HOMEWORK 4 (OCTOBER 4, 2023)

This exercise is to help you work with tangent vectors, as (abstractly) defined in
the lectures, when looking inside R™ and embedded submanifolds. Therefore, we
will use the tangent vectors introduced (abstractly) in the lectures, such as:

e The canonical basis

0 0 n
(1) <8m1)p,...,(8%)peTpR .

Note that this allows us to write/represent an arbitrary tangent vector
vector v € T,R™ uniquely as

0 0
@) U:A1.<) +...+)\n(> ,
8:31 p 6‘mn p

with A\; € R.
e For v: (—¢,¢) — R its "speed” as an element
dry "
Q0 DO €TE (p=(0))

Via the standard identification

standard, : T,R" = R", v~ o'l

sending v to its value at the identity chart, the canonical basis (1) corresponds to
the standard basis ey, ..., e, of the vector space R™, and the abstract speed (3)
corresponds to the usual derivative. But we work with the more abstract objects.
Please also keep in mind that, given two tangent vectors v, w € T}, M, at some point
p € M, to check that

v=w
it suffices to check that, for some chart y around p, vX = wX.

Next, for an embedded submanifold M C N, we have discussed how to interpret
the resulting inclusion T,M C T,N, for p € M. In particular, for embedded
submanifolds M C R", one has

T,M C T,R" (pe M).

While arbitrary tangent vectors to R™ look like (2), the question is: when does
such a vector (2) actually belong to T,M? For instance, when M is just a point (a
0-dimensional submanifold!), the answer is: only when all \; vanish!

The main tool you have at hand is to use ”speeds of curves”: to show that
v € T,R" belongs to T, M you have to find a curve v in M such that v = 9 (0) (...

dt
well, there is also the regular value theorem, that you can use in extreme cases ...).
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Exercise: Please do the following:

(1) For arbitrary curves v : I — M in a manifold M, defined on some interval
I C R, make sense of (define) the speeds at arbitrary times:

dy
E (t) S T»y(t)M-

(2) When M C R™, using what we asked you to keep mind, show that

7010 (55) 0 (50)
Tey=A@)(=—) +...+n@(=—) .
dt( ) 71( ) 8I1 +0) v ( ) axn )

where «; : I = R are the components of v and v}(t) € R the usual derivatives.

(3) Similarly, show that, for any & : R™ — R* smooth and p € R”, its differential
between the abstract tangent spaces (white or green, your preference), (dh), :
T,R™ — Th(p)Rk, is still given by “the usual formula’s”, i.e. it sends

0 ) Oh; 0
(al'z p ; (91’2 axj »
where h; is the j — th component of h.
(4) And now something handy when working on embedded submanifolds M C R"
and you have to work with the differential of smooth functions f : M — R*

which may happen to be restrictions to M of smooth functions h : R* — RF.
Le., assume that f = h|ys with h as before. Show that the differential

(df)p : TyM — Tf(p)Rk
is the restriction of the differential
(dh)p 1 T,R™ — Th(P)Rk

to the subspace T,M C T,R™. (Hint: use the inclusion. And don’t forget the
chain rule!).
(5) For the sphere S? C R3, and p = (1,0,0) € S?, show that

) ) .
(), (52), e

both belong to T},5? (Hint: use (2) for the appropriate curves v in S?).

(6) The two tangent vectors will be send by the differential (df), of the map
FiS2 R [y, %) = (ay,2)

to two tangent vectors to R? (at what point?). Compute them!

(7) Using (6), deduce that f is a submersion at p = (1,0,0).



