HOMEWORK 2 (SEPTEMBER 20, 2023)

Exercise 1. Consider the function

$$
f: \mathbb{P}^{1} \rightarrow S^{1}, \quad f([x: y])=\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}, \frac{2 x y}{x^{2}+y^{2}}\right)
$$

and do the following:
(1) show that f is well-defined;
(2) using the atlas on \mathbb{P}^{1} that we discussed (two charts) and the atlas on S^{1} given by the stereographic projection with respect to the north and south pole (again two charts), please write down explicitly the resulting representations of f, as in Definition 2.28 (in total $2 \times 2=4$ possibilities).
(3) in each case, please make sure that you also write down explicitly the domain of those representations. Deduce that f is smooth;
(4) show that f is actually a diffeomorphism;
(5) in general, for any projective space \mathbb{P}^{m}, there is the so-called Hopf map, simply given by

$$
H: S^{m} \rightarrow \mathbb{P}^{m}, \quad H\left(x_{0}, x_{1}, \ldots, x_{m}\right)=\left[x_{0}: x_{1}: \ldots: x_{m}\right]
$$

or, more geometrically: it sends $P \in S^{m}$ to the line $\overline{O P}$ through the origin and P. You are not asked to prove anything about this map (yet). For $m=1$ compute $f \circ H$ and, using that, describe f on a picture (think of how you would describe the map to a colleague, on the blackboard, without being allowed to use formulas).
(6) not part of the homework, but nevertheless instructive: for general m, what can you say about H ? Is it smooth? Is it a diffeomorphism? Is it a submersion or immersion?
(Just to make sure: for the last item, if you decide to do it, you will get "only feedback" and not points!)

