HOMEWORK 4 (OCTOBER 4, 2023)

This exercise is to help you work with tangent vectors, as (abstractly) defined in the lectures, when looking inside \mathbb{R}^{n} and embedded submanifolds. Therefore, we will use the tangent vectors introduced (abstractly) in the lectures, such as:

- The canonical basis

$$
\begin{equation*}
\left(\frac{\partial}{\partial x_{1}}\right)_{p}, \ldots,\left(\frac{\partial}{\partial x_{n}}\right)_{p} \in T_{p} \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

Note that this allows us to write/represent an arbitrary tangent vector vector $v \in T_{p} \mathbb{R}^{n}$ uniquely as

$$
v=\lambda_{1} \cdot\left(\frac{\partial}{\partial x_{1}}\right)_{p}+\ldots+\lambda_{n}\left(\frac{\partial}{\partial x_{n}}\right)_{p}
$$

with $\lambda_{i} \in \mathbb{R}$.

- For $\gamma:(-\epsilon, \epsilon) \rightarrow \mathbb{R}^{n}$, its "speed" as an element

$$
\begin{equation*}
\frac{d \gamma}{d t}(0) \in T_{p} \mathbb{R}^{n} \quad(p=\gamma(0)) \tag{3}
\end{equation*}
$$

Via the standard identification

$$
\operatorname{standard}_{p}: T_{p} \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad v \mapsto v^{\mathrm{Id}}
$$

sending v to its value at the identity chart, the canonical basis (1) corresponds to the standard basis e_{1}, \ldots, e_{n} of the vector space \mathbb{R}^{n}, and the abstract speed (3) corresponds to the usual derivative. But we work with the more abstract objects. Please also keep in mind that, given two tangent vectors $v, w \in T_{p} M$, at some point $p \in M$, to check that

$$
v=w
$$

it suffices to check that, for some chart χ around $p, v^{\chi}=w^{\chi}$.
Next, for an embedded submanifold $M \subset N$, we have discussed how to interpret the resulting inclusion $T_{p} M \subset T_{p} N$, for $p \in M$. In particular, for embedded submanifolds $M \subset \mathbb{R}^{n}$, one has

$$
T_{p} M \subset T_{p} \mathbb{R}^{n} \quad(p \in M)
$$

While arbitrary tangent vectors to \mathbb{R}^{n} look like (2), the question is: when does such a vector (2) actually belong to $T_{p} M$? For instance, when M is just a point (a 0 -dimensional submanifold!), the answer is: only when all λ_{i} vanish!

The main tool you have at hand is to use "speeds of curves": to show that $v \in T_{p} \mathbb{R}^{n}$ belongs to $T_{p} M$ you have to find a curve γ in M such that $v=\frac{d \gamma}{d t}(0)(\ldots$ well, there is also the regular value theorem, that you can use in extreme cases ...).

Exercise: Please do the following:
(1) For arbitrary curves $\gamma: I \rightarrow M$ in a manifold M, defined on some interval $I \subset \mathbb{R}$, make sense of (define) the speeds at arbitrary times:

$$
\frac{d \gamma}{d t}(t) \in T_{\gamma(t)} M
$$

(2) When $M \subset \mathbb{R}^{n}$, using what we asked you to keep mind, show that

$$
\frac{d \gamma}{d t}(t)=\gamma_{1}^{\prime}(t)\left(\frac{\partial}{\partial x_{1}}\right)_{\gamma(t)}+\ldots+\gamma_{n}^{\prime}(t)\left(\frac{\partial}{\partial x_{n}}\right)_{\gamma(t)}
$$

where $\gamma_{i}: I \rightarrow \mathbb{R}$ are the components of γ and $\gamma_{i}^{\prime}(t) \in \mathbb{R}$ the usual derivatives.
(3) Similarly, show that, for any $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ smooth and $p \in \mathbb{R}^{n}$, its differential between the abstract tangent spaces (white or green, your preference), $(d h)_{p}$: $T_{p} \mathbb{R}^{n} \rightarrow T_{h(p)} \mathbb{R}^{k}$, is still given by "the usual formula's", i.e. it sends

$$
\left(\frac{\partial}{\partial x_{i}}\right)_{p} \mapsto \sum_{j} \frac{\partial h_{j}}{\partial x_{i}}(p) \cdot\left(\frac{\partial}{\partial x_{j}}\right)_{p}
$$

where h_{j} is the $j-t h$ component of h.
(4) And now something handy when working on embedded submanifolds $M \subset \mathbb{R}^{n}$ and you have to work with the differential of smooth functions $f: M \rightarrow \mathbb{R}^{k}$ which may happen to be restrictions to M of smooth functions $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$. I.e., assume that $f=\left.h\right|_{M}$ with h as before. Show that the differential

$$
(d f)_{p}: T_{p} M \rightarrow T_{f(p)} \mathbb{R}^{k}
$$

is the restriction of the differential

$$
(d h)_{p}: T_{p} \mathbb{R}^{n} \rightarrow T_{h(p)} \mathbb{R}^{k}
$$

to the subspace $T_{p} M \subset T_{p} \mathbb{R}^{n}$. (Hint: use the inclusion. And don't forget the chain rule!).
(5) For the sphere $S^{2} \subset \mathbb{R}^{3}$, and $p=(1,0,0) \in S^{2}$, show that

$$
\left(\frac{\partial}{\partial y}\right)_{p},\left(\frac{\partial}{\partial z}\right)_{p} \in T_{p} \mathbb{R}^{3}
$$

both belong to $T_{p} S^{2}$ (Hint: use (2) for the appropriate curves γ in S^{2}).
(6) The two tangent vectors will be send by the differential $(d f)_{p}$ of the map

$$
f: S^{2} \rightarrow \mathbb{R}^{2}, \quad f(x, y, z)=(x y, x z)
$$

to two tangent vectors to \mathbb{R}^{2} (at what point?). Compute them!
(7) Using (6), deduce that f is a submersion at $p=(1,0,0)$.

