Hom

- vecagvad sw :Lbcom\.l;nb, G) Lol F —

POINCARE AND GEOMETRIZATION CONJECTURE
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Unaverstteit Utrecht

1. Introductory notions

Before looking at the 3 dimensional equivalent of the classification of surfaces, we will need
to introduce some general notions.
First we _deﬁm‘aﬂj?me purely topological notions[11]:
recc

Definition 1. For a continuous surjective map p : £ —+ B between topological spaces, we
say that an open set I/ C B is evenly covered by p if p~}(U) is the union of disjoint open
sets in E, say {V;}, such that p restricted to each of these open sets is a homeomorphism
onto U. {V;} is called a partition of p~'(U) into slices.

This can be pictured as a collection of "slices” of E each <>
having the same size and shape as U covering /. The map e ’{

p simply squeezes all of these slices together and pushes 1
them onto U/. We can now define an important concept in
algebraic topology:

Definition 2. If p: F — B is a continuous surjective map with the property that for all
x € B there exists a I/ € A that is evenly covered by p then p is called a covering map for
B with associated covering space E. If E is simply connected then we say it is the universal
cover of B.

We should note that universal coverings of a space are equivalent under a certain equiva-
lence relation on covering spaces{11, Section 79 & 80}, which justifies the use of the definite
article in the definition.

Definition 3. If p: F — B is a covering map, then the group of all automorphisms ¢ on
E that are lifts of p is called the deck group. By automorphisms ¢ that are lifts of p, we
mean that po ¢ = p.

While on the topic of covering spaces, we introduce here a small technical lemma, which
will be needed later on:

Lemma 1.1. If 7 : F — B is a covering map with F path connected and B simply connected
thefn m s a homeomorphism. )
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Proof. By definition of 7 it is continuous, surjective, and open. Hence we only need to prove
that it is injective. To that end consider points z,y € E such that w(z) = n(y). As F is
path connected we have some path ¢ : / — E such that ¢(0) = # and ¢(1) = y. Hence roc
is a loop based at 7(x). As B is simply connected it follows that 7 o ¢ is path homotopic to
the constant path ¢ : I = B, t — 7(x). Now the constant path ¢ : ] — E given by { —
is an obvious lift of ¢, and by uniqueness of lifts under covering maps it is the lift of ¢ [11,
Lemma 54.1]. Similarly c is the lift of 7 o c. As covering maps obey the homotopy lifting
property [11, Theorem 54.3], it follows that ¢(1)} = #(1) = z. Hence x = y and 7 is indeed
injective. W

We can now turn our attention to concepts more directly associated with manifolds:

Definition 4. The connected sum of two manifolds is the manifold obtained by deleting a
ball from both manifolds and glueing the boundaries together. 7™

Aovus /
For example the connected sum of A, the Q-gmmg: /.

L £
and B, the torus, is often {enoted by A#BA}'hich is Py

- A "

displayed in the picture. o Y {
£ éa | While this definition may not seem very rigorous, ' .
St for path-connected, oriented manifolds this construction is unique by letting the glueing map
Ve~ § | reverse orientation, furthermore the resulting manifold is unique.

oo
Definition 5. A manifold is called prime if it cannot be represented as a connected sum of
two manifolds, where neither is the n-dimensional sphere.

Notice that the n-dimensional sphere is excluded, as taking the connected sum of an
n-manifold Af with S" is Af.

1.0.1. Metric. oV M

Definition 6. Let A/ be a manifold, IQ Riemannian metric, or-tetsd iz a function g

TA %3 TM — R. Meaning that at each point p € M g, : T,M x BAM — R. With the
following properties . WV Lﬁ )
(1) g is symmetric, i.e. g(X,Y) = g(¥,X) forall X,Y e T,M,pe M (f}/g [
(2) g is positive definite, i.e. g(X,X) >0 for all X € T,Alép € M ()Dr‘gf);’éﬂfy&

The pair (M, g) is called 2 Riemannian manifold.

Theorem 1.2. If M is a smooth manifold, then there exists a smooth Riemannian metric
g on Al

)
Proof. First note that R® can be given a Riemannian metric. For any set of bounded smooth A9 JMZ
functions {f;li,7 = 1,..,n}, with f;; = [}, the functions g;; = Cé&;; + fi; determine a Gou faw
metric, when C is sufficiently large. This metric g can be defined as the 2-tensor such that -0
9(d;,8;) = gi; for the usual local frame (8, ...,8,) for TR". Since for C sufficiently large :F W
each g;; is positive definite and symmetric, g is a metric. o 7

=4

-
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Let {U,, @a} be an atlas for A, and let {p,} be a subordinate partition of unity. On each
wa(Ua) C R" a Riemannian metric g* can be chosen. Then for all X,Y & T,M define

g(X,Y) =" pag®(Dpa(X), Dpa(Y))

Note that g is positive definite since g(X, X) > 0 for all X € T, and also symmetric
because each g° is symmetric, thus g is a metric on Af. (W]

A metric allows us to define the length of a smooth path + : [0,1] — A/, denoted by I(7),
as

b
ok M= [ oo,
1 ¢
With this definition we can define a distance between two points a, b € M, denoted by d{a, b),
as the minimum of the length of all paths between a and b. It can be shown that this length
is independent of the parameterization of the path [15).
From the definition it is clear that d makes A/ into a metric space, so any smooth manifold
can be made into a metric space.

Definition 7. A Riemannian metric is called complete when it is complete as a metric space.

fowrer % s If our manifold A happens to be a regular submanifold of R*, then there is a simpler way
of defining a metric on our space, that agrees with the previous more general definition. In
R™ we define the arc length, ¢ of a curve v to be

{(y)y = f_rds

where ds® = dz} + - -+ + dx? (ds being commonly referred to as the line element). We can

take the definition of distance between two points in R" to simply be the infimum over the

arc length of all curves between the two points as defined above, and show that this ends up

defining the same metric on R" as if we used the general definition given earlier, with the
Euclidean inner product as a Riemannian metric on R”. As Af is a regular submanifold of
]E,f,'we can simply define the distance between poi [points on I to be the lnﬁmum of the arc__J 0«
(length of all curves lying on Af between théyffc%frﬁs /1t can be shown that if Af is S*~! then

this metric gives rise to great circles giving the shortest paths between two points.

We can generalise this one step further, by changing the intuitive Euclidean notion of
distance on R" by altering the line element ds. We allow ourselves to consider all line
elements of the form ds® = Z?,j:l gi;dz;dz;, where g : R" — R™" varies smoothly with
r € R", and g(z) is a positive definite matrix for all z € R". This implies that each
gi; € C=(R"). It is now an appropriate place to elaborate on what exactly the line element
is. We can view it in two different lights depending on where it is used. Under an integral sign
one can view this line element as simply defining how we calculate arc lengths, as is taught
in a calculus course. Le if ¢: [a,b] = R*, t = (z;(¢),...,z,(t)) is the parameterization of a
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[as= [ 2 ety 2420,
ij=1 /?og,Q. ?

We take ds® by itself to be a metric tensor ‘(.’/

T

ds® = Z g,-jdn:,- i d.’I’j,

ij=1

curve < then

A

a linear combination of tensor products of differential forms over C*°(R"). Our ﬁmwous
restrictions on ¢ means that ds? is in fact a Riemannian metric. We can see vm@lelr defi-

nitions that this Riemannian metric will induce exactly the same metric as the one induced — A
via the line element. Hence specifying a line element forké?:j is in fact the same as giving % ﬂ .

a Riemannian metric, and so giving any regular submanifold of (R")a Riemannian metric via
restriction. With distances on regular submanifolds of R" defined as before, different line

clements give rise to very different "straight paths™ on the manifold Af.

1.0.2. Volumg- The additional structure of a metric enables a coordinate invariant definition o {’ 4 ,__j’
of volume ,Ltékrlented Riemannian manifolds. For any Riemannian manifold there exists d,g/
smooth orthonormal frame (Zy, ..., B,) (see [5] Proposition 13.6), by changing E to —FE 23 lm s 7
necessary the orthonormal frame IHdUC@b an oriented orthonormal frame. *(fr o UJ ov ;U
o glob B fo

Definition 8. Suppose (A, g) is an oriented Riemannian n—manifold. I re is a umr:]trE
smooth orientation form w, € 0*(Af), called the Riemannian volume forfn. Such that

-
"

(.dgl[E] ) =1 '2
& .
A or every oriented orthonormal frame (F, ..., 'n) for M g

/ If Al is compact, we dgf define the volume of Af as

Vol{!\[)=f Wy
M

2. The Poincaré conjecture

The Poincare conjecture is a conjecture about the characterization of the 3-sphere $2 in
terms of homotopical properties. The 3-sphere is defined as follows:

S={reR||zl=1} o

Here ||.|| denotes the Euclidean norm given by ||z|l = h,‘f S°1_, 2. The first observation about

5% is that it is path connected. It can also be proven that S° has a trivial fundamental

group. Hence S is(simply connectedr Another example of a simply connected 3-manifold is

R?. However, an import#nt difference is that S* is @ompact]whlle R? is not. The Poincaré

conjecture states that the#.n;two propertlgi. are sufficient to characterize S?. In a more concise
manner, the Poincaré cod‘]ectur{__f‘*itates the following;:

f

/

;O\p o wi { S Sl :
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Conjecture 1. Every compact simply connected 3-manifold is homeomorphic to S2.

Historically this conjecture didn’t come out of nowhere. Before Poincaré stated this con-
jecture, he tried to characterize S? in terms of homology. At the time of his first conjecture,
homotopy wasn't even around. The homology of $? is gwen by:

e You Save ? ? Ho(S%,Z) ~ H3(S%,Z) ~ Y’Q"PQY‘QN\ @ ’E
and

Hl(Ss,Z) = HQ(Ss, Z) = {0} .
Poincaré conjectured [12] that these homology groups were sufficient to show that a 3-
manifold is homeomorphic to S%. The original conjecture stated the following:

Congecture 2. Let X be a compact 3-manifold for which the homology groups are given by
Ho(X,Z) ~ Hy(X,Z) ~z (1)

and l,ucj‘\ AVASA] ?-

H(X,Z) = B(X,Z) = {0} K) =7 o, (2) owd ¢ 3) ¢
Then X is homeomorhpic to S3. {27_1__________----——- o Ol’dﬂ{' (" el (.l)

tAny X that satisfies (tllese'k%ﬁditions is called a homology sphere.

This iteration of the conjecture turned out to be false. Poincaré found a counterexample
which is now called the Poincaré homology sphere. This manifold was first constructed by
Poincaré in [12].

2.1. The Poincaré homology sphere

The Poincaré homology sphere can be constructed in three different ways. Each of the
descriptions is usefull for different computations.

2.1.1. Construction 1: As a glu'{ing of the dodecahedron. Re-
call that the dodecahedron is the Platonic solid with 12 pen-
tagons as faces. At each vertex three faces meet.  The
dodecahedron is pictured at the right. As a topologi-
cal space it is homeomorphic to the closed 3-dimensional
disc.

Each face can be identified with the opposite face by the minimal clockwise rotation. The
Poincaré homology sphere can be obtained by glueing each face with its opposite face ac-
cording to this identification.

2.1.2. Construction 2: As e quotient of SO(3). The special orthogonal group SO(3) is de-
fined as follows:

S0(3) = {A € GL(3,R) | AT = A™! det(A) = 1}
where GL(3,R) is the group of invertible 3 x 3 matrices (sce definition 9 on page 9 for more
details). These correspond to the rotations of R? around the origin. The subgroup I < SO(3)
consists of all rotations that leave the dodecahedron invariant. The second construction of
the Poincaré homology sphere is as the quotient SO(3)/[.
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2.1.3. Construction 3: As a quotient of S. We can identify the set of unit quaternions with
S3. Each unit quaternion can be written as q = cos(§) + (uzi + wyj + u.k)sin(g) where
u € R® is a unit vector. If we map p — p,i + pyJ + p=k = P, then the conjugation gpg~!
rotates p around u with an angle 8. The map which sends every unit quaternion ¢ to the
rotation it defines is a covering map S* — SO(3) of order two. Since S is simply connected,
it is the universal cover of SO(3). The third and last description of the Poincaré homology
sphere is as the quotient S*/7, where 7 is the binary icosahedral group.

The binary icosahedral group is a double cover of the icosahedral group. The binary icosahe-
dral group is the subgroup of the unit quaternions which consists of the following elements:

¢ Elements of the form {+1, %7, %7, £}
e Elements of the form }(+1+i+j+ k)
e Even permutations of (0 =4 & ¢~'j + k) in the coordinates 0, 1,7}, ¢

The group is generated by the elements s = 3(1+i+j+ k) and £ = 3(p + ¢~ + 5) with
the relations (st)? = s% = ¢5.

The third description will be the most useful description for computing homology. Since
the Poincaré homology sphere is connected, the zeroth homology group is isomorphic to
Z. By the Poincaré duality theorem the same holds for the third homology group. Using
Poincaré duality again on the first homology group shows that the Poincaré sphere satisfies
conjecture 2 if the first homology group is trivial. To prove this Poincaré defined the funda-
mental group. The relation between the fundamental group and the first homology group is

“given by an application of the Hurewicz theorem.

Theorem 1. Let X be a topological space. Then
Hy (X, Z) = m (X)/[m: (X), m(X)]

Proof. Let zp be any point in X. Define & : m) (X, 1) = HYX, Z) to be the map which sends
the homotopy class [a] of the loop a based at g to the honplogy class [a] of the cycle a.
This is a well-defined surjective group homomorphism. AJ ?

For every = € X we choose a path A; from xp to x. Define A} : £ — A.(1 —t). Let o be
a singular 1-simplex, and define ®(a) = A}, - & - As(0), where the dot means juxtaposition.
This gives a loop based at zo. We can extend ¢ to a group homomorphism C;(X,Z) —
m1(X, zo)/[m1 (X, 20), 11 (X, 20)] by defining ®(c + 7) = ®(c) + ®(r). Since the bound-
aries of singular 2-simplices vanish under ®, ¢ induces a homomorphism &, : H(X,Z) —
(X, 20)/[m1 (X, 20), M (X, 20)]. Now for any loop o based at zo we get $(h(a)) =[A}, -0

Ayl = [0°A%,-Azo) = [0], 50 Poh is the quotient map m (X, 20) = 7 (X, xo)/[mi (X, 20), 71 (X, 20)).

Hence h induces a monomorphism h, : 7 (X,xo) /[ (X, x0), m (X, 0)] = H1(X,Z). This
proves the existence of an isomorphism m (X, xo)/[m1 (X, x0), m1(X, 20)] = H1(X, Z). O

This theorem shows that computing the fundamental group of a topological space is suf-
ficient for determining the first homology group. Now we need a tool to easily compute the
fundamental group of the Poincaré homology sphere. Such a tool is proyided by the following

lemma: T evrenn
Spuca. A @

Lemma 1. Let X be a simply connected topologicalg ip and I' a finite subgroup. Then
the fundamental group of the quotient is given by m{X/T") ~ .

A

F-J
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Proof. The proof can be found in [3]. It relies on the universal lifting property of paths. O

From this lemma we conclude that the fundamental group of the Poincaré homology sphere
is isomorphic to /. A group is perfect if it is equal to its commutator subgroup. Hence to
show that the Poincaré homology sphere is indeed a homology sphere it suffices to show that
I is perfect.

Proposition 1. The binary icosahedral group 7 is perfect.

Proof. We use the abstract definition of the binary icosahedral group: I =< s, | (st)* =
$3=1t%>.

First we see that the commutator subgroup [7, f] contains the element [t~1,s] = t~1sts™! =
t7lst(stt7ts™ s = 7 (st)?t s 1s™! = #3572 = 135735 = 1725, Moreover it also contains
the element [s7!,t7!] = s71t st = s7l 7 st(sti™s7Y) = s7U (st)? 7 s™ = s I
we multiply the two we get ts~!. Therefore also s~'t € [I, f]. Now t~2ss~!t = t~!, which
means that ¢ € [/, 1] and therefore also s € [f,I]. Since [f, I] contains all the generators of

I, we conclude that [ is a perfect group. 0
g

The Poincaré homology sphere is an example of a@ manifold. Such manifolds will
be discussed later on.

2.2. Generalizations

The second conjecture was the predecessor of the P%-aré conjecture. The Poincaré con-
jecture also has some generalizations and different-versions. The obvious generalization is
the Poincaré conjecture for arbitrary dimensions. In dimensions higher than 4 there exist
simply connected manifolds which are not homotopy equivalent to the n-sphere. Hence the
generalized Poincaré conjecture states the following:

Conjecture 3. Let X be a compact n-manifold which is homotopy equivalent to S™. Then
X is homeomorphic to 5.

In dimension 1 this statement is trivial. In dimension 2 it follows directly from the classi-
fication of compact surfaces. It has been proven to be true in all higher dimensions as well.
A different way to alter the conjecture is to look at manifolds equipped with additional
structures. Such additional structures inehudes piecewise linear structures awd & Smooth
structuré) For piecewise linear manifolds in all dimensions other than 4 the conjecture is
proven to be true. The smooth case is much different. In dimension 7 there are counterexam-
ples constructed which are called exotic spheres. Such smooth manifolds are homeomorphic
to 57, but they are not diffeomorphic to S7. This means that there exist smooth manifolds
which are homotopy equivalent to S7 but not diffeomorphic to S7. These exotic spheres were
first constructed by Milnor in [8].
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3. Geometrization Conjecture

3.1. Classifications in 2 dimensions

The classification of surfaces has been a well understood problem for some time, and we
will use this as an introduction to the Geometrization conjecture. As the Geometrization
conjecture focuses on the classification of certain 3-manifolds, the classification of surfaces is
a clear and straightforward introduction of the geometrization conjecture. The classification
of surfaces is a result for compact 2-dimensional manifolds (without boundary), Jt says that
such a manifold is homeomorphic to one of the the following structures:

(1) The sphere 52
(2) The connected sum of g tori T Lﬁ\ )
(3) The connected sum of g projective planes R P" (}mrj[ *”'u‘n .

The actual classfication of surfaces uses the notion of orientability. We will not define
orientability in general, as that goes beyond the scope of this paper. The following is an
outline of orientability in arbitrary dimensions. Whenever you choose an ordered set of n
tangent vectors at a point, and then move the point continuously along the manifold the
set of vectors stays the same. The mobius band is the easiest example of a non-orientable
manifold when you travel along it with two tangent vectors, at least one of them changes
when you arrive back at the original point.

A 2-dimensional manifold is said to be orientable if it is impossible to embed a Mobius
band inside the manifold. This definition can be proven to be equivalent with the general
definition of orientability.

We can now classify compact surfaces. Oriented surfaces are homeomorphic to cither the
sphere or the connected sum of tori. And non-orientable manifolds are homeomorphic to
the connected sum of projective spaces. It should also be noted that the surfaces in these 3
categories can be distinguished by their Euler characteristic, which is 2 — 2¢ for connected
sum of g tori and 2 — & for the connected sum of & projective planes. Note that the sphere
may be viewed as the connected sum of 0 tori. So we can fully classify connected closed
surfaces by two pieces of information, their orientability and Euler characteristic.

3.2. Classifications in 3 dimensions

2-manifolds had been well understood for many decades, but characterizing 3-manifolds
proved a much more challenging task for 20th century mathematicians. It took until 1980's,
when, after proving that a large class of manifolds (the Haken manifolds, for the interested
reader) are hyperbolic, i.e that they admit a metric of constant negative curvature, Thurston
proposed the following geometric characterization of 3-manifolds [10]:

Conjecture 3.1. Let M be a closed, orientable, prime 3-manifold. Then there emists an
embedding of a disjoint union of incompressible 2-tori and Klein bottles in M such that
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every component of their complement admuts a locally homogeneous Riemannian metric of
finite volume, isometric to one of the 8 model geometries listed below.

In fact Thurston himself did not include the word "incompressible” in his conjecture,
but due to a technical result (see Morgan [10, Cor. 1.2.1}) speaking about incompressible
embedded surfaces in the conjecture is equivalent to the original, and convenient for our
purposes. We shall take as our definition of an incompressible surface of a 3-manifold Af
to be an embedding i : § — A such that . : m(S) — = (M) is injective. We recall that a
Riemannian metric on a manifold A is said to be homogeneous if for all z,y € A there
exists an isometry f : M — Af such that f(z) = y. If instead of isometries between the
manifold we only have isometries between neighbourhoods of each pair of points we call the
metric locally homogeneous.

As the geometrization conjecture is ostensibly about categorizing all closed and orientable
3-manifolds as in the 2 dimensional case, it is natural to wonder why Thurston limits his
conjecture to prime manifolds. The following theorem, roughly stated and proved in 1928
by Hellmuth Knesner but refined and put in its modern formulation by John Milnor in 1962,
fully motivates this restriction[6]:

Theorem 3.2. Every non-trivial compact 3-manifold M is isomorphic to a sum Py# ... # P,
of prime manifolds. The summands P; are uniquely determined up to order and isomorphisms
thereof. This decomposition is essentially unique.

To a non-expert in the field of geometry, Thurston’s conjecture as he originally stated is
fairly non-intuitive. Essentially what the conjecture is claiming, is that any prime manifold
can either be given a complete Riemannian metric, which is locally isomejric to one of 8
model structures (listed below), or can be split by incompressible tori and}]@tin-bottles into
open pieces of the manifold, each of which can be endowed with a complete’ Riemannian met-
ric [7]. Splitting by incompressible surfaces simply means that there are embedded surfaces
contained in the manifold in question, the complement of which is are open submanifolds.

Before listing the 8 model structures referred to above we need to first talk about a class
of manifolds with an almost ubiquitous presence in mathematics:

Definition 9. A Lie group is a topological group G together with a smooth structure such
that group multiplication - : G x G — G, (a,b) — a- b and the inverse map I : G = G,
a— a~! are C%.

We can now talk about some important examples of Lie groups. We define the general
linear group GL,(R} to be the set of all n X n real matrices with non-zero determinant
equipped with matrix multiplication and the subspace topology inherited from R*. The
fact that R\{0} is open, and the determinant is continuous means that GL,(R) is an open
subset of R" and so is a smooth manifold, which means that GL,(R) a Lie group. The
properties of the determinant under matrix multiplication and inversion mean that if we re-
strict our attention to all matrices in GL, (R) with determinant 1 we get a subgroup SL,(R),
called the special linear group. The regular level set theorem [14, Theorem 9.9] shows that
SL,(R) is a regular submanifold of GL,(R) of dimension n* — 1. It is also possible to prove
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that the multiplication and inverse maps restricted to SL,(R) are smooth, meaning that
SL,(IR) is a Lie group in its own right (the interested reader is referred to [14, Example 15.5]
for details.) In two dimensions we can also define the projective special linear group over R
as the quotient group PSL,(R) := SL2(R)/{-1,1}.

Thurston Geometries

With the definitions behind us, we can now introduce the 8 model structures as promised,
which are commonly referred to as the 8 Thurston geometries.

o the
anoesifol

(1) Euclidean space E3. This is the manifold R? equipped with the Euclidean metric
ds® = do® + dy” + dz”

(2) The 3 sphere 83, which is the unit sphere in R! equipped with the restricted Euclidean
metric from R

(3) Hyperbolic 3 space H?. This can be thought of as the open upper half plane in R?
equipped with the metric ds® = -:l.—_,d.c:" +dy? + d2°.

(4) 8*x E

(5) H* x E

(6) The Lie group Solv, which is the set R* equipped with a multiplication operator x
defined by

(r1, 41, 21) * (T2, Y2, 22) = (0y + e 2o, 1 + €5y, 21 + 22).

This manifold is equipped with the left invariant metric ds®> = e*dr? 4+ e~ *dy? + d2>.
(7} The Lie group Nil, consisting of all matrices of the form

z
Y
1

oo
O =8

We can identify Nil with R? in the natural way, with multiplication in R? defined via
the corresponding matrix multiplication, which induces the metric

ds® = dr* + dy® + (dz — xdy)*

on Nil.
(8) The universal covering of SL»(R), denoted by SL,(R), which is also a Lie group as
the universal cover of any Lie group is again a Lie group. Unfortunately there is no

easy explicit formula for the metric we want on SLs(R), so we need to do a bit of
work. We first note that if A/ is a Riemannian manifold, then there is a natural Rie-
mannian metric e 1. To define what we mean by a natural metric here would take
_—Tis too lar afielc unfortunately, but it suffices to say that there is an induced metric on
the tangent bundle, which agrees in some sense with the Riemannian metric on Af.
The interested reader is directed to [4] for a detailed discussion about natural metrics.

4T
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Thus we have a natural metric on the tangent bundle of the hyperbolic plane TH?,
which induces a metric, ¢ say, on the unit tangent bundle

UH? .= H{v € T,H*: gy(v,v) = 1}
pEM

via restriction. As PSL,(R) can be thought of as the orientation preserving isometry
group of H* [13] we can identify it diffeomorphically with UH? as follows: We map
I to (i,i) € UH?, and map any Aizobius transformation f(z) = :j—.i'fg € PSLy(R) to
(f(@), ['(7)). Proving that this is in fact a diffeomorphism would take us too far afield.

Now the projection 7 : SLa(R) — PSLa(R) is a double covering map, meaning that

e

the universal cover of PSL,(R} is SLo(R) (as composition of covering maps fo g
is itself a covering map if g~!(bp) is finite. See [11, Exercise 54.4]). Thus we finally

arrive at the Riemannian metric on SL2(R), which is the pullback of the Riemannian
metric on UH? by the universal covering map p : SLa{R)} — PSLay(R).

Knowing what these model geometries are is just the beginning of the story. In light of
Thurston’s Geometrization theorem we know that all compact 3-manifolds can be decom-
posed into components, which are manifolds themselves, that can each be given a locally
homogeneous Riemannian metric isometric to one of the model geometries listed above. An
interesting question, and one that is not trivial to answer, is asking whether there exists
some sort of classification of all the different 3-manifolds which serve as the components in
the above decomposition (besides the incompressible tori and Klein-bottles). Colloquially
speaking, we are interested in understanding the building blocks of manifolds. To better ask
this question we need to reformulate what we mean by a 3-manifold being modeled on a
Thurston geometry. vy

Lemma 3.3 ([2, pg. 4]). If M is a Riemannian Manifold, with universal cover X, which
admits a complete locally homogeneous Riemannian metric then M is isometric to X/T,
where T' is the deck group (definition 2) of X.

In light of this lemma we can unambiguously give another definition:

Definition 10. A 3 manifold M has a geometric structure modeled on X if A is isometric
to X/T" where T is a subgroup of the group of isometries from X to itself, Isom{X).

This definition gives a concrete approach to classifying the components forming the build-
ing blocks of all manifolds, the atoms so to speak (note that this is not standard terminology,
but due to the nature of this essay perfect rigour is unfortunately not possible}. We know
that a 3-manifold serves as such an atom precisely when is modeled on one of the Thurston
geometries, which happens precisely when it is, up to isometric isomorphism, of the form
X/I'. Thus we will be able to classify all of these atomic 3-manifolds if we can find all sub-
groups I' of Isom(X) such that X/T is a manifold. To this end we introduce the following
concepts:

Definition 11. We say that a group I' acts properly discontinuously on a topological
space X if for every compact set X' C X we have that {y € I": YK N K # @} is finite.
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We quickly recall a definition from group theory. If G x X — X is a group action me
X, we define the stabilizer of a point 2 € X to be Stab(z) := {9 € G : gz = z}.

Definition 12. If (i is a group acting on a topological space X, we say that G acts freely
on X if the stabilizer of every point is trivial.

We are now in a position to state a basic theorem allowing us to find some atomic 3-
manifolds.

Theorem 3.4 ([5, pg. 549]). If X is a smooth manifold and T is a countably infinite group
with the discrete topology that acts freely and properly discontinuously on X, then X/T is a
topological manifold with a unique smooth structure such that 7 : X — X/TI" is a smooth and
reqular covertng map.

Thus by identifying the subgroups of Isom(X) acting freely and properly discontinously
on X for each model geometry X will identify atomic 3-manifolds. Unfortunately such an
analysis of each Isom(X') requires a significant amount of work, and there is still the question
of whether the subgroups acting freely and properly discontinuously are the only ones that
need to be considered. Hence identifying all 3-manifolds modeled on the Thurston geometries
is out of the scope of this essay, but we refer the interested reader to Peter Scott’s extensive
survey of the topic [13].

Having said that, it is still interesting to note that there are only seven 3-manifolds, up
to isometry, modeled on S x R, whereas there are infinitely many geometries modeled on

H-HB,[:{{}lliEfigS a fa.r&slfs\,L ?&uitmi{L%ecoalxanry [13].
3.3. Proof Of The Geometrization Conjecture

The proof of the geometrization conjecture relies on the Ricci flow, which tries to deform the
metric in a way that is similar to heat diffusion. This results in a 'smoother’ smooth manifold
and this evolves the geomery of the manifold into one of the eight Thurston geometries.

3.3.1. Flows On Riemannian Manifolds.

Definition 13. A flow on a Riemannian manifold (A/, g) is a smooth mapping ¢ : R —
(M, g(t)). Then, since g takes values as sections in a vector bundle, we can define d,g(!) as

gt +dt) — g(t) :

o«

i ST

We can look at flows for which (8,¢(t)) satisties certain equaltionygn example of this is
the Ricci flow.

Definition 14. Given a Riemannian manifold (A{, g), with Ricci-tensor R;;, the Ricci flow

is defined as the equation

17,
7190 = —2R;;

And the normalized Ricci flow | ¢ dgfﬁ\,_@{ﬂl lL)J-,l

d 2
gt = —2R; + ;Ravggij
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Where Rgyg = Tr(Ri;)

The normalized Ricci flow is defined for compact manifolds, for which it preserves the] 4
volume. ‘

Theorem 2 (Short time existence). Assume (A, g) is a closed Riemannian manifold. There
is a unique 7 > 0 and a unique Ricci flow (g:);cp0,r) such that go = g.

For the proof, see for example [1, page 7]. This theorem gas ;@qst proven by Hamilton,
who was also the first person to write down the Ricci Alow? at Teast for small times the

metric can be evolved by the Ricci flow. Recently Perelman showed that this can be used as
a tool to proof the geometrization conjecture, in 3 papers he published.

Relation between the Geometrization and Poincaré Conjectures.

Grigori Perelman became publicly known (as publicly known as any mathematician can be)
for rejecting the Millenium Prize, offered to him by the Clay Math Institute, worth one mil-
lion dollars. As this prize was offered to any one who resolved the Poincaré conjecture one
way or another, it is a fairly common misconception, even amongst mathematics students,
that Grigori Perelman focused his energies on directly proving the Poincaré conjecture. In
fact Perelman was more focused on understanding how 3-manifolds evolved under Ricci flow
with surgery. The understanding that he gained in fact proved the Thurston Geometrization
conjecture, and as a sidelight proved the Poincaré conjecture, which is in fact, quite amaz-
ingly, just a rather simple corollary of the Geometrization theorem (conjecture no longer) as
we shall now see [9, Pg. 27].

Theorem 3.5. The Geometrizetion theorem implies the Poincaré conjecture.

Proof. Let us consider a compact, simply connected 3 manifold Af. As it has a trivial fun-
damental group, the decomposition referred to in Conjecture 3.1 must be trivial (because
Tori and Klein bottles have non trivial fundamental groups, so there can be no such incom-
pressible embedded surfaces.) Thus A/ must have a complete locally homogeneous metric.
Definition 11 thus implies that Af ~ X/T', where X is one of the 8 Thurston geometries, and
" a group of isometries of X acting freely and properly discontinuously on X. Thus X/I" is
also simply connected. The quotient map 7 : X — X/I' is a regular covering map, because
the action of I' is properly discontinuous, and I is in fact the deck group of X [11, Thm
81.5]. As each of the model geometries is simply connected, so too is X/, which means
X is homeomorphic to X/I" by Lemma 1.1. Hence Af is homeomorphic to X, and as A is
compact so too is X, but S? is the only compact model geometry. O

References

[1] Richard Bamler. Lecture notes. 2014.

[2] Noella Grady. The eight geometries of the geometrization conjecture. Master’s thesis,
Oregon State University, 2011.

[3] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.



14 K.POWER, O. ELJIGENRAAM, J. VAN GEFFEN

[4] Elias Kappos. Natural metrics on tangent bundles, Master’s thesis, Lund University,
2001.
(5] John M. Lee. Introduction to Smooth Manifolds. Springer, 2nd edition, 2003.
[6] J. Milnor. A unique decomposition theorem for 3-manifolds. American Journal of
Mathematics, 84(1):1-7, 1962.
[7] J. Milnor. Towards the poincaré conjecture and the classification of 3-manifolds. Notices
of the AMS, 50(10):1226-1233, 2003.
(8] John W. Milnor. On manifolds homeomorphic to the 7-sphere. Annals of Mathematics,
64:399-4035, 1956.
[9] J. Morgan. 100 years of topology: Work stimulated by poincaré’s approach to classifying
manifolds. Clay Mathematics Proceedings, 19:7-30, 2014,
[10] John W. Morgan. Recent progress of the poincaré conjecture and the classification of 3
manifolds. Bulletin of the American Mathematical Society, 42, October 2004.
[11] James R. Munkres. Topology. Pearson Education, 2nd edition, 2000.
[12] Henri Poincaré. Cinquiéme complément a I'analysis situs. 1904.
[13] Peter Scott. The geometries of 3-manifolds. Bulletin of the London Mathematical Soci-
ety, 15, September 1983.
(14] Loring W. Tu. Introduction to Manifolds. Springer, 2nd edition, 2011,
[15] Loring W. Tu. Differential Geometry. Springer, 1st edition, 2017.




