MANIFOLDS(WISB342) EXAM, NOVEMBER 7, 2023

Exercise 1 (1pt). Show that the composition of two immersions is again an immersion.

Exercise 2 (1pt). If $f \in C^{\infty}(M)$ and $X \in \mathfrak{X}(M)$, show that $\mathcal{L}_{X}(f)=0$ if and only if f is constant along the integral curves of X, i.e., for any integral curve $\gamma: I \rightarrow M$ of $X, f \circ \gamma$ is constant.

Exercise 3. Let M be an arbitrary manifold. Recall that a differential form ω on M is called closed if $d \omega=0$, and it is called exact if there exists a form η such that $\omega=d \eta$.
(a) (0.5 pt$)$ Show that the wedge product of two closed forms is again closed.
(b) $(0.5 \mathrm{pt})$ Show that for any form ω of even degree, $\omega \wedge d \omega$ is closed.
(c) $(0.5 \mathrm{pt})$ In (b), is it true that $\omega \wedge d \omega$ is actually exact?
(d) $(0.5 \mathrm{pt})$ Is the conclusion from (b) true also for forms of odd degrees?

Exercise 4 (6.5pt). Consider

$$
M:=\left\{(x, y, z, u) \in \mathbb{R}^{4}:\left(x^{2}+y^{2}+z^{2}-1\right)^{2}+(x y-u)^{2}=0\right\}
$$

(a) (0.5 pt) Show that M is a 2 -dimensional embedded submanifold of \mathbb{R}^{4}
(b) $(0.5 \mathrm{pt})$ Show that the following define vector fields on M :

$$
\begin{aligned}
& V_{1}=z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}+y z \frac{\partial}{\partial u} \\
& V_{2}=z \frac{\partial}{\partial y}-y \frac{\partial}{\partial z}+x z \frac{\partial}{\partial u}
\end{aligned}
$$

(c) $(0.5 \mathrm{pt})$ Compute $\left[V_{1}, V_{2}\right]$
(d) $(1 \mathrm{pt})$ Compute the flow of the vector field on M given by

$$
V=y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}+\left(y^{2}-x^{2}\right) \frac{\partial}{\partial u} .
$$

(e) (1pt) Consider the form

$$
\omega=2 x d y \wedge d z+z d x \wedge d y-d u \wedge d z \in \Omega^{2}(M)
$$

and compute $\omega\left(V_{1}, V_{2}\right)$.
(f) (0.5pt) Show that ω is closed.
(g) $(1 \mathrm{pt})$ compute $i_{V}(\omega)$ and $L_{V}(\omega)$.
(h) $(0.5 \mathrm{p})$ Show that ω is nowhere zero.
(i) (1pt) Find a diffeomorphism $F: S^{2} \rightarrow M$ and compute the pull-backs by F of ω, V_{1}, V_{2} and V.

Exercise 5 (2pt). Let M be a manifold. Recall that, when X is a vector field, ϕ_{X}^{t} denotes the flow of X. Show that for any vector field X one has
(a) $\phi_{c X}^{t}=\phi_{X}^{c t}$ for any constant $c \in \mathbb{R}$ and all t for which one of the sides is defined.
(b) if M is compact then $\phi_{5 X}^{t}\left(\phi_{X}^{-t}(p)\right)=\phi_{2 X}^{t}\left(\phi_{X}^{2 t}(p)\right)$ for all $p \in M$ and all $t \in \mathbb{R}$.

NOTES:

- Please write down your name and the student no
- The order of the exercises is completely unrelated to their difficulty.
- The mark for the exam is the minimum between 10 and the total number of points you collect.
- PLEASE MOTIVATE ALL YOUR ANSWERS!!!! In particular, please:
- include all your computations that support your claims. E.g. in items (c), (d), (e), (g) of Exercise 4 (and similar items where you have to compute something) please do not just write down the final result (that will not count!) but explain how you got it/provide the details.
- in items (c) and (d) of Exercise 3 please do not just answer with "yes" or "no" (if it "yes" provide a proof, if it is "no" provide a proof as well (e.g. find a counterexample)). Also, in item (i) of Exercise 4, please explain (i.e. prove) why the F that you describe is a diffeomorphism.

