,]:gxg—g

that makes g into a Lie algebra.

Proof. Note that the map
itg > X(G), vy (3.5.7)

is injective. That is simply because v .= v. This implies the uniqueness of w; and it also indicates how to define it:

— =
u,v] =w. For that we note that

(La)«(v)

for all a € G and all v € g, where we use the push-forward as defined in subsection 3.5.6. Indeed, using the formula
(3.5.6) for the push-forward and then the definition of v

We still have to show that |

-, =
V)=V

_
1%

(La)e(V)g = (@dLa) g1, (AL 1))

and then, using the chain rule and L, o L1 ¢ = Lg, we end up with Vg.
Since (La)*(7) =7 and similarly for u, Proposition 3.53 implies that [;,7] = (La)*([7,7]) Evaluating this at
a € G and using again formula formula (3.5.6) (where F = L,,q = a so that p = L ! (a) = e):
— = — = —
[, ula = (dLa)e([u, ule) = (dLa)e(We) =Wa .
To fact that the resulting operation [-,-] on g is a bilinear and skew-symmetric is immediate. For the Jacobi

identity, since the map j from (3.5.7) is injective and satisfies j([v,w]) = [j(v), j(w)], it suffices to remember that

the Lie bracket of vector fields does satisfy the Jacobi identity. =



3.5 Vector fields 115

Definition 3.64. The Lie algebra of the Lie group G is defined as g = 7,G endowed with the Lie algebra
structure from the previous proposition.

We now compute some examples.

Example 3.65. We start with the general linear group GL,(R), and we claim that its Lie algebra is just the algebra
Mpusn(R) of n x n matrices endowed with the commutator bracket.

Proof. As we already mentioned, .#,.,(R) is seen as a Euclidean space; we denote coordinates functions by
xz- s Myn(R) = R

(sending a matrix to the element on the position (i, j)). We also remarked already that, while GL, = GL,(R)
sits openly inside .#,x,(R), its tangent space at the identity matrix I (and similarly at any point) is canonically
identified with .#,x,(R): any X € #,x,(R) is identified with the speed at t = 0 of ¢t — (I +1X). After left

—
translating, we find that the corresponding vector field X € X(GL,) is given, at an arbitrary point A € GL,, by

Xa= —| A-(I+1X) € T)GL,. (3.5.8)
li=0

- - =
LetX,Y € M, (R) and let [X,Y] € Ay« (R) be the Lie algebra bracket- hence defined by [X,Y]= [X,Y], where
the last bracket is the Lie bracket of vector fields on GL,. To compute it, we use the defining equation for the Lie
bracket of two vector fields:

L (F)= L;L;(F) 7L?L§(F) 3.5.9)

X.Y]

for all smooth functions
F:GL, — R.

5
From the previous description of X we deduce that

d oF .
Ly(F)(4)= — [:OF(A S(I+1X)) = i;(a—%(A)A}CX]’-‘.

In particular, applied to a coordinate function F = xj», we find
A -
L (x))(A) = ;A;Xj
or, equivalently, L; (x’j) =YxX Jk Therefore
' i\ yk iviyk ] !
Ly (L) = ELp )X} = Ldrx = Exi(r- X5,
which is precisely Lﬁ( (x’j) Since this holds for all coordinate functions, we have
LsolLs=L— 5
Y X Y-X

- o = ~
we deduce that [X,¥Y] =Y -X — X -Y and then that [X,Y]is X -Y —Y - X, i.e. the usual commutator of matrices. =

Example 3.66. For the classical subgroups of GL, from Example 2.128, since T;GL,, = .#,,«,, their Lie algebras
will be subspaces of .4, (R). They can be described explicitly in each case. Let us look here at O(n). When we
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discuss its smooth structure (in Example 2.129) we made use of the regular value theorem writing O(n) = = ({I})
and computing df at arbitrary points. In particular, since (df);(X) = X + X7, one finds that

T;0(n) = {X € Mpxn(R) : X +XT =0},

the space of skew-symmetric matrices, usually denoted o(n). Similar computations can be done for the other
groups, leading to the following list:

* for O(n) and SO(n) we obtain
o(n) :={X € Mn(R): X +XT =0}.

» for SL,(R) we obtain
sly(R) := {A € Myn(R) : Tr(X) = 0}.

* U(n) we obtain
u(n) :=={X € Mpn(C): X +X* =0}.

* for SU (n) we obtain
su(n) == {X € Myn(C): X +X* =0,Tr(X) = 0}.

For more general closed subgroups G C GL,, (see Theorem 2.131) their Lie algebras appeared implicitly in the
proof of Theorem 2.131): it follows that they are precisely the spaces (2.5.12) that were used there

T1G = {X € Myxy, :exp(tX) € G forall t}. (3.5.10)

What about the Lie brackets? We claim that, in all these examples, i.e. when G is one of the classical groups from
Example 2.128 or, if you are comfortable with Theorem 2.131, then for all closed subgroups of GL,, the resulting
Lie bracket on g = T;G is still the commutator bracket. Notice that the fact that g was closed under the commutator
bracket operation was already pointed out in the previous chapter, in Exercise 2.138.

Proof. Note that for X € g we have two induced vector fields: one on G, denoted as above by )? € X(G) and then,
since g C #pxn(R) we will have a similar one on GL,; to distinguish the two we will denote the second one by

— —

X € X(GL,). Note that, denoting by i : G — GL, the inclusion, we are in the situation of Definition 3.55: X is
— - = —

i-projectable to X. Hence, by Exercise 3.56, [X,Y] is i-projectable to [X, Y] (for all X,Y € g). By the previous

example, the last expression is [X,Y] . where, for clarity, we denote by [X,Y]comm the commutator bracket of
the matrices X and Y. Hence, for the Lie bracket of X and Y as elements of the Lie algebra g of G we find

[X7Y} = [;’ ?]1 = ([XTY]comm>I = [XaY]comm~ <

Remark 3.67 (For the interested students: Lie’s fundamental theorems). The Lie algebra g of a Lie group G contains (almost) all the
information about G! This may sound surprising at first, since g is only “the linear approximation” of G and only around the identity
e € G. The fact that it is enough to consider only the identity e can be explained by the fact that, using the group structure (and the
resulting left translations) one can move around from e to any other element in g. The fact that “the linear approximation” contains
(almost) all the information is more subtle and the real content of this is to be found on the Lie bracket structure of g.

And here is what happens precisely:

* As we have seen, any Lie group has an associated (finite dimensional) Lie algebra.

* Any finite dimensional Lie algebra g comes from a Lie group.

* For any finite dimensional Lie algebra g there exists and is unique a Lie group G(g) whose Lie algebra is g and which is 1-
connected (i.e. both connected as well as simply-connected). The Lie group G(g) can be constructed explicitly out of g. And any
other connected Lie group which has g as Lie algebra is a quotient of G(g) by a discrete subgroup.

» Explanation for the 1-connectedness condition: starting with a Lie group G, the connected component of the identity element, is
itself a Lie group with the same Lie algebra as G. And so is the universal cover of G. I.e. one can always replace G by a Lie group
that is 1-connected without changing its Lie algebra.
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e the construction G — g gives an equivalence between (the category of) l-connected Lie groups and (the category of) finite
dimensional Lie algebras. At the level of morphisms even more is true: while a morphism of Lie groups F' : G — H induces a
morphism of the corresponding Lie algebras, f : g — b, if G is 1-connected (but H is arbitrary), then F can be recovered from f
(i.e.: any morphism f of Lie algebras comes from a unique morphism F of Lie groups!). That is remarkable since f is just the
linearization of F at the identity f = (dF)e.

3.6 The flow of a vector field

The brief philosophy is:

If you live on a manifold M (... not necessarily the sphere) and your are sitting at a point p, then a tangent

vector X, € T,M gives you a direction in which you can start walking. A vector field however gives you an

entire path to walk on. In the ideal situation (no friction etc), and if you think of a vector field as describing
the wind blowing, its integral curve at p is the trajectory that you will follow, blown by the wind.

Fig. 3.9 Wind speeds as a vector field together with an integral curve 7y passing through the Uithof p.

3.6.1 Integral curves

We first make precise what it means for “a trajectory (path) to follow a vector field”.

Definition 3.68. Given a vector field X € X(M), an integral curve of X is any curve y: I — M defined on
some open interval / C R (I = R not excluded) such that

dy

E(t) =Xy forallzel.
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We say that y starts at p if 0 € I and y(0) = p.

Example 3.69. Consider M = R? and the vector field X given by

N
Cox  dy

Then a curve in R?, written as ¥(¢) = (x(¢),y(¢)), is an integral curve if and only if
xt)=1, y@)=1.

Hence we find that the integral curves of X are those of type
Y(t) = (t+a,t+b)

with a,b € R constants. Prescribing the starting point of 7 is the same thing as fixing the constants a and b (and
then we have a unique integral curve).
A more interesting vector field is:

X d d
=y —X=.
Yox dy
Then the equations to solve are X =y and y = —x. Hence ¥ = —x from which one can deduce (or guess, and then
use the uniqueness recalled below) that

x(t) = acost +bsint, y(t) = bcost —asint,

for some (arbitrary) constants a,b € R (and, again, prescribing the starting point of Y is the same thing as fixing
the constants a and b).

Note that in both examples the integral curves that we were obtaining are defined on the entire / = R. However,
this need not always be the case. For instance, for

22 0

X = yZ
Y ox y&y’

starting with any constants a,b € R one has the integral curve given by

_ (4 1.
Y(I)_<at+l’be >

but, for a > 0, the largest interval containing O on which this is defined is (—é,oo). However, still as above, for any
point p = (a,b) € R?, one finds an integral curve that starts at p.

Of course, in the previous examples, the existence of integral curves starting at a given (arbitrary) point is no
accident:

Proposition 3.70 (local existence and uniqueness). Given a vector field X € X(M):

1. for any p € M there exists an integral curve y: 1 — M of X that starts at p.
2. any two integral curves of X that coincide at a certain time ty must coincide in a neighborhood of 1.

Since this is a local statement, we just have to look in a chart. Then, as we shall see, what we end up with is a
system of ODEs and the previous proposition becomes the standard local existence/uniqueness result for ODEs.
Here are the details. Fix a chart y : U —  C M of M around p. Then, as in (3.5.1), X can be written on U as
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Xp=lflx;;<x<p>>( d )

Ixi

with the coordinate functions X)lc of X w.r.t. ¥ being smooth functions on . Also, a curve ¥ in U becomes, via %,
acurve ¥, in Q. Since y(t) = x (¥, (t)), its derivatives becomes

dy, . d}'fc d
Wiy~ T («m)w,)'

Hence the integral curve condition becomes the system of ODEs:

?(I)ZXJIC(Y%(I)77W(I)) i€{17'~~7m}
or, more compactly,

T (1) = Fy (1)

where I, = (XJ}, e ,X;’) : Q2 — R™. And here is the standard result on such ODEs:

Theorem 3.71. Let F : Q — R™ be a smooth function. Then, for any x € £, the following ordinary differ-
ential equation with initial condition:

dy, . B
S O =F@), v0)=x (3.6.1)

has a solution 7y defined on an open interval containing 0 € R, and any two such solutions must coincide
in a neighborhood of 0.
Furthermore, for any xo € Q there exists an open neighborhood Qq of xq in L, € > 0 and a smooth map

¢:(—¢€,€)x Q) — Q,

such that, for any x € Qo, ¢(-,x) : (—€,€) — Q is a solution of (3.6.1).

We see that this the first part of the theorem immediately implies (well, it is actually the same as) the previous
proposition. For a more global version of the proposition, we have to look at maximal integral curves.

Definition 3.72. Given a vector field X € X(M), a maximal integral curve of X is any integral curve y: [ —
M which admits no extension to a strictly larger interval I and which is still an integral curve of X.

With this, the local result implies quite easily the following one, with a more global flavour.

Corollary 3.73. Given a vector field X € X(M), for any p € M there exists a unique maximal integral curve
of X ¥y : I, — M that starts at p.

Proof. The main remark is that if 7| and 7 are two integral curves defined on intervals /; and I, respectively, then
the set I of points in /; NI, on which the two coincide is closed in I} NI, (because it is defined by an equation) and
open by the second part of the previous proposition. Hence, since I; N1, is connected, if 7 7 @ (i.e. the two coincide
at some t), then I = I1 N1, (i.e. the two must coincide on their common domain of definition). Therefore, to obtain

I, and 7, we can just put together all the integral curves that start at p. =
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The best possible scenario is:

Definition 3.74. We say that X € X(M) is complete if all the maximal integral curves are defined on the
entire R.

As we shall see below, all the vector fields that are compactly supported (i.e. which vanish outside a compact
subset of M) are complete. In particular, when M is compact, all vector fields on M are complete.

Fig. 3.10 Take M to be the open unit disc in R? and consider the vector fields 937] and F*(a‘%l), where F is as in Figure 3.8. Note
that the marked maximal integral curves y; and 9 with respect to each of these fields have the same image, but must be parametrized
differently: 73 moves at constant (unit) speed and is defined on a finite open interval, while 7> is defined on all of R and moves slower
and slower as one tends towards the boundary (within the ambient R2?) of M. Since we can’t extend ", 8‘97] is not a complete vector
field while F, (a%l) is. As pushing a vector field along a diffeomorphism preserves completeness, 9%1 is complete when regarded as a

vector field on all of R?. Note that an open boundary within an ambient space from within a manifold looks like it stretches towards
infinity, and intuitively, a vector field is complete if it doesn’t grow so fast when moving towards that infinity that you reach it in a finite
time when you follow along.

Exercise 3.75. Consider the vector field on the sphere X € X(5?) given by

0 d

X,),2) = yjz _Zai.

X
( y

Draw it in a picture. Then compute all its integral curves and show them in the picture as well. Is there something
more general happening (with the integral curves) at points where a vector field vanishes?

Exercise 3.76. If y: R — M is an integral curve of a vector field X € X(M) such that there exists #y,#; € R distinct
such that y(#9) = y(t1), show that y is periodic, i.e. there exists T € R such that y(t +7T) = y(¢) for all € R.
(Hint: uniqueness of integral curves).

Exercise 3.77. In this exercise y: R — M is an integral curve of a vector field X € X(M) and we assume that ¥ is
periodic, in the sense that there exists T € R such that y(r +7) = y(z) for all r € R. Such a T will be called a
period of 7.

1. Show that any closed subgroup I of (R, +), different from R, must be of type Z - ry for some rg € R.
2. Show that one can talk about "the period of 7", i.e. there exists a smallest period T of 7.
3. With Tj as above, show that

: T-6
rist o oty (T2)

is an embedding of S' in M.
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Exercise 3.78 (from the 2019 exam). Which of the following subsets of R? can be the image of an integral curve
of a vector field X € X(R?). (Explanation: subset 1 is a circle, subset 2 is an open part of a circle, subset 4 is an
infinite line, subset 6 describes a spiral approaching a circle. Please explain you answer; but when you describe a
vector field, you do not have to write down a formula- just draw it on the picture)

Exercise 3.79 (from the 2019 exam). On the 2-sphere we consider the following curve:

VRS2 ()= ( t cost sin? )

VI+2 V1+2 V1472

(a) draw a picture of 7.
(b) find a vector field X on S2 (explicit formulas!) for which 7y is an integral curve.
(c) did you check how smooth your vector field is? please do!

3.6.2 Flows

We now put together all the maximal integral curves in one object: the flow of X. Therefore, we define:

* the domain of the flow of X as
2X):={(pt)eMxR:tel,} CMxR.
* the flow of X is defined as the resulting map

Ox: 2(X) =M, o¢x(p,t):=1,().

For complete vector fields one has 2(X) = M x R. What we can say in general is that
Mx {0} C 2(X) C M xR.
and 2(X) is open in M x R. Actually, applying the second part of the Theorem 3.71, we deduce:

Corollary 3.80. For any X € X(M), the domain 9(X) is open in M x R and the flow ¢x is a smooth map.
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One of the main uses of the flow of a vector field X comes from the maps one obtains whenever one fixes a time
t; we will use the notation:

x () == x (1)

The best scenario is when X is complete, when each ¢’ will be defined on the entire M:

Theorem 3.81. If X € X(M) is complete then ¢y : M x R — M satisfy:
Prody =07, oy=1Id

(for all t,s € R). In particular, each ¢% is a diffeomorphism and

(6%) ™" =ox".

Proof. Fixing x € M and s € R, the two curves

te 057 (p), e k(03 (p))

are both integral curves of X and they coincide at ¢t = 0- hence they coincide everywhere. That ¢§ is the identity is

clear; we see that the last part follows by taking s = —¢ in the first part. <

For general (possibly non-complete) vector fields one has to be a bit more careful.

Definition 3.82. For X € X(M) and 7 € R, define the flow of X at time ¢ as the map

¢}t(:@t(x)_>M7 p'_>¢)t((p) Z:(Px(p,l‘):}/p(l‘),

defined on:
(X)) ={peM:tel,}.

Theorem 3.83. For any X € X(M):
1. for anyt € R, the domain Z;(X) of ¢ is open in M, ¢} takes values in 2_,(X), and

Ox : Z1(X) = 7-4(X)

is a diffeomorphism.
2. Fort,s € R one has

9l o¢* = 9"
in the sense that, for each p € M on which the left hand side is defined, also ¢'*(p) is defined and the
two expressions coincide.

Proof. The fact that Z;(X) is open and ¢} is smooth follows right away from the previous the standard local result
(Theorem 3.71). For the last part we consider again the two curves from the proof of Theorem 3.81; this time we
have to be more careful with their domain of definition. Hence we fix p € M, s € I(p) and we look at the curves:

a:—s+1(p) =M, a(t)=95"(p),

b:1(9x(p)) =M, b(t) = dx(dx(p))-

Note that both a and b are integral curves of X, and their are both maximal (the second one is maximal from its
very definition; for the first one, if @ was an extension to J D —s+1I(p), then s+J > ¢ — d(r — s) would be an
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integral curve defined on s+J D I(p), and starting at p). We then obtain the last part of the theorem together with
the equality

1(9x(p)) =1(p) —s
for all 5. Since 0 € I(p) we find that —s € I(¢(p)), hence

0x(Z5) C D5

and, for p € , ¢ ° (93 (p)) = p. We still have to show that, in the previously centered inclusion, equality holds.
Using the inclusion for —s instead of s and applying @3 we obtain

9x (65" (Z-5)) C (0x(2Z):

but the first term equals to ¢2(Z_;) = Z_;, hence we obtain the reverse inclusion and this finishes the proof. <

Exercise 3.84. Show that after multiplying a vector field X € X(M) by a real number A, one has
P(2X) = {(1) EMXR: (v, A1) € Z(M)}, Gy (1) = dx (1,2 1),

Exercise 3.85. For the vector field X € X(5?) that you found in Exercise 3.40, compute its flow. Again, you will
probably use the ambient space R? to carry out some of the computations (e.g. you may end up computing flows
in R? and then noticing that they do not leave the sphere). So, again: is there something more general to learn from
this?

Exercise 3.86. Consider the vector field V from Exercise 3.38 and the Hopf map % : §> — $? from Exercise 2.110.
Do the following:

(a) Compute the flow of V.

(b) If you did not do it already, write the flow making use of the fact that §> ¢ R* = C2.

(c) Check that / is constant on the integral curves of V, i.e. h(¢{,(p)) = h(p) for all p € S* and all € R.

(d) Derive now the main conclusion of Exercise 3.44: that the differential of £ kills V.

(e) What can you say about the fibers of the Hopf map & (for each ¢ € S? one talks about the fiber of 4 above ¢
which is simply the pre-image 7~ (p) = {p € $* : h(p) = ¢})?

Exercise 3.87. If you want more computations of flows as for V in the previous exercise: look also at the vector
fields V', V2 and V3 from Exercise 3.49.

Exercise 3.88 (from the 2018 exam). This is about vector fields on R3. Do the following:

(a) find a vector field X for which y(¢) = (e* ¢’ sint, e’ cost) is an integral curve.
(b) find one more such vector field, but different from X.
(c) for one of the vector fields you found, compute its flow.

Exercise 3.89. Do again 3.76, but using now the properties of the flow ¢ .

3.6.3 Completeness

The notion of completeness was already mentioned before as ”the best possible scenario”: X € X(M) is complete
if all the maximal integral curves are defined on the entire R or, equivalently, the domain of its flow is the entire
M xR:

P(X)=MxR.

Theorem 3.90. If M is compact then any vector field X € X(M) is complete. More generally, for any M,
any X € X(M) that is compactly supported (i.e. is zero outside some compact subset of M) is complete.
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Proof. When M is compact, since Z(X) is an open in M x R containing M x {0}, the tube lemma implies that
there exists € > 0 such that:
M x (—¢,e) C 2(X). (3.6.2)

(proof: for any p € M, using that ¢x is continuous at (p,0) and that Z(X) is open, find €, > 0 and U, open
containing p with U, x (—¢,,€,) C Z(X). Then {U, : p € M} is an open cover of M hence, by compactness, M
is covered by a finite number of them, say the ones corresponding to py,...,px € M; set € as the smallest of the
epsilons corresponding to the points p;.)

We claim that the existence of € such that the inclusion (3.6.2) holds implies (without further using the compact-
ness of M!) that X is complete. Indeed, we would have that ¢ (p) is defined for all t € (—¢,€) and all p € M. But
then so would be ¢ (9% (p)), hence ¢ (p), hence (3.6.2) holds also with 2¢ instead of €. Repeating the process,
we find that R x M C 2(X), hence X must be complete.

For the last part (M general and X is compactly supported) it is enough to remark that an inclusion of type (3.6.2)
can still be achieved: if X is zero outside the compact K then the tube lemma implies that (—¢,€) x K C 2(X) for
some € > 0, while all the points (¢, p) with p ¢ K are clearly in Z(X) since X vanishes at p (hence the integral

curve of X starting at p is simply y(z) = p, defined for all r). ‘&
For latter reference, let us also cast the last part of the argument into:
Corollary 3.91. If X € X(M) has the property that M x (—€,€) C D(X) for some € > 0, then X is complete.

Exercise 3.92. Let F : M — N be a smooth function. If X € X(M) is F-projectable to Y € X(N) (see Definition
3.55) show that, for any # € R one has
F(2i(X)) C Z(Y)

and, on Z,(X), I t
FO(PX = ¢Y OF.

3.6.4 Lie derivatives along vector fields

The general philosophy of taking Lie derivatives Ly along vector fields is rather simple:

This is a very general principle that is applied over and over in Differential Geometry, depending on the type
of objects” one is interested in. Here we illustrate this principle for functions and vector fields, and compute the
outcome. For functions, there is an obvious pull-back operation associated to any smooth function F : M — N
(diffeomorphism or not):

F*:€*(N) = €=(M), F*(f)=foF.

Therefore, when F = ¢4 : M — M is the flow of a complete vector field, the guiding equation (3.6.3) for § = f €
€ (M) makes sense pointwise as

d

SNP) = g7 S9x()). (3.6.4)
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Even more, written in this way, the completeness of X is not even necessary for this formula to make sense
(indeed, we only need ¢} (p) to be defined for r near 0, which is always the case).

Exercise 3.93. For the vector field X € X($?) from Exercise 3.40 you have computed its flow in Exercise ??. Take
f(x,v,z) = x+y? + 2 interpreted as a smooth function on S? and compute now %x (f). Did you get the same result
as in Exercise 3.43?

Proposition 3.94. For X € X(M) and f € €= (M), %x(f) defined by (3.6.4) is precisely Lx(f) € €= (M). ]

Proof. The expression in the right hand side of (3.6.4) is precisely

an, (5

o <p>) — (df)y(X,) = Ly () (o).

t=0
a
<

The discussion is similar for vector fields. In this case, a diffeomorphism F' : M — N allows one to pull-back
vector fields on N to vector fields on M,
F*:X(N) = X(M)

where, for Y € X(N), its pull-back F*(Y) € X(M) is defined by
FX(Y)p := (dF ") p(p) (Yp(p)-

With this, when F = ¢§ : M — M is the flow of a complete vector field, the guiding equation (3.6.3) for E =Y €
X(M) makes sense pointwise as

d

And, as for functions, this formula makes sense without any completeness assumption on X.

Proposition 3.95. For X € X(M) and any other Y € X(M), Zx(Y) defined by (3.6.5) is precisely the Lie
bracket [X,Y] € X(M).

Proof. LetZ = %x(Y). For f € €=(M) we compute Lz(f)(p) = (df),(Z,) and we find

d

dt

(@) ((d0x og ) Fog ) = %

d(Fodx") g () (Y%’((p)) :

t=0 t=0

Note that f o @y is f at = 0 and has the derivative w.r.t. 7 at = 0 equal to —Lx (f), hence
fody' = f—tLx(f)+1>2, (3.6.6)

where ? is smooth. Continuing the computation started above, we find

d d
ar|,_, (@ 14 (o) () = _@en) (Yoy ) = (@Lx(F) (¥,) =
i () = Lr (L (D)P) = Le Ly (1)) = Ly (Lx () ()

ie. Lz(f)(p) = Lix y)(f)(p) for all p and f. This implies that Z = [X,Y]. ‘=
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We obtain the following characterization of the commutation relation [X,Y] = 0; for simplicity, we restrict here
to the case of complete vector fields.

Corollary 3.96 (pairwise commuting vector fields). For XY € X(M) complete, one has:
X,Y]=0 <= Q@iodj=Pjod; Vi,scR.

Exercise 3.97. Returning to Exercise 3.48 compute [X!, X 2} in yet another way, now using flows (that you have to
compute!).

Exercise 3.98. Using the previous Proposition and Exercise 3.92 prove again that if F : M — N is smooth and
X1,X2 € X(M) are F-projectable to Y} and Y € X(N), respectively, then [X;,X] is F-projectable to [Y;,Y2].

3.6.5 Application: the exponential map for Lie groups

Proposition 3.99. Let G be a Lie group with Lie algebra g. For any u € g, the vector field U is complete
and its flow ¢, satisfies
u

t t
¢;>(ag) = a¢;(8)~
In particular, the flow can be reconstructed from what it does at time t = 1, at the identity element of G, i.e.

from
exp:g—G, exp(u):= (}L‘l;(e),

by the formula
(])’7 (a) =aexp(tu).

Moreover, the exponential is a local diffeomorphism around the origin: it sends some open neighborhood
of the origin in g diffeomorphically into an open neighborhood of the identity matrix in G.

Proof. For the first part the key remark is that if y: I — G is an integral curve of 1 defined on some interval 7 , 1.e.
if

dy
—(1)

& =u (y(t)) Vtel

then, for any a € G, the left translate a-y : t — a- ¥(t) is again an integral curve (of the same ﬁ}); this follows by

writing a- Y = L, o ¥ and using the chain rule. Hence, if 7, is the maximal integral curve starting at g € G then a- ¥,

will be the one starting at a - g- and that proves the first identity (for as long as both terms are defined). And we also

obtain that I, = I, for all @, g € G, hence I, = I, for all g € G. Using Corollary 3.91, we obtain that s complete.
We are left with the last part. For that it suffices to show that (d exp)y is an isomorphism. But

(dexp)o:g—T.G=g

sends u € g to

d
o exp(tu) = —

-0 dt

t t=0

i.e. the differential is actually the identity map. <

Example 3.100. In Example 3.65 we have seen that the Lie algebra of the general linear group GL,(R) is just the
algebra ., ,(R) of n x n matrices endowed with the commutator bracket. We claim that the resulting exponential
map is just the usual exponential map for matrices:

Exp : Mysn(R) — GLy(R), X > ¥ 1= o
k=0 "°
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(where we work with the conventions that X = I the identity matrix and 0! = 1). Let us compute exp(X) for an
arbitrary X € #y,«,(R) = TyGL,,; according to the definition, it is (1), where ¥ is the unique path in GL, satisfying

dy =
n0) =1, (1) =X (v(1)).

The last equality takes place in TyGL,, which is canonically identified with .2, (RR) (as in Example 3.65 ,
Y € M,xn(R) is identified with the speed at € = 0 of € — ¥(r) + £Y). By this identification, & L (1) goes to the usual
derivative of ¥ (as a path in the Euclidean space .#,,(R)) and X (7(7)) goes to ¥(t) - X. Hence ¥ is the solution of

Y0)=1,7'(1)=X-7(),
which is precisely what ¢ — ¢'X does. We deduce that exp(X) = €X.

Given the fact that the main ingredient in proving Theorem 2.131 was the exponential for matrices, which we
have just generalized, it is now just a simple observation that the same proof applied in the greater generality,
giving rise to:

Theorem 3.101. Any closed subgroup of a Lie group is automatically an embedded submanifold and,
therefore, becomes a Lie group.

3.6.6 Extra-exercises

Exercise 3.102. (exercise in the 2019-2020 retake) On R? compute the Lie bracket [X,Y] of the following vector
fields:
d d d

a‘*‘ya*y’ Y:xa*y—)’a-

Exercise 3.103 (part of the 2019/2020 retake exam). The 2019/2020 retake exam consisted on 20 questions on
the 2-torus

X=x

T?:=S'x S!

(equipped with the product manifold structure). Here one considers the vector field 3%1 given by

(9> -4
&91 (21722) ' dt

and similarly we define a % . For any smooth function f : T> — R, we use the notations a 2 L for the resulting Lie
derivatives (again functlons on the torus):

(e” 21,22) € T(ZuZz)T27

t=0

of d

20 (z21,22) = fle" z1,22), ete.

t=0

We will also consider the more general vector fields on the torus:

0 0
f 2
X/ = a61+f 6, € X(T%). (%)

defined for any smooth function f on T2.
Recall also that for any R > r > 0, one has a ’concrete model” of T2:

T, = {(x.02) €R*: (Va2 +y2 —R)* + =},
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which is the image of the map
F:T? SR (€%,6%) — (R+7r-cos ;) cos@y, (R+r-cos6)-sinb,r-sinfy).

You may assume (e.g. from Topology) that you know already that F is a homeomorphism between T? and TRZJ.
Here are eight questions from the exam:
1. For i € {1,2} compute (dF)p(%) at arbitrary points p = (e"% ¢"%) € T? and show that F is an immersion
at each point.
2. Deduce that F is a diffeomorphism between T2 and T,

3. We want to compute the vector fields 3%1 and % by moving them to TR27  (via F') and decomposing them w.r.t.

o d 4 4d 3 J J
the basis I dy o of the tangent spaces of R”. In other words, we want to compute F; (Tel) and F, (T@)
Show that

P) o 9
Fo| =) =—y=+x=, forallg= T2,
(ae)q Vor Ty forallg=(xy.2) € T,

and find a similar formula for F, (9%1)

4. Compute the flows of a%] and 3%2 and then deduce that [3‘%1, 3%2} =0.
5. Looking at the vector fields of type (), show that for any two smooth functions f, g on T2, there exists another
smooth function 4 such that 8%1 + [x/,x8] = x".

6. For each real number A € R consider the vector field X* (i.e. (*) obtained when f is the constant function A).
Compute the maximal integral curve y of X* starting at (1,1) € T2
7. With y as above (and A arbitrary constant) show that:

« the image of 7 is always an immersed submanifold of T?
* but, if A is irrational, then that image is not an embedded submanifold of T2,

13. Show that there do not exist smooth functions f,g on T2 such that 28 — 2L =1,
96, ~ 96

Exercise 3.104. Is the sum of two complete vector fields on R™ again complete? Or the multiplication of a com-
plete vector field by an arbitrary smooth function?



