HOMEWORK 6 (OCTOBER 18, 2023)

Exercise 1. Consider the following curve in \mathbb{R}^3 :

$$\gamma : \mathbb{R} \to \mathbb{R}^3, \quad \gamma(t) = (t^2, t^3, t).$$

a) ^{1pt} Show that the following is a submanifold of \mathbb{R}^3 containing γ :

$$M = \{(x, y, z) \in \mathbb{R}^3 : y = xz\}$$

b) ^{1.5pt} Show that the following defines a vector field on M

$$V := 2z\frac{\partial}{\partial x} + (x + 2z^2)\frac{\partial}{\partial y} + \frac{\partial}{\partial z}$$

- c) ^{1pt} Show that γ is an integral curve of V.
- e) ^{1pt} Find vector fields $X, Y \in \mathfrak{X}(M)$ which, at each point in M, give a basis of the tangent space of M.
- f) ^{1.5pt} Compute [X, Y].
- g) ^{2pt} Compute the flow of V, describing explicitly all the diffeomorphisms ϕ_V^t induced by V.
- h) ^{2pt} Find a non-zero 1-form $\theta \in \Omega^1(\mathbb{R}^3)$ such that $\theta|_M = 0$.
- i) ^{2pt} Bonus question: find a 1-form on M which is not exact, i.e. cannot be written as df for some $f \in C^{\infty}(M)$.