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Abstract

We have one more look at the perturbation lemma: we simplify and generalize the stan-
dard result and we point out some non-standard consequences, including the relevance to
deformations.

1 Introduction

The classical (homological) perturbation lemma is a technical tool from homological algebra
which is very useful both “for proving”, as well as “for providing explicit formulas”. It can
be viewed as an algebraic (or homological) version of Newton’s iteration method. For sev-
eral applications of the classical perturbation lemma, as well as for more references, please see
[9, 12, 14, 20]. For a short presentation, see also Remark 2.4 (iii) below. Here we improve the
classical statement and we point out some consequences, which, previously, did not appear to
be related to the perturbation lemma. In relation with deformations, the results derived here
are just an indication of the relevance of the lemma (and its variations) to deformation theory
(see also Remark 4.6 and Remark 6.2). In particular, we find connections with known results
on deformations of Banach algebras [13, 19] and of generalized complex structures [8].

Acknowledgments: I would like to thank R.L. Fernandes for his comments on a first version
of this paper.

2 The main perturbation lemma

Throughout this note, by complexes we mean either chain or cochain complexes. By “quasi-
isomorphisms” we mean (co)chain maps which induce isomorphism in (co)homology, and we use
the standard abbreviation “q.i.”. Unless the contrary is specified, all maps are assumed to be
linear.

The starting point for perturbation lemmas is an “initial data” which consists of two complexes
together with quasi-isomorphisms between them satisfying certain conditions. The conditions
that we consider here are more general then the standard ones.

Definition 2.1 A HE data (homotopy equivalence data):
∗crainic@math.uu.nl
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(L, b)
i

// (M, b), h
poo (2.1)

consists on the following:

(i) two complexes (L, b), (M, b) and q.i.’s i, p between them;

(ii) a homotopy h between ip and 1 (so ip = 1 + bh + hb);

The question that the perturbation lemma answers is the following: given two quasi-isomorphic
complexes (part of a homotopy equivalence data, say), if we “perturb” one of them, is it possible
to perturb the other one so that the resulting perturbed complexes are still quasi-isomorphic?

Of course, one expects conditions on the “perturbations” that one allows. The conditions
which we consider in this note and the resulting perturbed data are the following (again, simpler
and more general then the standard ones, cf. the remark below).

Definition 2.2 A perturbation δ of (2.1) is a map on M of the same degree as b, such that
(b + δ)2 = 0. We will call it small if (1− δh) is invertible. In this case we put:

A = (1− δh)−1δ,

and we consider
(L, b1)

i1
// (M, b + δ), h1

p1oo (2.2)

with:
i1 = i + hAi, p1 = p + pAh, h1 = h + hAh, b1 = b + pAi.

We can now state the main perturbation lemma.

Theorem 2.3 If δ is a small perturbation of the HE data (2.1), then the perturbed data (2.2)
is a HE.

Before proving this result, we make some remarks and compare it to the more standard
versions.

Remark 2.4

(i) A DR (deformation retract) is a HE data (2.1) with the property that pi = 1. Note that
this relation does not survive after perturbation. To fix this, one can restrict himself to
special DR’s, i.e. to those DR which also satisfy

hi = 0, ph = 0, h2 = 0.

Any DR can be made into a special DR by the following transformations: replace h by
h(bh + hb) to realize hi = 0, replace h by (bh + hb)h to realize ph = 0, and then replace
h by hbh to realize h2 = 0. Note however that, when interested on explicit formulas, such
transformations are often un-wanted: they do affect the perturbed data, and the formulas
become much more complicated.
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(ii) One can check that HE’s enjoy the same functorial properties as special DR’s [20]. Note
also that−δ can be regarded as a small perturbation of the perturbed data, and, perturbing
once more, one recovers the initial data.

(iii) The classical perturbation lemma says that the perturbed data is a special DR provided
the initial data is a special DR, and there exists a filtration of (2.1) (i.e. filtrations of L
and M which are preserved by i, p and h), which is increasing and bounded below, and
which is lowered by δ. These conditions imply that δh is locally nilpotent, i.e., for each
x ∈ M , there exists n ≥ 0 such that (δh)n(x) = 0. In turn, this implies that

∑∞
n=0(δh)n

is defined proving that δ is small. Other variations of the perturbation lemma are based
on the same type of conditions.

(iv) Note that, with the mind at the formal equation

(1− δh)−1 =
∞∑

n=0

(δh)n,

there are other various particular cases when δ is small. In particular, in the presence of
Banach norms, small enough δ’s are small in the previous sense.

To prove the perturbation lemma, we need the following.

Lemma 2.5 For any HE (2.1) and any small perturbation δ,

δhA = Ahδ = A− δ, (2.3)
(1− δh)−1 = 1 + Ah, (1− hδ)−1 = 1 + hA, (2.4)
AipA + Ab + bA = 0. (2.5)

Proof: From the definition of A, (1− δh)A = δ which proves δhA = A− δ. Multiplying the
identity δhδ = δ − (1− δh)δ by (1− δh)−1 from the left we also get Ahδ = A− δ. These prove
(2.3). The relations we have to check in order to prove (2.4) follows immediately from (2.3). For
instance:

(1− δh)(1 + Ah) = 1 + Ah− δh− δhAh = 1 + h(A− δ − δhA) = 1.

To prove (2.5) we use (2.3), (2.4) and the relations ip = 1 + bh + hb, δ2 + δb + bδ = 0 :

AipA + bA + Ab = A(1 + bh + hb)A + bA + Ab

= A2 + Ab(hA + 1) + (Ah + 1)bA
(2.4)
= A2 + Ab(1− hδ)−1 + (1− δh)−1bA

= (1− δh)−1[(1− δh)A2(1− hδ) + (1− δh)Ab + bA(1− hδ)](1− hδ)−1

= (1− δh)−1[(A− δhA)(A−Ahδ) + (A− δhA)b + b(A−Ahδ)](1− hδ)−1

= (1− δh)−1[δδ + δb + bδ](1− hδ)−1 = 0.

�

Proof: (of Theorem 2.3) We have to prove various relations:
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1).b2
1 = 0 (i.e. b1 is, indeed, a boundary):

b2
1 = (b + pAi)(b + pAi) = b2 + bpAi + pAib + p(AipA)i

(2.5)
= bpAi + pAib− p(Ab + bA)i = 0.

2).i1b1 = (b + δ)i1 (i.e. i1 is, indeed, a chain map):

i1b1 − (b + δ)i1 = (i + hAi)(b + pAi)− (b + δ)(i + hAi)
= ib + ipAi + hAib + h(AipA)i− bi− bhAi− δi− (δhA)i

(2.3),(2.5)
= ipAi + hAib− h(Ab + bA)i− bhAi− δi− (A− δ)i
= ipAi− hbAi− bhAi−Ai = (ip− hb− bh− 1)Ai = 0.

3).b1p1 = p1(b + δ) (i.e. p1 is, indeed, a chain map):

b1p1 − p1(b + δ) = (b + pAi)(p + pAh)− (p + pAh)(b + δ)
= bp + bpAh + pAip + p(AipA)h− pb− pδ − pAhb− p(Ahδ)

(2.3),(2.5)
= bpAh + pAip− p(Ab + bA)h− pδ − pAhb− p(A− δ)
= pAip− pAbh− pAhb− pA = pA(ip− bh− hb− 1) = 0

4).i1p1 = 1 + h1(b + δ) + (b + δ)h1 (i.e. h1 is a homotopy between i1p1 and 1):

1 + h1(b + δ) + (b + δ)h1 − i1p1 =
= 1 + (h + hAh)(b + δ) + (b + δ)(h + hAh)− (i + hAi)(p + pAh)
= 1 + hb + hδ + hAhb + h(Ahδ) + bh + δh + bhAb + (δhA)h− ip− ipAh− hAip− h(AipA)h

(2.3),(2.5)
= hδ + hAhb + h(A− δ) + δh + bhAh + (A− δ)h− ipAh− hAip + h(Ab + bA)h
= hAhb + hA + bhAh + Ah− ipAh− hAip + hAbh + hbAh

= hA(hb + 1− ip + bh) + (bh + 1− ip + hb)Ah = 0.

6).p1 and i1 are quasi− isomorphisms: From step 4 it follows that i1p1 induces the identity
in homology. So it suffices to show that i1 is injective in homology. Assume that x ∈ L has
b1(x) = 0 and i1(x) = (b + δ)y for some y ∈ M . Hence

b(x) + pAi(x) = 0 (2.6)
i(x) + hAi(x) = b(y) + δ(y) (2.7)

Applying δ to the last equation, and replacing δhA by A− δ (cf. Lemma) and δb + δ2 by −bδ,
we obtain

Ai(x) = −bδ(y).

With this formula for Ai(x) plugged into (2.7), we get

i(x) = b(y) + δ(y) + hbδ(y), (2.8)

and, using hb = ip− 1− bh, we get

i(x− pδ(y)) = b(y − hδ(y)).
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Next, plug the formula (2.9) for Ai(x) into (2.6) to get

b(x− pδ(y)) = 0.

The last two formulas tell us that x− pδ(y) is a cocycle which, in cohomology, is mapped by i
into zero. Hence, since i is a q.i., we find z ∈ M such that

x = pδ(y) + b(z). (2.9)

Applying i to this formula and using (2.8),

b(y) + δ(y) + hbδ(y) = ipδ(y) + ib(z).

Using now ip = 1 + hb + bh, we deduce that

b(i(z)− y + hδ(y)) = 0.

Since i is surjective in cohomology, we can write

i(z)− (1− hδ)(y) = i(α) + b(β)

for some α ∈ L with b(α) = 0, and some β ∈ M . Applying pA to this and using A(1− hδ) = 1
and Ab = −bA−AipA (cf. Lemma), we deduce

pAi(z) = pδ(y) + pAi(α)− pbA(β)− pAipA(β).

From this we extract pδ(y) and we plug the result in (2.9). Rearranging the terms we get

x = b(z + pA(β)) + pAi(z + pA(β)− α)).

Since b(α) = 0, we conclude that x = b1(z + pA(β)− α) is a exact. �

3 Immediate consequences and variations

In this section we point out some consequences and variations. We start with some very simple
consequences (3.1- 3.7) with the aim of showing the usefulness of the main perturbation lemma
as “a very general recipe” for obtaining explicit formulas. Then we have a look at topological
versions.

Corollary 3.1 (Perturbing DR’s) If δ is a small perturbation of the DR data (2.1), then the
perturbed data is a DR if and only if p (Ah2A + Ah + hA )i = 0.

For special DR’s, we obtain:

Corollary 3.2 (Perturbing special DR’s) If (2.1) is a special DR, and δ is a perturbation of b
so that (1− δh) is invertible, then (2.2) is a special DR.

The next particular case (when h = 0), although trivial (or especially because of that), is a
very good illustration of one type of examples that the classical perturbation lemma does not
handle (due to the requirement that pi = 1).
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Corollary 3.3 Let δ be a perturbation of the cochain complex (M, b) and let

(L, b)
i

// (M, b)
poo (3.1)

with i and p q.i.’s satisfying ip = 1. Then

(L, b + pδi)
i

// (M, b + δ)
poo (3.2)

has the same properties.

Another interesting case is when L = 0:

Corollary 3.4 (Perturbing contractions) If (M, b) is a contractible complex with contraction h
(i.e. hb + bh + 1 = 0), and if δ is a perturbation of b (i.e. (b + δ)2 = 0) such that (1 − δh) is
invertible, then (M, b + δ) is contractible, with contraction

H = h(1− δh)−1.

The following is probably part of the folklore, but it is often very useful for finding explicit
formulas, e.g. for the Chern character in the various complexes computing the cyclic cohomology
(where the obvious DR’s to consider are not special).

Corollary 3.5 (Contracting rows) Let Cp,q (p, q ≥ 0) be a double complex with horizontal dif-
ferentials ∂ and vertical differentials δ (∂2 = δ2 = ∂δ + δ∂ = 0). Assume that each row C∗,q has
zero cohomology in positive degrees, and that we choose contractions of the augmented rows:

Hq = H0(C∗,q)
i

// C0,q
h

//
poo C1,q

h
//

∂oo C2,q
∂oo

h
// . . . .∂oo

(i.e. pi = 1, ip = ∂h + h∂ + 1). Then:

(H∗, δ)
i1

// (Tot(C), ∂ + δ), h1
poo

is a DR, where:
i1 =

∑
n≥0

(hδ)ni, h1 =
∑
n≥0

h(δh)n.

Proof: Apply Theorem 2.3 to (H∗, 0), (Tot(C∗,∗, ∂) with δ viewed as perturbation, with the
obvious projection p and inclusion i, and with the homotopy h. The formula p(Ah2A + Ah +
hA)i = 0 is automatically satisfied. �

The following is a basic lemma in constructing the b − B complex computing the cyclic ho-
mology (Lemma 2.1.6 in [15]), and is another example where the role of the perturbation lemma
is to produce explicit formulas.

Corollary 3.6 (Killing Contractible Complexes) Let

. . . −→ An ⊕A′
n

d−→ An−1 ⊕A′
n−1 −→ . . . ; d =

[
α β
γ δ

]
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be a chain complex such that (A′
∗, δ) is contractible with contracting homotopy H : A′

n −→ A′
n+1

(Hδ + δH = 1). Then the following is a HE:

(A∗, α− βHγ)
i1

// (A∗ ⊕A′
∗, d), h1

p1oo ,

i1(a ) = (a,−Hγ(a )), p1(a, b ) = a− βH(b ), h1 =
[

0 0
0 −H

]
.

Proof: Use 2.3 for (A∗, 0), (A∗ ⊕A′
∗, b), b =

[
0 0
0 δ

]
with the obvious projection and inclu-

sion, the homotopy h =
[

0 0
0 −H

]
and the perturbation

[
α β
γ 0

]
.

�

Concentrating on certain degrees only, or looking at topological complexes, there are several
variations of the main perturbation lemma and of its consequences. For instance, let us state
the following variation of 3.4, which follows directly from the formulas in the main proof.

Corollary 3.7 Let (C, b) be a cochain complex, and let h be a contraction in degree k, i.e.

Ck−1

b
// Ckhoo

b
// Ck+1, bh + hb + 1 = 0 on Ck.

hoo (3.3)

Then, for any perturbation δ of b with the property that 1 − δh is invertible on Ck and Ck+1,
h = h(1− δh)−1 define a contraction in degree k of C with the differential b1 = b + δ.

It is well known that the existence of a contraction h in degree k is equivalent to the vanishing
of Hk(C, b). Indeed, choosing a right inverse λ for b : Ck −→ Im(b), a right inverse λ′ for
b : Ck−1 −→ Im(b), and a left inverse π for the inclusion Im(b) −→ Ck+1,

h =
{

λπ on Ck+1

λ′(1− λb) on Ck (3.4)

defines the desired contraction.
In the topological category however, such an argument is no longer possible, since continuous

surjections need not have right inverses which are both linear and continuous. Hence, the obvious
topological version of the previous corollary has to assume the existence of h. The following is
yet another variation, and this one can handle cases where only the cohomology vanishing is
assumed. Given two l.c.s.’s (locally convex topological vector spaces) V and W , recall that a
map h : V −→ W is called quasi-bounded if, for any semi-norm q of W , there exists C > 0 and
a semi-norm p of V such that

q(h(v)) ≤ Cp(v)

for all v ∈ V . We have the following

Proposition 3.8 Let (C, b) be a cochain complex of l.c.s.’s, and let h be a contraction in
degree k, where, this time, h may be non-linear, but we assume that h is quasi-bounded on Ck

and h(−v) = −h(v).
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If δ is a perturbation of (C, b) which is “small enough” in the sense that∑
[δ, h]n(v)

is absolutely convergent for all v ∈ Ker(b + δ) ∩ Ck , then Hk(C, b + δ) = 0.

Here, [δ, h] = δh + hδ, and a sum
∑

vn in a l.c.s. V is absolutely convergent if
∑

p(vn) is
convergent for all semi-norms p of V .

Proof: Let v ∈ Ck such that (b + δ)v = 0. We show that

v = (b + δ)(w), where w = −
∞∑

n=0

h([δ, h]n(v)).

(Recall that h does not commute with sums!). First of all, remark that [δ, h] preserves Ker(b+δ).
Indeed,

(b + δ)[δ, h] = (b + δ)δh + (b + δ)hδ = −δbh + (b + δ)hδ,

hence, on Ker(b + δ), this is

−δbh− (b + δ)hb = −δ(bh + hb)− bhb = δ + b = 0.

Hence each vn := [δ, h]n(v) is in Ker(b + δ). Next, since bh = −1 + hδ on Ker(b + δ),

(b + δ)h(vn) = −vn + hδ(vn) + δh(vn) = vn+1 − vn.

Hence

(b + δ)
n∑

i=0

h(vi) = vn+1 − v.

Since
∑

vn is absolutely convergent it follows that vn converges to zero. Since h is quasi-bounded,
it also follows that

∑
h(vn) is absolutely convergent. Hence, taking n →∞ in the last equation,

we get (b + δ)(w) = v. �

In particular, we deduce the following (compare with Section 6 of [13]).

Corollary 3.9 If (C, b) is a cochain complex of Banach spaces so that Hk(C, b) = 0 and Im(b) ⊂
Ck+1 is closed, then there exists ε > 0 such that, for all perturbations δ of (C, b) with ||δ|| < ε
on Ck−1 and on Ck, Hk(C, b + δ) = 0.

Proof: We proceed as in the algebraic case to construct h by formula (3.4). This time, λ
and λ′ will be chosen to be non-linear but quasi-bounded (this is possible by the open mapping
theorem and the fact that b has closed range in the necessary degrees), and π will still be linear.
Also, eventually replacing λ(v) by 1

2(λ(v) − λ(−v)), we may assume that λ(−v) = −λ(v), and
similarly for λ′. We only have to show that the sum appearing in the previous statement is
absolutely convergent. On the other hand, for v ∈ Ker(b + δ), since δ(v) ∈ Im(b),

[δ, h](v) = δh(v) + λδ(v),

and, on norm, this is less than

εCh||v||+ Cλ||δ(v)|| ≤ ε(Ch + Cλ)||v||,

for some constants Ch and Cλ. Hence, it suffices to choose ε < 1/(Ch + Cλ). �
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4 Deforming Lie algebras

From this section on, we look at deformations of algebraic/topological structures. Such defor-
mations are indexed by the real parameter t varying in an open interval containing the origin,
will depend smoothly on t, and, at t = 0, one recovers the original structure that is being de-
formed. Two such deformations are equivalent if, for t small enough, they are isomorphic by
isomorphisms ht depending smoothly on t, with h0 = Id.

In this section we illustrate the use of the perturbation lemma to deformations by looking
at one of the simplest examples: Lie algebras. This should be viewed as a “baby example”,
but which is suggestive enough to give an idea for other (more complex) structures. Curiously,
despite the simplicity of the following statement, we could not trace it back in the literature.

Proposition 4.1 If (g, [·, ·]) is a finite dimensional Lie algebra and

H2(g; g) = 0,

where the cohomology groups are the Lie algebra cohomology with coefficients in the adjoint
representation, then any smooth deformation of g is equivalent to the trivial one.

In other words, for any family [·, ·]t of Lie algebra structures on g, depending smoothly on
the real parameter t (in an open interval containing the origin), with [·, ·]0 = [·, ·], there exists a
smooth family of Lie algebra isomorphisms

ht : gt −→ g, where gt = (g, [·, ·]t),

defined for t close enough to zero, and such that h0 = Id.
Proof: We reduce the problem to the exactness of certain cohomology [18] classes, which, in

turn, will be implied by the perturbation lemma. Denote by C∗ = (C∗(g; g), b) the Chevalley-
Eilenberg complex computing the Lie algebra cohomology of g with coefficients in g (the adjoint
representation). The derivatives of [·, ·]t with respect to t define closed cocycles

ct ∈ C2(gt; gt).

The ht’s must satisfy [ht(v), ht(w)]0 = ht([v, w]t). Applying d
dt , we must have:

[at(v), w]t + [v, at(w)]t =
d

dt
[v, w]t + at([v, w]t),

where at = h−1
t

d
dtht. Conversely, starting with at satisfying this equation,

ht = exp(
∫ t

0
asds) ∈ GL(g)

will produce the desired isomorphisms. Hence it suffices to show that the smooth family of
closed two-cocycles −ct can be transgressed to a smooth family of smooth one-cocycles at. Let
δt the Chevalley-Eilenberg boundary corresponding to [·, ·]t. Then

C∗(gt; gt) = (C∗(g; g), d + δt),

where δt = δt − δ. By hypothesis, we find h, g defined on C2 and C3 contracting C∗ in degree
2. Since δ0 = 0, 1 − δth will be invertible for t small enough (use e.g. a norm on g), and we
get contracting homotopies Ht (in degree 2) by Corollary 3.7. Due to the explicit formula for
Ht, and the fact that (1− δth)−1 is smooth with respect to t, at = Ht(ct) will have the desired
properties. �

9



Corollary 4.2 Let g be a vector bundle over a manifold M , with Lie algebra structures on the
fibers gx, depending smoothly on x ∈ M . If at x0 ∈ M we have H2(gx0 ; gx0) = 0, then, around
x0, g is isomorphic with the trivial bundle of Lie algebras with (Lie algebra) fiber gx0.

Corollary 4.3 Any smooth deformation of a compact simply connected Lie group G is equivalent
to the trivial one.

Here, a family Gt of Lie groups with G0 = G is smooth if they fit into a bundle of Lie groups
[5], i.e. if G = ∪tGt can be given a manifold structure with the property that the projection into
t is a submersion, and the group structure maps are smooth at the level of G.

Proof: Since G is compact and the foliation of G by the Gt’s has no holonomy, Reeb stability
allows us to assume that Gt = G, as manifolds, for all t close enough to zero. Passing to Lie
algebras, we obtain a deformation of g. Since g is semi-simple, H2(g; g) must vanish, hence
the Lie algebra deformation must be trivial. Since all Gt’s are simply connected, we can inte-
grate the resulting Lie algebra isomorphisms to a family Gt −→ G of Lie group isomorphisms. �

Remark 4.4 Regarding rigidity of Lie algebras, there is yet another way to go: there is a
natural map C (conjugation) which associates to φ ∈ GL(g), the conjugation of [·, ·] with
respect to φ viewed as an element in C2(g; g), and then a map J (Jacobi) which associates to
c ∈ C2(g; g), the expression that appears in the Jacobi identity for c, viewed as an element in
C3(g; g). One recovers δ : C1(g; g) −→ C2(g; g) as the differential of C at the identity matrix,
and δ : C2(g; g) −→ C3(g; g) as the differential of J at the given bracket. A version of the inverse
(or implicit) function theorem for finite dimensional manifolds (see e.g. Theorem on LG 3.22
in [21]) implies the following result which is closely related to Theorem 4.1 (see also the next
remark).

Corollary 4.5 If H2(g; g) = 0, then any Lie bracket on g which is sufficiently close to the
original bracket [·, ·] of g, is conjugated to [·, ·].

Remark 4.6 We view 4.1 (and its proof) as a “Moser trick”-argument for Lie algebras, while
4.4 and 4.5 as an “inverse-function theorem”-argument. Due to the simplicity of the structure
we looked at here (Lie algebras), the proofs of 4.1 and 4.5 are closely related, and this is actually
a point where the role of the perturbation lemma (in 4.1) is very close to that of Newton’s
method (in implicit function theorems). However, for more complex structures, the two type
of arguments become quite different. On one hand, the “inverse function theorem”-arguments
become quite analytical, culminating with rigidity results proven by Nash-Moser techniques
[11] (e.g. used in [10] for foliations and in [1] for Poisson manifolds). On the other hand, the
“Moser trick”-arguments tend to give more geometric approaches. Actually, finding a more
geometric proof of Conn’s rigidity theorem for Poisson manifolds [1] was one of the reasons
for looking at the relevance of the perturbation lemma to deformation problems. Although
a geometric proof of Conn’s result (based on Moser’s trick and averaging) is possible [3], it
seems to us that the most fruitful approach would be a more systematic study of graded Lie
algebras and their Kuranishi spaces in the category of tame Frechet spaces (that are central to
Nash-Moser techniques [11]), similar to the known theory in the analytic category- see [7] and
the references therein. Perturbation techniques would be encountered along the way (but, of
course, the depth of such a theory would come from the use of smoothing operators). The need
of tame Frechet spaces comes from the fact that the complexes controlling deformations are
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usually made of spaces of smooth sections of vector bundles, and the differential decreases the
degree of differentiability.

Remark 4.7 Although the need of tame Frechet spaces seems to be unavoidable in many geo-
metric problems, the previous arguments can still be pushed as long as the complexes involved
are elliptic complexes. A very good exemplification of this is obtained by looking at deforma-
tions of Lie algebroids, or of complex Lie algebroids, over a compact manifold. For basics on
Lie algebroids we refer to the standard [17], while for complex Lie algebroids to [24]. For de-
formations of Lie algebroids we refer to [4] (which applies to the complex case as well). What
happens is that the ellipticity of the complex which controls deformations is equivalent to:

• real case: the anchor map is surjective (such algebroids are known under the name “tran-
sitive Lie algebroids”).

• complex case: the sum of the image of the anchor map and its conjugate is the entire
complexified tangent space (such complex Lie algebroids are also known under the name
“elliptic Lie algebroids’ ’).

Under these conditions, due to the basic properties of elliptic complexes, Proposition 4.1 and
its proof extends without any problem. It is interesting to point out here the relationship with
generalized complex structures and their deformations, studied by M. Gualtieri in his thesis [8].
The point is that a generalized complex structure has an underlying elliptic Lie algebroid. With
these in mind, the rigidity theorem which follows from Gualtieri’s classification of deformations
of generalized complex structures coincides with our generalization of Proposition 4.1 applied
to the underlying elliptic Lie algebroid.

5 Deforming topological algebras

In this section we point out the relevance of perturbation methods to deformations of topological
algebras. We first recall the algebraic version of deformations [6], known as formal deformations.
Given an algebra (A, ·), a formal deformation of A is a (associative) multiplication

a ? b = ab +
∞∑

k=1

ck(a, b)tk

depending on the formal variable t. (For the notion of equivalence of such deformations, see [6]).
Such (equivalence classes of) formal deformations are “controlled” by H∗(A;A), the Hochschild
cohomology of A with coefficients in A. Recall that, for any A-bimodule X, H∗(A;X) is com-
puted by the complex

Ck(A;X) = Hom(A⊗k, X),

with the boundary map b : Ck(A;X) −→ Ck+1(A;X),

b(α)(a0, . . . , ak) = a0α(a1, . . . , ak)

+
k∑

i=1

(−1)iα(a0, . . . , ai−1ai, . . . , ak) + α(a0, . . . , ak−1)ak.

When X = A, the Hochschild complex C∗(A;A) comes equipped with the Gerstenhaber bracket,

[·, ·] : Cp(A;A)× Cq(A;A) −→ Cp+q−1(A;A), [α, β] = α ◦ β − (−1)(p−1)(q−1)β ◦ α,

11



where

(α ◦ β)(a1, . . . , ap+q−1) =
p−1∑
i=0

(−1)(q−1)if(a1, . . . , g(ai+1, . . . , ai+q), . . . ap+q−1).

Moreover, [·, ·] passes to cohomology, and (H∗(A;A), [·, ·]) is an algebraic analogue for the space
of multivector fields on a manifold M , endowed with the Nijenhuis-Schouten bracket (the two
are the same if A is the algebra of smooth functions on M , and one imposes a certain continuity
condition on the cocycles).

A similar discussion is possible for topological algebras. As in [22] (to which we refer for more
details also on the cohomology of topological algebras), we first fix a topological tensor product
⊗̃. The choice depends on the type of applications one has in mind, and it encodes the type of
continuity one requires on the multiplication. For instance, joint continuity of the multiplication
m(a, b) = ab corresponds to the projective tensor product ⊗̂ in the sense that m is continuous
if and only if it extends to a continuous map m : A⊗̂A −→ A. Similarly, separate continuity
corresponds to the inductive tensor product, etc. Having understood that we fix a topological
tensor product ⊗̃, a topological algebra A is an algebra endowed with a locally convex topology
so that the multiplication m of A is continuous in the sense that it continuously extends to (or
is defined as)

m : A⊗̃A −→ A.

The continuous cohomology, H∗
cont(A;A), is defined as above, replacing ⊗ with ⊗̃. A formal

deformation ? of A is called continuous if each of the coefficients ck are continuous (i.e. extend
to A⊗̃A). As in [6], if H2

cont(A;A) = 0, then any continuous formal deformation of A is equivalent
to the trivial one.

In the topological world however, the deformations one would like to consider are families �t

of (associative) multiplications so that each �t is continuous, one recovers the original multipli-
cation at t = 0, and �t ∈ Hom(A⊗̃A,A) is of class Ck on t, where 0 ≤ k ≤ ∞ is fixed. We call
such families continuous deformations of A which are of class Ck on t.

Remark 5.1 (Poisson structures) It is well-known that formal deformations of the algebra of
smooth functions on a manifold M are related to Poisson structures on M (i.e. bivectors π
on M satisfying [π, π] = 0, where [·, ·] is the Nijenhuis-Schouten bracket [23]). Motivated by
the fact that (H∗(A;A), [·, ·]) is the analogue of the space of multivector fields together with
the Nijenhuis-Schouten bracket, a (non-commutative) Poisson structure on A is defined [25]
by an element π ∈ H2(A;A) satisfying [π, π] = 0. Any formal deformation induces a Poisson
structure, namely π = [c1]. Indeed, the associativity equation for ? gives us certain equations
corresponding to the powers of t. The coefficient of t translates into b(c1) = 0, while the one of
t2 translates into [c1, c1] = b(c2).

Similarly, continuous Poisson structures (i.e. with π ∈ H2
cont(A;A)) are related to continuous

deformation �t. More precisely, if �t is of class C1 on t, then

c1(a, b) =
d

dt
|t=0a�t b, (a, b ∈ A)

is a Hochschild cocycle, and π = [c1] ∈ H2(A;A) is a candidate for a Poisson structure on A. If
�t is of class C2 on t, then π is indeed a Poisson structure. To prove these assertions, one writes
the associativity of the products mt(a, b) = a�t b in terms of the Gerstenhaber bracket as

[mt,mt] = 0,

12



and one uses that the Hochschild boundary is b(α) = [α, m] (m = m0 is the original multipli-
cation). Taking derivatives with respect to t in the previous equation, one gets [ d

dtmt,mt] = 0
hence c1 = d

dt |t=0mt is a cocycle. Taking derivatives at t = 0 in the last equation, we obtain
[c1, c1] = [c2,m] hence exact, where

c2(a, b) =
d2

dt2
|t=0a�t b.

Exactly with the same proof as for Lie algebras (and using the fact that for Banach algebras
small enough is small, cf. Remark 2.4 (iv)), we deduce:

Proposition 5.2 Let A be a Banach algebra A with the property that there are continuous maps
g and h

C1
cont(A;A)

b
// C

2
cont(A;A)hoo

b
// C

3
cont(A;A), bh + gb = 1.

goo (5.1)

Then any continuous deformation of A which is of class C1 on t, is equivalent to the trivial one.

A particular case is that of Banach algebras of (continuous) cohomological dimension at most
one (see [22]).

Corollary 5.3 If the Banach algebra A has cohomological dimension at most 1, then any con-
tinuous deformation of A which is of class C1 in t is equivalent to the trivial one.

Proof: As in the algebraic case, the condition on A is equivalent (see [22]) to the existence
of a projective resolution R of A of type

R : 0 −→ R1 −→ R0 −→ A.

Then HomA−A(R,A) and C∗
cont(A;A) will be homotopic equivalent via continuous maps and

homotopies, and this clearly produces a contracting homotopy of C∗
cont(A;A) in degree 2. �

Remark 5.4 We have seen that, in the case of Banach algebras, the hypothesis on the existence
of a (linear continuous) contraction h can be relaxed (see Corollary 3.9), i.e. one has a weaker
condition: H2(A;A) =) and Im(b) ⊂ C3(A;A) closed. This should be compared with the results
of [13] and [19] which prove rigidity under perturbations under such conditions. The approach
in [19] is an “inverse-function theorem”-type approach (the paper starts with such a theorem in
this context). In contrast, the type of arguments in [13] is a “homological perturbation” one.
This is implicit in the proofs there, and it is interesting to point out that a particular case of
our Corollary 3.9 already appears (implicitly) in [13]. Note also that such “relaxations” on the
contracting homotopy h are no longer possible for more general topological vector spaces (not
even for Frechet vector spaces), and, in the “inverse function theorem”-approach to rigidity, this
translates into that fact that the inverse function theorems one uses has similar hypothesis (e.g.,
for Nash-Moser techniques, see [10], Theorem 3.1.1 in [10], and Proposition 2.1 in [1]).
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6 Deforming algebras of continuous functions

In this section we look at deformations �t of the product on the algebra of continuous function
on a compact topological space M . For the start, to avoid discussions on topological tensor
products, we say that �t is continuous if it can be extended to a continuous map C(M×M) −→
C(M). Smoothness with respect to t will refer to smoothness as family of maps between the
Banach spaces C(M ×M) and C(M).

Proposition 6.1 Let M be a compact metric space, and let (C(M), ·) be the algebra of contin-
uous functions on M . Then any continuous deformation (C(M),�t) of the algebra (C(M), ·)
which is of class C1 in t is equivalent to the trivial one, i.e. there exists a family

ht : (C(M), ·) −→ (C(M),�t)

of continuous algebra isomorphisms, defined for t close enough to the origin, with h0 = Id, and
which is of class C1 in t.

Proof: The proof is similar to that for Lie algebras, using this time the (Hochschild) complex
computing the (continuous) cohomology of A with coefficients in A, C∗ = C∗

cont(A;A) (see the
previous section). Continuity is the same type of continuity as for the products, i.e. one declares
that the (topological) tensor product of C(M) and C(N) equals to C(M×N) for compact metric
spaces M,N . Hence

Ck = Homcont(C(Mk), C(M)).

And, proceeding as in the case of Lie algebras, one only has to show that C∗ admits a continuous
contraction in degree 2. As in the algebraic case, the Hochschild complex comes from a projective
resolution of A by A-bimodules, after applying the functor HomA−A(−, A) of continuous A-
bimodule maps. The resolution under discussion is the b′-resolution:

. . .
b′−→ C(M ×M ×M) b′−→ C(M ×M) m−→ C(M)

where m is the multiplication (restriction to the diagonal), and

b′(f0, . . . , fn+1) =
n∑

i=0

(−1)i(f0, . . . , fi−1, fifi+1, fi+2, . . . , fn+1).

To prove that C∗ admits a continuous contraction in degree 2, it suffices to show that the b′-
resolution admits a similar contraction, which is a map of A-bimodules. On the other hand,
one can replace the b′ resolution by its normalization N∗, i.e. consisting on those continuous
functions satisfying

f(x0, . . . , xn) = 0, if xi = xi+1 for some 0 ≤ i ≤ n− 2.

Indeed, the fact that a complex (associated to a simplicial module) and its normalization have the
same cohomology can be proven by giving the explicit formulas for the maps and the homotopies
(see the proof of Theorem 6.1. in [16]), and these maps are clearly continuous. Finally, using a
metric ρ, we can write down an explicit formula for a contracting homotopy h for

. . .
b′−→ N2 b′−→ N1 b′−→ ker(m).
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We give the first three components of h (which is a bit more that what we need), and a general
formula can be easily guessed. For f ∈ Ker(m) ⊂ C(M2), g ∈ C(M3), k ∈ C(M4):

h(f)(x0, x1, x2) =
ρ(x0, x1)

ρ(x0, x1) + ρ(x1, x2)
f(x0, x2),

h(g)(x0, x1, x2, x3) =
ρ(x0, x1)ρ(x1, x2)

ρ(x0, x1)ρ(x1, x2) + ρ(x2, x3)
(
g(x0, x1, x3)

− ρ(x0, x1)
ρ(x0, x1) + ρ(x1, x2)

g(x0, x2, x3)
)

h(k)(x0, x1, x2, x3, x4) =
ρ(x0, x1)ρ(x1, x2)ρ(x2, x3)

ρ(x0, x1)ρ(x1, x2)ρ(x2, x3) + ρ(x3, x4)
[
k(x0, x1, x2, x4)

− ρ(x0, x1)ρ(x1, x2)
ρ(x0, x1)ρ(x1, x2) + ρ(x2, x3)

(
k(x0, x1, x4, x4)

− ρ(x0, x1)
ρ(x0, x1) + ρ(x1, x2)

k(x0, x2, x4, x4)
)]

�

Remark 6.2 The previous result is similar to the fact that the cyclic homology of C(M) is
un-interesting (in contrast with the algebra of smooth functions on a manifold M , when one
obtains the usual DeRham cohomology [2]). Actually, the previous proof shows that C(M) is
“cohomologically un-interesting” and it does imply the triviality of the cyclic homology.

Incidentally, let us also point out that the vanishing of the Hochschild cohomology and the
rigidity theorem of Section 3 of [6] adapted to the topological context (see also the next section)
also implies the following:

Corollary 6.3 Given a compact metric space M , any formal deformation of C(M):

f ?t g = fg + c1(f, g)t + c2(f, g)t2 + . . . ,

with the property that each of the coefficients ck is continuous, is equivalent to the trivial one.
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