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STABILITY OF SYMPLECTIC LEAVES

MARIUS CRAINIC AND RUI LOJA FERNANDES

Abstract. We find computable criteria for stability of symplectic leaves of
Poisson manifolds. Using Poisson geometry as an inspiration, we also give
a general criterion for stability of leaves of Lie algebroids, including singular
ones. This not only extends but also provides a new approach (and proofs) to
the classical stability results for foliations and group actions.
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Introduction

A Poisson structure on a manifold M is a (possibly singular) foliation by sym-
plectic leaves of M . In this paper we address the question of stability of these
symplectic leaves. More precisely, given a Poisson structure π on a manifold M ,
we will say that a symplectic leaf S is stable if all nearby Poisson structures have
a nearby symplectic leaf which is diffeomorphic to S. In this paper we will give
criteria for stability. Our criteria can viewed as illustrations of the well-known
principle

infinitesimal stability =⇒ stability

and are reminiscent of stability criteria in other geometric settings, such as foliation
theory, equivariant geometry, etc. Let us recall some of these briefly.

In foliation theory, the classical stability results of Reeb [14], Thurston [17],
Langevin and Rosenberg [11], can all be reduced to the following criterion for sta-
bility: For a fixed manifold M , the set of smooth foliations of M has a natural
topology. One calls a leaf L of a foliation F of M stable if every nearby foli-
ation has a nearby leaf diffeomorphic to L. Also, for a base point x ∈ L, let
ρ : π1(L, x) → GL(ν(L)x) be the linear holonomy representation and denote by
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H1(π1(L, x), ν(L)x) the corresponding first group cohomology. Then, for a com-
pact leaf L, the condition H1(π1(L, x), ν(L)x) = 0 implies that L is stable.

For group actions one finds a similar situation. For a fixed Lie group G and
manifold M , the set of smooth actions of G on M has a natural topology. One
calls an orbit O of an action α : G × M → M stable if every nearby action has
a nearby orbit which is diffeomorphic to O. Results of Hirsch [10] and Stowe [16]
led to the following criterion for stability: Fix x ∈ O, let ρ : Gx → GL(ν(O)x)
be the linear normal isotropy representation and denote by H1(Gx, ν(O)x) the
corresponding first group cohomology. Then, for a compact orbit O, the condition
H1(Gx, ν(O)x) = 0 implies that O is stable.

In Poisson geometry, the problem of stability of symplectic leaves is more subtle.
One reason is the complicated singular behavior of Poisson structures in a neigh-
borhood of a leaf. Another reason is that there are actually two interesting notions
of stability leading to two different questions: when is a symplectic leaf stable as a
manifold (stability) and when is it stable as a symplectic manifold (strong sta-
bility)? In this paper we will discuss both notions of stability. Our first result
states:

Theorem 1 (Stability). Let (M, π) be a Poisson manifold and let S be a compact
symplectic leaf. If the second relative Poisson cohomology group H2

π(M, S) vanishes,
then S is stable.

Our second result deals with strong stability:

Theorem 2 (Strong stability). Let (M, π) be a Poisson manifold and let S be a
compact symplectic leaf. If the second restricted Poisson cohomology group H2

π,S(M)
vanishes, then S is strongly stable.

We emphasize that all the cohomology groups appearing in the statements of
our theorems are computable and finite dimensional (the defining complexes are
even elliptic).

It is also important to understand the relationship between stability and strong
stability. The strong stability result (Theorem 2) makes full use of the Poisson
geometry setting and has no immediate consequences involving the other results
we have mentioned. This may seem surprising at first sight, because one could ex-
pect the strong stability result (Theorem 2) to imply the stability result (Theorem
1). However, the complete statement of these results, which give the size of the
space of leaves diffeomorphic to the original one, clarifies the situation: while The-
orem 1 implies that nearby Poisson structures have “many” leaves diffeomorphic to
the original one, Theorem 2 involves less “many” leaves symplectomorphic to the
original one.

Nevertheless, we expect the two theorems to be related. This is due to the
existence of a canonical map relating the relevant cohomology groups:

Φ : H2
π,S(M) −→ H2

π(M, S),

which led us to the following conjecture:

Conjecture 3. Let (M, π) be a Poisson manifold and let S be a compact symplectic
leaf. If Φ vanishes, then any Poisson structure close enough to π admits at least
one nearby symplectic leaf diffeomorphic to S.

At this point, we are not able to prove or disprove this conjecture. However, The-
orem 1.3 below, which gives necessary conditions for stability and strong stability,
provides some support for this conjecture. A similar conjecture for group actions,
regarding stability of orbits (stability) versus stability of orbit types (strong stabil-
ity), was made by Stowe [16]. To our knowledge this conjecture is still open.



STABILITY OF SYMPLECTIC LEAVES 3

The other aspect of our work concerns the question of finding some common
background to such stability results. We will show that all these results are, in
principle, just reflections of a general stability theorem for orbits of Lie algebroids,
which can be stated as follows:

Theorem 4 (Orbit stability). Let A be a Lie algebroid and let L be a compact
orbit of A with normal bundle denoted ν(L). If H1(A|L; ν(L)) = 0 then L is stable,
i.e., every Lie algebroid structure which is close enough to A admits a nearby orbit
which is diffeomorphic to L.

More complete statements of these three theorems, as well as explanations con-
cerning the various cohomology groups appearing in the results, will be given in
the body of the paper. In particular, these more complete versions will describe
the size of the space of leaves diffeomorphic to the original one.

For each specific class, Theorem 4 immediately gives a computable criterion for
stability. However, using our approach and the specifics of the particular class being
studied, one may obtain better criteria. In fact, for each of the situations considered
above, the precise relationship between the various results we have mentioned, is a
follows:

Foliations. In this case, Theorem 4 implies the classical stability theorem for foli-
ations. This requires a passage from algebroid cohomology to group cohomology,
that is standard in this case, and which will be explained in full generality in Sec-
tion 1.3. Since a Lie algebroid which is close enough to (the Lie algebroid of) a
foliation must be a foliation itself, the two results coincide.

Group actions. Theorem 4 also implies the stability result for orbits of actions of
1-connected (i.e., connected and simply connected) Lie groups. Without the 1-
connectedness assumption Theorem 4 yields a result of slightly more infinitesimal
nature, which is more restrictive but also stronger than the result mentioned above:
it insures the stability of orbits inside the world of infinitesimal Lie algebra actions
on manifolds. One reason for this is that the Lie algebroid associated with an
infinitesimal action can have arbitrary close Lie algebroids which are not associated
with a Lie algebra action.

Poisson structures. Theorem 4 applied to Poisson geometry implies stability of
leaves under the infinitesimal condition that a certain first restricted Poisson co-
homology group with coefficients in the normal bundle H1

π,S(M ; ν(S)) vanishes.
Hence, unlike the case of foliations and group actions, our stability theorem in
Poisson geometry (Theorem 1) is not a direct consequence of the Lie algebroid
result. Hence, Poisson geometry provides a first example of a geometric structure
where the general stability theorem can be improved. Indeed, we will see that there
is a canonical inclusion map:

H2
π,S(M) →֒ H1

π,S(M ; ν(S)),

so Theorem 1 is an improvement over Theorem 4 (see the examples in Section 2).

The proofs of the stability theorems stated above are quite different in nature
from the proofs of the classical stability theorems for foliations and group actions.
For these, the heart of the proof is an argument, due to Thurston, which uses
Ascoli’s Theorem to construct a sequence of group 1-cocycles that converge to a
cocycle. In our case, the proof consists in constructing a functional, parametrized
by the nearby Poisson structures, whose absolute minimums are the nearby leaves
diffeomorphic (or symplectomorphic) to the original one. The problem of finding ex-
tremes of this functional is solved by a geometric argument, rather than the usual
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method that requires constructing some minimizing sequence (that would corre-
spond to Thurston’s sequence of group cocycles) and the use of apriori estimates.
An outline of our method of proof can be found in Section 3 below.

This paper is organized as follows. In Section 1, after introducing the necessary
background material, we state the complete statments of our main results. We also
show how the classical theorems for foliations and group actions follow from our
stability result for Lie algebroids. In Section 2, we illustrate our results with several
examples and show that our criteria are computable in many situations. In Section
3, we describe the main steps in our method of proof. The remaining sections of
the paper contain the proofs of our results.

In closing this introduction, we remark that the (much easier) case of singular
points (i.e., zero dimensional leaves) was treated by us in [4], and then extended to
higher order singularities by Dufour and Wade in [7].

Acknowledgments. The authors would like to thank the following institutions for
their hospitality and support during the 4 years that this project took shape: Centre
de Recerca Matemàtica, Erwin Schrödinger International Institute for Mathemat-
ical Physics, International Center for Theoretical Physics-Trieste, Université Paul
Sabatier-Toulouse, Keio University-Tokyo, University of Luxembourg, University
of Utrecht (R.L.F) and Instituto Superior Técnico (M.C.).

1. Main results

1.1. Poisson structures. Recall (see, e.g., [19]) that a Poisson structure on a
manifold M can be described either by a Lie bracket {·, ·} on the space C∞(M)
satisfying the Leibniz identity:

{f, gh} = {f, g}h + g{f, h}, f, g, h ∈ C∞(M),

or by a bivector field π ∈ X2(M) with the property that

(1) [π, π] = 0,

where [·, ·] is the Schouten bracket (1). These two ways of looking at Poisson
structures are related by: π(df, dg) = {f, g}. We will often interpret π as a vector
bundle map π# : T ∗M → TM . Basic examples of Poisson manifolds are symplectic
manifolds and duals of Lie algebras (see also below).

The description of Poisson structures in terms of bivectors allows us to talk
about Poisson structures which are Cκ-close to a given one: this refers to the Cκ-
topology, i.e., the topology of uniform convergence over compact subsets of maps
and its derivatives up to order p, on the space X2(M) of smooth bivector fields.

In a Poisson manifold (M, π) any function f ∈ C∞(M) induces a vector field

Xf := {f, ·},

called the hamiltonian vector field induced by f . Moving along hamiltonian
flows gives a partition of M into the so called symplectic leaves: two points of M
are in the same leaf if and only if they can be reached by following the flow of (one
or more) hamiltonian vector fields. The leaves carry a canonical smooth structure
which make them into regular immersed submanifolds of M . Alternatively, the

1Recall that X
•(M) = Γ(∧•TM) is endowed the Schouten bracket which is uniquely de-

termined by the condition that, when applied to vector fields it is the usual Lie bracket, when
applied to a vector field and a function it is the Lie derivative along the vector field and has the
following formal properties

[X, Y ] = −(−1)(p−1)(q−1) [Y, X],

[X, Y ∧ Z] = [X, Y ] ∧ Z + (−1)(p−1)qY ∧ [X, Z],

for all X ∈ X
p(M), Y ∈ X

q(M), Z ∈ X
r(M).
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hamiltonian vector fields span a singular distribution on M (which coincides with
the image of π♯) and the leaves arise as the maximal connected integrals. This
point of view determines the smooth structure of the leaves and also shows that
each such leaf S has a canonical symplectic form

ωS(Xf , Xg) = {f, g} (on S).

Hence, roughly speaking, a Poisson structure is a “singular symplectic foliation”.
However, there is interesting geometry also in the transverse direction. For any
symplectic leaf S, each fiber of the normal bundle

νS := TSM/TS

carries a canonical linear Poisson structure (the linearization of π in the transverse
direction). Equivalently, the conormal bundle ν∗

S is a Lie algebra bundle: at each
x ∈ M , the bracket can be described by

[dxf, dxg] = dx{f, g},

for f, g locally defined functions around x and constant on S.
The symplectic form on the leaf S and the transverse linear Poisson structures

on ν(S) can be assembled together into a single Poisson structure j1S π, which we
will call the first jet approximation to π along S. We will describe later how
j1S π is constructed.

For a Poisson manifold (M, π), one defines the Poisson cohomology H•
π(M)

as the cohomology of the complex of multivector fields (X•(M), dπ), where:

dπ := [π, ·].

Fixing a symplectic leaf S, one obtains a complex (X•
S(M), dπ|S) where X•

S(M) =
Γ(Λ•TM |S), dπ|S is the space of multivector fields along S (it is not difficult to see
that dπ does restrict to S). The corresponding cohomology is called the Poisson
cohomology restricted to S(2) and will be denoted by H•

π,S(M). There is an
obvious restriction map:

H•
π(M) −→ H•

π,S(M).

Note that X•
S(M) contains the de Rham complex of S as a subcomplex, with

the inclusion induced by dualizing the anchor map π♯ : T ∗
SM −→ TS. We set:

X•(M, S) := X•
S(M)/Ω•(S),

and the resulting cohomology is called the Poisson cohomology relative to S,
denoted H•

π(M, S). The map induced by the projection will be denoted

Φ : H•
π,S(M) −→ H•

π(M, S).

These are the cohomologies appearing in the first two theorems in the introduction,
for which we can now state the complete versions:

Theorem 1.1. Let S be a n-dimensional compact symplectic leaf of a Poisson
manifold (M, π) which satisfies H2

π(M, S) = 0, and let κ > n
2 + 1 be an integer.

For any neighborhood V of S there exists a neighborhood V of π in the Cκ-topology
such that: any Poisson structure in V has a family of symplectic leaves in V ,
diffeomorphic to S, smoothly parametrized by H1

π(M, S).

The parameter space as a nice geometric interpretation: H1
π(M, S) coincides with

the space of leaves of the first jet approximation j1
Sπ which project diffeomorphically

to S. Moreover, we have H1
π(M, S) = Γflat(ν

0(S)), the space of flat sections of
the subbundle of ν(S) where the linear transverse Poisson structure vanishes (see
Corollary 6.6 (i)).

2This cohomology was introduced in [9], where it was called the relative Poisson cohomology.
We reserve this name for yet another cohomology we will be using.
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Theorem 1.2. Let S be a n-dimensional compact symplectic leaf of a Poisson
manifold (M, π) which satisfies H2

π,S(M) = 0, and let κ > n
2 + 1 be an integer.

For any neighborhood V of S there exists a neighborhood V of π in the Cκ-topology
such that: any Poisson structure in V has a family of symplectic leaves in V ,
symplectomorphic to S, smoothly parametrized by the image of Φ : H1

π,S(M) →

H1
π(M, S).

The parameter space of strongly stable leaves is a subspace of the parameter
space for stable leaves, as it should be. It also as a nice geometric interpretation: it
coincides with the space of leaves of the first jet approximation j1

Sπ which project
diffeomorphically to S and which have symplectic form isotopic to ωS (see Corollary
6.6 (ii))

One obvious question that one could ask in the Poisson setting is wether the
conditions in Theorems 1.1 and 1.2 are in any sense necessary for stability to hold. It
turns out that there is a natural class of Poisson structures, namely those behaving
linearly in a neighborhood of the leaf S, where these conditions appear naturally.
More precisely, let π be a Poisson structure on a vector bundle p : E → S, such
that the zero section is a leaf of π. Will say that π is of first order around S if
π = j1

Sπ in some neighborhood of S. Then we have:

Theorem 1.3. Let π be a Poisson structure which is of first order around a compact
symplectic leaf S. Then:

(i) If S is stable, then the map Φ : H2
π,S(M) → H2

π(M, S) vanishes.

(ii) If S is strongly stable, then H2
π,S(M) = 0.

Notice that this result provides some evidence to the conjecture stated in the
Introduction.

1.2. Lie algebroids. We now turn to the discussion of the complete version of
Theorem 4.

Recall first a Lie algebroid over a manifold M consists of a vector bundle A
over M together with a Lie algebra bracket [·, ·] on the space Γ(A) of sections of A
and a bundle map ρ : A −→ TM (called the anchor) satisfying the Leibniz identity

[α, fβ] = f [α, β] + Lρ(α)(f)β, (α, β ∈ Γ(A), f ∈ C∞(M)).

Here, we denote by LX the Lie derivative along the vector field X ∈ X(M).

Example 1.4. The main examples for this paper are:

Foliations : Any foliation on M can be viewed as a Lie algebroid with injective
anchor map: A is the bundle of vectors tangent to the leaves and the anchor
is the inclusion.

Infinitesimal actions : To any infinitesimal action ρ : g → X(M) of a finite
dimensional Lie algebra g on a manifold M one associates a Lie algebroid:
A is the trivial bundle over M with fiber g, the anchor is ρ and the bracket is
uniquely determined by the condition that it restricts on constant sections
to the Lie bracket of g.

Poisson manifolds : Associated to any Poisson structure π on M , there is a
Lie algebroid structure on the cotangent bundle T ∗M : the anchor is just
π♯ : T ∗M → TM , while the bracket [·, ·]π on Γ(T ∗M) = Ω1(M) is uniquely
determined by

[df, dg]π = d{f, g}.

Generalizing the leaves of foliated manifolds, orbits of actions and the symplectic
leaves of Poisson manifolds, one can talk about the leaves of a Lie algebroid A



STABILITY OF SYMPLECTIC LEAVES 7

over M : they are regular immersed submanifolds L of M which are the maximal
integrals of the singular distribution ρ(A) ⊂ TM :

TxL = ρ(Ax) ∀ x ∈ L.

Given a leaf L ⊂ M of A, one can restrict A to L to obtain a new algebroid A|L
over L, with the bracket uniquely determined by:

[α|L, β|L] = [α, β]|L.

This restricted algebroid A|L has the important property that it is transitive (i.e.,
its anchor is surjective). Also, the bracket on Γ(A) restricts to a pointwise bracket
on the kernel of the anchor map at each point x ∈ M , to induce a Lie algebra

gx(A) := Ker(ρx) ⊂ Ax,

called the isotropy Lie algebra at x. When x runs inside a leaf L, they fit together
into a smooth Lie algebra bundle gL(A) over L, which can be viewed as a Lie
algebroid with zero anchor. One obtains a short exact sequence of Lie algebroids:

0 // gL(A) // A|L // TL // 0 .

If we fix a (vector bundle) splitting of the sequence, σ : TL → A|L, we can define
a connection ∇σ on gL(A) by:

∇σ
Xξ = [σ(X), ξ], (X ∈ X(S), ξ ∈ Γ(gL(A))).

The connections induced on the center Z(gL)(A) and also on the abelianization
gL(A)/[gL(A), gL(A)] are flat and do not depend on the choice of splitting. Hence,
these two bundles are canonically flat bundles over L.

Example 1.5. When A = T ∗M is the Lie algebroid associated to a Poisson man-
ifold (M, π) and we fix a symplectic leaf S, the sequence above amounts to:

0 // ν∗(S) // T ∗
SM // TS // 0

We conclude that the bundle ν0
S consisting of zeros of the transverse linear Poisson

structure is canonically a flat vector bundle over S. The sections of this bundle
form the parameter space in Theorem 1.1.

For any Lie algebroid A one has an associated de Rham complex: Ω•(A) =
Γ(∧•A) with the differential dA given by the classical Koszul formula

dAω(α1, . . . , αq+1) =
∑

i

(−1)i+1Lρ(αi)(ω(α1, . . . , α̂i, . . . , αq+1))+

+
∑

i<j

(−1)i+jω([αi, αj ], . . . , α̂i, . . . , α̂j , . . . , αq+1).

The resulting cohomology H•(A) is called the A-de Rham cohomology.

Example 1.6. A-de Rham cohomology generalizes the usual de Rham cohomology
(when A = TM), foliated cohomology (when A comes from a foliation), Lie algebra
cohomology (when M is a point and A is a Lie algebra). When (M, π) is a Poisson
manifold and A = T ∗M is the associated Lie algebroid, then H•(A) coincides
with the Poisson cohomology H•

π(M). For any symplectic leaf S, the A-de Rham
cohomology H•(A|S) of the restricted Lie algebroid A|S = T ∗

SM coincides with
H•

π,S(M), the Poisson cohomology restricted to S.

There is a simple variation of A-de Rham cohomology obtained by allowing
coefficients. Here by coefficients we mean representations of A, i.e., vector bundles
E over M endowed with A-derivatives operators:

Γ(A) ⊗ Γ(E) −→ Γ(E), (α, e) 7→ ∇α(e),
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which satisfy the connection-like identities

∇fα(e) = f∇α(e), ∇α(fe) = f∇α(e) + Lρ(α)(f)e, (f ∈ C∞(M))

as well as the flatness condition

∇[α,β] = ∇α∇β −∇β∇α.

One defines the complex Ω•(A; E) = Γ(∧•A∗ ⊗ E), with the differential dA given
by a formula similar to the one above, but where we replace Lρ(αi) (which does not
longer make sense) by ∇αi

.

Example 1.7. If we fix a leaf L ⊂ M of A, the restricted algebroid A|L has a
canonical representation on the normal bundle νL = TLM/TL:

∇α(X |mod TL) = [ρ(α), X ] mod TL.

This representation is known as the Bott representation of A|L and the result-
ing cohomology H∗(A|L; νL) is the one relevant to the stability of leaves of Lie
algebroids. Note that in degree zero one has

H0(A|L; νL) = Γflat(νL),

the space of flat sections (with respect to the Bott connection).

There is one final ingredient in the statement of our stability theorem for Lie
algebroids that we need to introduce, namely the topology on the set of Lie algebroid
structures on a fixed vector bundle. First, note that locally (over M) we can
describe a Lie algebroid A → M by certain structure functions as follows: fix
local coordinates (U, x1, . . . , xn) on M and a basis of sections {e1, . . . , er} of A|U .
Then, there are functions aα

i , ck
ij ∈ C∞(U) such that:

ρ(ei) = aα
i

∂

∂xα
, [ei, ej] = ck

ijek.

This makes it possible to compare any two Lie algebroid structures over U by
comparing the corresponding structure functions (in whatever Cκ-topology one may
wish). Now, if one wants to do this globally over M , one can choose a connection
∇ on the vector bundle and proceed as follows: to each Lie algebroid structure,
with anchor ρ and Lie bracket [ , ], we associate sections a ∈ Γ(A∗ ⊗ TM) and
c ∈ Γ(∧2A∗ ⊗ A), by setting:

〈a, (α, ω)〉 = 〈ρ(α), ω〉, 〈c, (α, β, ξ)〉 = 〈[α, β] −∇ρ(α)β, ξ〉.

The Cκ-topology on sections of a vector bundle now induce a Cκ-topology on
the space of Lie algebroid structures on A.

Theorem 1.8. Let L be a n-dimensional compact leaf a Lie algebroid A which
satisfies H1(A|L; νL) = 0, and let κ > n

2 be an integer. For any neighborhood V
of L there exists a neighborhood V of the Lie algebroid A in the Cκ-topology such
that: any Lie algebroid structure in V has a family of leaves in V , diffeomorphic to
L, smoothly parametrized by H0(A|L; νL).

Similar to the Poisson case, the parameter space can also be characterized as
the space of leaves of the first jet approximation to the Lie algebroid A along L.
Moreover, for Lie algebroid structures of first order type around L the condition in
the theorem is also a necessary condition for stability.
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1.3. From Lie algebr(oids) to Lie group(oids). Lets us explain how the Lie
algebroid cohomology group appearing in the theorem can be re-interpreted as
differentiable cohomology of a certain Lie group. This will show, for example, that
the classical stability theorem for foliations follows from our general theorem for
Lie algebroids.

The relevant group is the first homotopy group of A based at x (or the
fundamental group of A based at x) which will be denoted Gx(A). The elements
of Gx(A) are the equivalence classes of A-paths which start and end at x, i.e., A-
loops based x, modulo the equivalence relation of A-homotopy (see Sections 1.1
and 1.3 in [5]). The space P (A, x) formed by C1-loops based at x is an infinite
dimensional Banach manifold and Gx(A), endowed with the quotient topology,
becomes a topological group. By the smooth structure on Gx(A) we will allways
mean a smooth structure which makes the quotient map P (A, x) −→ Gx(A) into
a submersion. Such a smooth structure, if it exists, is unique and makes Gx(A)
into a Lie group integrating gx(A). In general, Gx(A) is neither connected nor
simply-connected.

Geometrically, A-paths can be used to perform parallel transport with respect
to A-connections. The resulting maps are invariant under A-homotopy provided
the A-connection is flat (i.e., if it defines a representation of A) [5, Proposition
1.6]. This applied to the Bott representation of A|L gives a representation of the
fundamental group of A:

hol : Gx(A) −→ GL(νx),

called the linear holonomy representation based at x.

Proposition 1.9. Let A be a Lie algebroid, L a leaf of A and x ∈ L. If Gx(A) is
smooth then

H1(A; νL) ∼= H1(Gx(A); νx)

where the right hand side is the differentiable cohomology of the Lie group Gx(A)
with coefficients in the linear holonomy representation.

Proof. First of all, the condition that Gx(A) is smooth is equivalent to the integra-
bility of the Lie algebroid AL ([5]). Let GL = G(AL) be the fundamental groupoid
of AL, formed by A-homotopy classes of arbitrary A-paths (also known as the We-
instein groupoid of A). It is the unique (up to isomorphism) s-simply connected
Lie groupoid integrating AL.

Similarly to the discussion above, parallel transport with respect to the Bott
connection makes νL into a representation of the groupoid GL. Since the s-fibers of
GL are 1-connected, a theorem of [2] states that the Van Est map

VE : H1(GL; νL) −→ H1(AL; νL),

is an isomorphism.
Next, by its very construction, Gx(A) coincides with the isotropy group of GL

(i.e., the Lie group of arrows of GL starting and ending at x). Hence GL, being a
transitive Lie groupoid, is Morita equivalent to Gx(A). Under this equivalence, the
representation of GL on νL corresponds to the linear holonomy representation of
Gx(A) on νx.

Finally, since the first differentiable groupoid cohomology is a Morita invariant
(see, e.g., [2]), we conclude that H1(GL; νL) and H1(Gx(A); νx) are isomorphic and
the result follows. �

We can now look back at foliations, groups actions and Poisson manifolds to see
what we can conclude from Theorem 1.8.
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1.3.1. Foliations. Combining Proposition 1.9 with Theorem 1.8 we recover the clas-
sical stability theorem for foliations, as we now describe.

Let A = TF be a foliation, viewed as an involutive subbundle of TM and as an
algebroid with the inclusion as anchor map. Then the Bott representation becomes
the usual flat connection on νL, and we have

H1(A; νL) = H1(L; νL) and Gx(A) = π1(L, x).

Also, the topology on the space of Lie algebroid structures introduced above, in-
duces the usual Cκ-topology on the space of foliations. Hence:

Corollary 1.10. Let L be a compact leaf of a foliation F , let κ > n
2 + 1 be an

integer, and assume that

H1(π1(L, x); νx) = 0.

Then for any neighborhood V of L there exists a neighborhood V of the foliation
F in the Cκ-topology such that: any foliation in V has a family of leaves in V ,
diffeomorphic to L, smoothly parametrized by Γflat(νL).

1.3.2. Group actions. We also obtain a stability result for actions of 1-connected
Lie groups. In fact, when A = g⋉M is the Lie algebroid associated to a 1-connected
Lie group G acting on M then Gx(A) ∼= Gx, so that for any orbit O of G, we have
H1(A; νO) and H1(Gx; νx) are isomorphic (here νx is the normal space to the orbit
O through x). The set of smooth actions of G also carries a natural Cκ-topology,
and we conclude:

Corollary 1.11. Let O be a compact orbit of an action of a 1-connected Lie group
G on M , let κ > n

2 + 1 be an integer, and assume that

H1(Gx; νx) = 0.

Then for any neighborhood V of O there exists a neighborhood V of the action in the
Cκ-topology such that: any action in V has a family of leaves in V , diffeomorphic
to O, smoothly parametrized by Γflat(νO).

Notice that a Lie algebroid structure which is close to a Lie algebroid TF of a
foliation must have injective anchor, and hence it is the Lie algebroid of a foliation.
So the notions of stability for a foliation F in the sense of foliations and in the sense
of Lie algebroids coincide.

This is not anymore the case for Lie algebra actions: a Lie algebroid which is close
to an action Lie algebroid g⋉M need not be an action Lie algebroid. However, the
first order approximation to a Lie algebroid along an orbit is an action algebroid.
This explains why we still recover (infinitesimally) the classical stability result for
actions.

1.3.3. Poisson structures. Finally, in the case of Poisson structures the two stability
results do differ. There is a precise relationship between Theorem 1.1 and Theo-
rem 1.8, which we now explain. Recall that H•

π,S(M ; νS) denotes the cohomology

H∗(T ∗
SM ; νS), and it is computed by the complex

X•
S(M ; νS) = Γ(∧•TSM ⊗ νS),

where the differential is induced by the operation of bracketing with π. There is a
canonical inclusion

i : X•(M, S) −→ X•−1
S (M ; νS)

X1 ∧ . . .∧Xk 7→
∑

i

(−1)i+1X1 ∧ . . . X̂i . . . ∧ Xk ⊗ (Xi mod TS)

and this map is compatible with the differentials. This leads to:
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Lemma 1.12. The inclusion i induces an injection H2
π(M, S) →֒ H1

π,S(M ; νS).

This inclusion can be seen as a reflection of the fact that a Lie algebroid structure
on the cotangent bundle T ∗M is associated with a Poisson structure iff the anchor
is skew-symmetric and the bracket of closed 1-forms is also a closed 1-form. There
are Poisson structures π with a symplectic leaf S for which every nearby Poisson
structure has nearby symplectic leaves diffeomorphic to S, while there exist some
nearby Lie algebroids with no leaves diffeomorphic to S (see Example 2.2 below).

The conclusion is that the criteria for stability of symplectic leaves in Theorem
1.1 is stronger than the criteria arising from the general algebroid setting given by
Theorem 1.8.

2. Examples

We will now illustrate our main theorems with a few examples. Concerning
terminology, we will say that a symplectic leaf S of a Poisson manifold (M, π) is:

• Cκ-stable if for any neighborhood V of S, there exists a neighborhood V
of π in the Cκ-topology such that any θ ∈ V has a leaf diffeomorphic to S
and contained in V .

• strongly Cκ-stable if the same condition holds but with “diffeomorphic”
replaced by “symplectomorphic”.

• algebroid Cκ-stable if for any neighborhood V of S, there exists a neigh-
borhood V of (T ∗M, [ , ]π, π♯) in the Cκ-topology such that any Lie alge-
broid structure in V has a leaf diffeomorphic to S and contained in V .

When κ = ∞, we drop κ from the notation. Our theorems imply the following
criteria for stability: for a compact symplectic leaf S and κ > n

2 + 1, one has:

Criterion 1: If H2
π(M, S) = 0 then S is Cκ-stable.

Criterion 2: If H2
π,S(M) = 0 then S is strongly Cκ-stable.

Criterion 3: If H1
π,S(M, νS) = 0 then S is algebroid Cκ−1-stable.

Before we turn to the examples, let us also point out that for a Poisson manifold
(M, π) with x ∈ M a singular point of π (i.e, a 0-dimensional leaf S = {x}), the
relevant cohomologies are related to the isotropy Lie algebra gx of π at x as follows:

H2
π(M, x) = H2

π,x(M) ∼= H2(gx),

H1
π,x(M, νx) = H1(gx; gx).

In particular, let M = g∗ be the dual of a Lie algebra endowed with its linear
Poisson structure. The origin x = 0 is a singular point and we have that gx = g,
so:

H2
π,x(M) = H2(g), H1

π,x(M, νx) = H1(g; g).

This will be used in the examples to follow.

Example 2.1. On R
2, the Poisson structures

πǫ = (x2 + y2 + ǫ)
∂

∂x
∧

∂

∂y

are symplectic when ǫ > 0, while π0 has S = {0} as a singular point. Hence the
origin is unstable for π0. Note that in this example, the Poisson structure π0 is just
the linear Poisson structure on M = g∗, where g is the abelian Lie algebra. The
cohomologies H2

π0
(M, S), H2

π0,S(M) and H1
π0,S(M, νS) are all non-zero.

Example 2.2. On R
2, the linear Poisson structure

π = x
∂

∂x
∧

∂

∂y

has the origin stable, but not algebroid stable.
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The stability follows by a direct argument (or by applying Criterion 1). To show
algebroid unstability, note that the Lie algebroid associated to π can be described
in terms of the coframe e1 = dx, e2 = dy, by:

[e1, e2] = e1,

ρ(e1) = x
∂

∂y
, ρ(e2) = −x

∂

∂x
.

One can find a Lie algebroid (T ∗
R

2, [·, ·]ǫ, ρǫ) arbitrary close to this one which has
the same Lie bracket and a nonvanishing anchor, given by:

ρǫ(e1) = x
∂

∂y
, ρǫ(e2) = −x

∂

∂x
+ ǫ

∂

∂y
.

Since M = g∗, where g is the non-abelian 2-dimensional Lie algebra, in this example:

H2
π,x(M) = 0, H1

π,x(M, νx) 6= 0.

Example 2.3. Let M = su(2)∗ = R
3 with its linear Poisson structure

π = x
∂

∂y
∧

∂

∂z
+ y

∂

∂z
∧

∂

∂x
+ z

∂

∂x
∧

∂

∂y
.

Its symplectic leaves are the origin and the spheres centered at the origin. All
the leaves are both strongly stable and algebroid stable. The same happens with
the linear Poisson structure on g∗, for any Lie algebra g which is compact and
semi-simple. This should be compared with Conn’s linearization theorem [1].

In fact, let M = g∗ be the dual of a Lie algebra g and let G be the 1-connected
Lie group integrating g. The symplectic leaf through a point ξ ∈ g is precisely the
coadjoint orbit Oξ containing ξ. Also, the cotangent Lie algebroid T ∗M coincides
with the action Lie algebroid associated to the coadjoint action. Hence, T ∗M
integrates to the action Lie groupoid G = G ⋉ g∗ ⇉ g∗, so that the Van Est map
gives an isomorphism (see the proof of Proposition 1.9):

H2
π,Oξ

(M) ∼= H2(G|Oξ
) ∼= H2(Gξ; g

∗
ξ),

H1
π,Oξ

(M ; ν(Oξ)) ∼= H1(G|Oξ
; ν(Oξ) ∼= H1(Gξ; g

∗
ξ)

and both groups vanish since Gξ is compact.

Example 2.4. Let (S, ω) be a compact symplectic manifold and let M = S × R,
with the Poisson structure π whose symplectic leaves are (S × {t}, ω). Let us fix
the leaf S = S × {0}. One can check directly (or by Example 2.6 below) that

H2
π,S(M) ∼= H1(S) ⊕ H2(S), H1

π,S(M, νS) = H0(S) ⊕ H1(S),

hence these two groups can never be zero. One can also see directly that S is neither
strongly stable nor algebroid stable.

On the other hand, it is easy to see that the the relative Poisson cohomology is

H2
π(M, S) ∼= H1(S).

In fact, both cases (S stable or unstable) may arise.
To produce an unstable example one should, of course, choose S so that H1(S) 6=

0. A natural choice to make is S = S
1 × S

1 with the usual area form:

ω = dθ1 ∧ dθ1.

Indeed, one can find on S
1 × S

1 × R the Poisson structure:

πǫ =
∂

∂θ1
∧

∂

∂θ1
+ ǫ

∂

∂θ2
∧

∂

∂t

whose leaves for ǫ 6= 0 are never compact (draw a picture!).
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Example 2.5. Consider M = S
2×S

2×(−1, 1), with the Poisson structure π whose
symplectic leaves are S

2 × S
2 × {t} endowed with the symplectic form

ωt = (1 − t)ω1 + (1 + t)ω2,

where ωi = pr∗i ω are the pull-backs by the projections pri : S
2 × S

2 → S
2 of the

area form on S
2. For the leaf S = S

2 × S
2 × {0} we find (see Example 2.6 below):

H2
π(M, S) = 0, H2

π,S(M) ∼= R, H1
π,S(M ; νS) = 0.

It follows from Theorem 1.1 that S is stable, and Theorem 1.8 shows that it is even
algebroid stable. Notice that we cannot apply Theorem 1.2 to conclude that S is
strongly stable. In fact, S is not strongly stable: consider the family of Poisson
structures πǫ on M , with the same symplectic leaves S

2 × S
2 × {t} but endowed

with the symplectic form

ωǫ
t = (1 − t + ǫ)ω1 + (1 + t + ǫ)ω2.

We have π0 = π, but no symplectic leaf (S2 × S
2 × {t}, ωǫ

t) with ǫ 6= 0 can be sym-
plectomorphic to (S2 × S

2, ω0). This follows by computing the symplectic volumes:

vol(S2 × S
2 × {t}, ωǫ

t) = (2 + ǫ) vol(S2) 6= 2 vol(S2) = vol(S2 × S
2, ω0).

Example 2.6. The previous two examples fit into the following more general
scheme which can be used to obtain many other interesting explicit examples. Let
M = S×I where I is an open interval containing the origin and assume that (ωt)t∈I

is a smooth family of symplectic forms on S. Then M becomes a Poisson manifold
with symplectic leaves (S × {t}, ωt). We look at the stability of S = S × {0}.

The cohomologies relevant for the stability of S depend only on the topology of
S and on the variation of symplectic areas:

σ :=
d

dt

∣∣∣∣
t=0

ωt ∈ Ω2(S).

In general, any closed two-form σ ∈ Ω2(S) induces a cohomology H•
σ(S) as follows:

If σ is prequantizable, i.e., if it is the curvature 2-form of some connection on a
principal S

1-bundle P → S, then H•
σ(S) = H•(P ). In the general case, one uses an

algebraic model which is constructed as follows: Interpreting σ as a chain map

Ω•(S)
σ∧−

// Ω•+2(S) ,

we form its mapping cone, which is a new complex (Cσ(S), dσ) with

C•
σ(S) = Ω•(S) ⊕ Ω•−1(S), dσ(ω, η) = (dω + σ ∧ η, dη).

Its cohomology, denoted H•
σ(S), is the algebraic model we are looking for. In fact,

by a standard short exact sequence argument, one obtains a long exact sequence

0 // H1(S) // H1
σ(S) // H0(S)

σ
// H2(S) //

// H2
σ(S) // H1(S)

σ
// H3(S) // H3

σ(S) // . . .

which is an algebraic interpretation of the Gysin sequence for principal S
1-bundles.

Using this cohomology, one checks that the relative and the restricted Poisson
cohomology complexes can be identified as

X•
π(M, S) ∼= Ω•−1(S), X•

π,S(M) ∼= C•
σ(S) ∼= X•

π,S(M ; νS).

Hence, we conclude that:

(i) H2
π(M, S) = 0 if and only if H1(S) = 0.

(ii) H2
π,S(M) = 0 if and only if H2(S) = Rσ and cup-product by σ determines a

injective morphism from H1(S) into H3(S).
(iii) H1

π,S(M ; νS) = 0 if and only if H1(S) = 0 and σ is non-zero in cohomology.
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3. Outline of the proofs

We now give an outline of the proof of Theorem 1.1 (the proofs of the other two
theorems are variations of the same idea). The first step, consists of a simple but
crucial remark. Each of the other steps correspond to each of the sections to follow.

Step 1: The first step exploits the cosymplectic nature of small transversals
to a symplectic leaf. Recall that a cosymplectic submanifold of (M, π) is any
immersed submanifold N →֒ M with the property that

TxM = TxN + (TxN)⊥,π, (x ∈ N),

where (TxN)⊥,π = π♯((TxN)0). By a dimension counting argument, the last sum
must actually be a direct sum. Each such submanifold carries an “induced” Poisson
structure πN which is defined as follows. Given ξx, ηx ∈ T ∗

xN choose extensions

ξ̃x, η̃x ∈ T ∗
x M which vanish on (TxN)⊥, and define

πN (ξx, ηx) := π(ξ̃x, η̃x).

One can check that this is choice independent and that the resulting tensor is
Poisson. Note that the cosymplectic condition is an open condition both for x ∈ M
and for π in the space of Poisson structures with the Cκ-topology. For a detailed
discussion of this kind of submanifolds and its properties we refer to [3, Section 8].

Let us recall now that one calls a Poisson structure θ on the total space of a bun-
dle p : E → S horizontally non-degenerate if the fibers of E are cosymplectic
with respect to θ. Let S be an embedded symplectic leaf S of a Poisson manifold
(M, π). Our first remark is that if we are interested on the behavior around S of
Poisson structures which are close to π, then we can restrict our attention to the
case where M = E is a vector bundle over S and to Poisson structures θ ∈ X2(E)
which are horizontally non-degenerated. Indeed, we just take E = ν(S), which can
be identified with an arbitrarily small open neighborhood of S in M via an expo-
nential map construction. Since the fibers of E are transverse to S, π satisfies the
cosymplectic condition at points of S. Hence, if the exponential map is properly
chosen, π and all nearby θ will be horizontally nondegenerated.

Step 2: The second step is to identify the algebraic structure underlying hor-
izontally non-degenerated Poisson structures. This is a certain bigraded algebra
Ω•,•

E which is endowed with a graded Lie bracket [·, ·]. We observe that horizontally
non-degenerated bivector fields θ correspond to elements in the algebra which break
into three homogeneous components, defining a triple (θv, Γθ, Fθ). The condition
for a bivector to be Poisson (i.e., [θ, θ] = 0) translates into certain equations involv-
ing the homogeneous components, which we call “the structure equations” of the
triple. They can be expressed in an elegant and efficient way using the graded Lie
bracket. Moreover, this algebraic structure also allows us to define operations of
“restriction” and “linearization” along a section, which will be crucial for the proofs.
Along the way, we obtain a reformulation of Vorobjev’s description of horizontally
non-degenerated Poisson structures (see [18]).

Step 3: In this step we use sections s ∈ Γ(E) to produce symplectic leaves: any
s ∈ Γ(E) defines a submanifold of E diffeomorphic to S, namely its graph

Graph(s) := {s(x) : x ∈ S} ⊂ E.

We will answer the following question: given a horizontally non-degenerated Poisson
structure θ, with associated triple (θv, Γθ, Fθ), when does a section s ∈ Γ(E) define
a symplectic leaf Graph(s) of θ? We will see that one can restrict the first two
components of the triple along s to obtain an element

cθ,s := (θv|s, Γθ|s) ∈ Ω1
S

whose vanishing is equivalent to Graph(s) being a symplectic leaf of θ.
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Step 4: In this step we determine the p.d.e. that cθ,s satisfies arising from the
condition that θ is Poisson. We will see that this p.d.e. is just the “linearization”
along s of the structure equations of the geometric triple, and that it takes the form

dθ,s(cθ,s) = 0,

where dθ,s is an operator obtained by linearizing the Poisson cohomology operator

around s. When θ = π and s is the zero section, dπ,0 will be just the differential
on the complex computing the relative Poisson cohomology H•

π(M, S), while the
kernel of dπ,0 on Γ(E) is precisely the parameter space Γflat(ν

0
S) which appears in

the statement of the theorem.
Step 5: Suppose θ is close to π. By Step 3, in order to produce symplectic

leaves of θ diffeomorphic to S, we need to look for sections s such that cθ,s = 0.
We will find them among the critical points of the functional

Φθ(s) = ||cθ,s||
2,

for some convenient Sobolev norm || · ||. One must therefore make the appropriate
choices of Hilbert spaces, and check that the operations of restriction and lineariza-
tion along sections still make sense and are continuous. In this step, we take care
of the necessary analytic machinery.

Step 6: When θ = π, s = 0 is a degenerate critical point of the functional Φθ.
Also, any section in Γflat(ν

0
S) is also a zero of Φπ. Hence, we restrict Φπ to the

orthogonal complement W of Γflat(ν
0
S) in Γ(E). Then s = 0 becomes a strongly

non-degenerate critical point of Φπ, hence nearby θ’s will produce functionals Φθ

which admit critical points parametrized by Γflat(ν
0
S). In this final step we will

show that any small enough critical point s of Φθ must satisfy cθ,s = 0.
First, the critical point condition is equivalent to

dπ,0d
∗

θ,s(cθ,s) = 0.

This, combined with the equation already established in Step 4, shows that cθ,s is
in the kernel of the operator

△θ,s := dπ,0d
∗

θ,s(cθ,s) + d
∗

π,0dθ,s(cθ,s),

defined on the appropriate Sobolev spaces. However, when θ = π and s = 0,
we show that the ellipticity of the complex computing H•

π(M, S) implies that the
operator △π,0 is invertible. It follows that △θ,s must be an isomorphism for s small
enough and θ close to π. Hence, we must have cθ,s = 0.

4. Algebraic-geometric framework

In this section we fix a vector bundle p : E → S and we focus our attention on
horizontally non-degenerated Poisson bivectors θ ∈ X2(E). We introduce a bigraded
algebra Ω•,•

E , endowed with a graded Lie bracket [·, ·], that allows for an efficient
description of horizontally non-degenerated Poisson structures in terms of triples.
In the next two sections we will use this algebraic structure to define operations of
“restriction” and “linearization” along a section. The description of horizontally
non-degenerated Poisson structures in terms of geometric triples appeared first in
Vorobjev’s (see [18]), but he did not make explicit use of the graded Lie algebra
ΩE , which plays a central role in our approach.

4.1. The bigraded algebra ΩE. The (q, p)-component of ΩE is obtained as fol-
lows. We consider the vector bundle ∧pT ∗S ⊗∧qE and take its pullback under the
projection p : E → S. Then Ωq,p

E is the space of sections of this pullback:

Ωq,p
E := Γ(p∗(∧pT ∗S ⊗ ∧qE)).
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It will also be convenient to consider the “restriction” of ΩE to S, denoted ΩS , which
is just the space of differential forms in S with values in ∧E. Its (q, p)-component
is then:

Ωq,p
S = Ωp(S;∧qE).

Note that, algebraically,

ΩE = ΩS ⊗C∞(S) C∞(E).

Therefore, we can also view Ωq,p
E as the space of p-forms on S with values in q-

vertical multivector fields on E:

Ωq,p
E = Ωp(S) ⊗C∞(S) Xq(Vert),

where Vert = Kerdp ⊂ TE denotes the vertical subbundle and Xq(Vert) the vertical
multivector fields: Xq(Vert) := Γ(∧q Vert) ⊂ Xq(E).

The last description of ΩE shows that this space is naturally endowed with a
bracket

[·, ·]ΩE
: Ωq,p

E × Ωq′,p′

E −→ Ωq+q′−1,p+p′

E

which arises from the wedge product of forms on S and the Schouten bracket on

X•(Vert): if α1 ∈ Ωq,p
E and α2 ∈ Ωq′,p′

E we set

[α1, α2]ΩE
(X1, . . . , Xp+p′) :=

∑

σ

(−1)|σ|[α1(Xσ(1), . . . , Xσ(p)), α2(Xσ(p+1), . . . , Xσ(p+p′))].

Henceforth we will drop the subscipt ΩE from the notation (this is consistent with
the fact that we use [ , ] for the Schouten bracket and that this bracket extends it).

If one considers local coordinates (U, xi) on M and a local frame (ea) of E over
U , inducing fiberwise coordinates (ya) on E, an element u ∈ Ωq,p

E is written as:

(2) u = uJ
I (x, y) dxI ⊗ ∂yJ

for some functions uJ
I ∈ C∞(p−1(U)). Here I = (i1, . . . , ip) is a multi-index of

length |I| = p, J = (a1, . . . , aq) is a multi-index of length |J | = q, and we sum
over repeated multi-indices. The elements dxI are homogeneous of degree (0, p)
and defined by

dxI = dxi1 ∧ . . . ∧ dxip ,

while the elements ∂yJ are homogeneous of degree (q, 0) and, according to our two
descriptions of ΩE , can be interpreted either as a section of ∧q Vert or as a section
of ∧qE:

∂yJ =
∂

∂yi1
∧ . . . ∧

∂

∂yiq
= ei1 ∧ . . . ∧ eiq

.

We will call the uJ
I (x, y) the local coefficients of the element u. Notice that

ΩS ⊂ ΩE consists of those elements whose local coefficients do not depend on y.
We will also need the subspace ΩE,lin ⊂ ΩE consisting of those elements whose
local coefficients uJ

I (x, y) are linear in y. In a more invariant form, they can be
identified with

ΩE,lin = ΩS ⊗C∞(S) Γ(E∗) = Ω(S;∧E ⊗ E∗),

where we think of a section of E∗ as a fiberwise linear function on E.

Remark 4.1. Notice that [·, ·] is trivial on ΩS , induces a Lie algebra structure on
ΩE,lin, and makes ΩS into a representation of ΩE,lin: for each v ∈ ΩE,lin we have

adv : ΩS → ΩS , w 7→ [v, w].

Note also that, the Lie bracket induced on the subspace ΩE,lin and its representation
ΩS , is purely algebraic: it involves no derivatives and takes place fiberwise.
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Connections also fit naturally in this framework. Let Γ be a connection on E,
i.e., a horizontal distribution HorΓ ⊂ TE with the property that

TE = HorΓ ⊕Vert .

The corresponding horizontal lift operation hor = horΓ,

hore : Tp(e)S −→ TeE, (e ∈ E)

associates to each vector X ∈ Tp(e)S the unique horizontal vector hore(X) ∈ HorΓ,e

that projects to X under p. If one introduces local coordinates (xi, ya) as above,

the connection Γ is determined by functions Γj
i (x, y) such that:

(3) horΓ(
∂

∂xi
) =

∂

∂xi
+ Γa

i (x, y)
∂

∂ya
.

We call Γa
i (x, y) the local coefficients of the connection Γ.

A connection can be interpreted in terms of the graded algebra ΩE as an operator

dΓ : Ω•,•
E −→ Ω•,•+1

E ,

defined by the following Koszul type formula:

(dΓω)(X1, . . . , Xp+1) =
∑

i

(−1)i+1Lhor(Xi)(ω(X1, . . . , X̂i, . . . , Xp+1))+

+
∑

i<j

(−1)i+jω([Xi, Xj], . . . , X̂i, . . . , X̂j , . . . , Xp+1),

for ω ∈ Ωq,p
E , X1, . . . , Xp+1 ∈ X(S).

The operator dΓ usually fails to be a differential. This failure is measured by the
curvature of the connection Γ, which is usually defined by the expression

ΩΓ(X, Y ) = [hor(X), hor(Y )] − hor([X, Y ]) ∈ X(Vert),

for X, Y ∈ X(S). In our context, this tensor can be viewed as an element in on our

bigraded algebra ΩΓ ∈ Ω1,2
E , and we have:

d2
Γ = adΩΓ

.

Linear connections fit into this framework as follows. A linear connection Γ on
E determines (and is determined by) a covariant derivative operator ∇ : X(S) ⊗
Γ(E) → Γ(E). In local coordinates, Γ is linear iff the coefficients Γi

a(x, y) are linear
in y:

Γa
i (x, y) = Γa

i,b(x)yb,

and the associated covariant derivative operator is then given by:

∇ ∂
∂xi

ea = Γb
i,aeb.

Alternatively, one can use the bigraded algebra ΩE . A connection Γ is linear if and
only if dΓ preserves ΩE,lin. In this case, dΓ also preserves ΩS and its restriction to

Ω1,•
S = Ω•(S; E) is an operator

dΓ : Ω•(S; E) → Ω•+1(S; E)

which is just another way of viewing the covariant derivative associated to the linear
connection.
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4.2. The geometric triples (θv, Γθ, Fθ). After these preliminaries about connec-
tions, we can now return to the study of horizontally non-degenerated Poisson
structures. Recall that a bivector field θ ∈ X2(E) is horizontally nondegenerated if

TE = Vert⊕(Vert)⊥,θ.

Therefore, we have a connection Γθ with horizontal distribution defined by

Horθ := (Vert)⊥,θ.

Next, observe that θ “restricts” to the fibers of E, since these fibers are cosymplectic
submanifolds. We denote this “restriction” by θv ∈ Ω2,0

E . Finally, the cosymplectic
condition also implies that the restriction of θ to Horθ is non-degenerate hence
it defines an element in ∧2 Hor∗θ. The differential dp : TE → TS induces an
isomorphism Horθ → TS and the image of (θ|Horθ

)−1 under this map is an element

Fθ ∈ Ω0,2
E . In this way, to a horizontally non-degenerated bivector field θ we

associate a triple (θv, Γθ, Fθ). Conversely, it is not difficult to see that the bivector
θ can be reconstructed from the resulting triple.

Let us now ask what does the condition for θ to be Poisson, i.e., [θ, θ] = 0,
corresponds to, in terms of the associated triple (θv, Γθ, Fθ). The answer is given
by the following result due to Vorobjev [18]:

Theorem 4.2. There is a 1-1 correspondence between horizontally non-degenerate
Poisson structures θ on a vector bundle p : E → S and triples (θv, Γθ, Fθ), consisting

of elements θv ∈ Ω2,0
E , Fθ ∈ Ω0,2

E and a connection Γθ on E, satisfying the structure
equations:

(i) [θv, θv] = 0 (i.e., θv is a vertical Poisson structure).
(ii) dΓθ

θv = 0 (i.e., parallel transport along Γ preserves θv).
(iii) dΓθ

F = 0.
(iv) ΩΓθ

= [Fθ, θ
v].

There is another way of looking at the structure equations in terms of the graded
algebra ΩE . For that, we observe that:

• The vertical bivector θv ∈ Ω2,0
E induces an operator

d1,0
θ := adθv : Ωq,p

E → Ωq+1,p
E ;

• The connection Γθ induces an operator

d0,1
θ := dΓθ

: Ωq,p
E → Ωq,p+1

E ;

• The 2-form Fθ ∈ Ω2,0
E induces also an operator

d−1,2
θ := adFθ

: Ωq,p
E −→ Ωq−1,p+2

E .

We also introduce the total operator (which rises the total degree by 1!):

(4) dθ := d1,0
θ + d0,1

θ + d−1,2
θ : ΩE → ΩE ,

Then we have:

Proposition 4.3. If θ ∈ X2(E) is a horizontally nondegenerated Poisson tensor
on a vector bundle p : E → S then d2

θ = 0. The complex (ΩE , dθ) is isomorphic to
the Poisson cohomology complex (X(E), dθ).

Proof. The structure equations from Theorem 4.2 simply say that the operators
dΓθ

, adθv and adFθ
all commute, with the exception of:

(5) [dΓθ
, dΓθ

] = −[adFθ
, adθv ].

These equations are equivalent to the single equation d2
θ = 0.
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Also, one checks easily that the decomposition

TE = Horθ ⊕ Vert ∼= T ∗S ⊕ Vert,

induces an isomorphism (which depends on θ):

Xk(E) ∼= ⊕p+q=kΩp,q
E ,

and the Poisson differential on X(E) corresponds to the differential dθ on ΩE . �

Remark 4.4. The propositions states that θ Poisson implies that d2
θ = 0 on ΩE .

However, the converse is not true. This is because condition (iv) in Theorem 4.2
implies that (5) holds, but the converse is not true.

It is convenient to picture the complex (ΩE , dθ), using the decomposition (5), as
a diagram:

Ω0,0
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99

99
99
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Ω1,0
E
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99
99

9

����
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99

99
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9
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��

��
�

Ω1,1
E

((RRRRRRRRRRRRRRRRR
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9

����
��

��
�
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E
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==
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=
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=
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Ω0,3
E
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55

Note also that, if S is a symplectic leaf, then under the isomorphism X(E) ∼= ΩE

the restricted and relative complexes are mapped to the complexes:

Xk
S(E) ∼=

⊕

p+q=k

Ωq,p
S , Xk(E, S) ∼=

⊕

p+q=k
q≥1

Ωq,p
S .

The differential of the restricted complex ΩS is the restriction of the differential of
the complex ΩE , so we also have a decomposition as in (5) and a similar diagram:
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S
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+
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=
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:
:

:
:

:
:

:
:

:
:

:
:

:
:

:
:

:
:

:
:

:

The top diagonal row in this diagram is just the de Rham complex of S. The part
of the diagram below the dotted line will be denoted by ΩS and it should be viewed



20 MARIUS CRAINIC AND RUI LOJA FERNANDES

as a quotient of ΩS rather then a subspace; we denote by dθ,s its associated oper-
ator. Actually, the isomorphism between ΩS and XS(E) induces an identification
between the short exact sequence defining the relative complex X(E, S) and the
one associated to the inclusion of Ω(S) inside ΩS :

0 // Ω•(S) //

Id

��

X•
S(E) //

∼

��

X•(E, S) //

∼

��

0.

0 // Ω•(S) // ΩS
// ΩS

// 0

.

Hence, ΩS can be identified with the relative complex X(E, S).

5. Restricting to sections

In the previous section we have studied horizontally non-degenerated Poisson
structures θ on the total space of a vector bundle p : E → S and explained that
they correspond to certain triples (θv, Γθ, Fθ) which interact inside a graded algebra
ΩE . In this section, we place ourselves in the same framework and we look at the
condition that a section s ∈ Γ(E) has to satisfy so that Graph(s) ⊂ E is a symplectic
leaf of θ.

The relevant algebraic operation for solving this question is “the restriction
operation” from ΩE to ΩS induced by a section s ∈ Γ(E). For functions, this is
just the map:

s∗ : C∞(E) → C∞(S), f 7→ f ◦ s.

Taking the tensor product with ΩS we obtain the restriction map

ΩE −→ ΩS , ω 7→ ω|s.

This notation is justified since, in local coordinates, this restriction map sends
an element (2) with coefficients uI,J(x, y) into a new element with coefficients
uI,J(x, s(x)).

We also need the operation of restricting a connection Γ on E along a section
s. This is a bit more subtle and will be further explained in the next section. For
now, we take the following ad-hoc description: Given a connection Γ on E and a
section s ∈ Γ(E), the restriction of Γ to s is defined as the E-valued 1-form on

S, denoted Γ|s ∈ Ω1,1
S , given by

Γ|s(Xx) := hors(x)(Xx) − (dxs)(Xx) ∈ Verts(x)
∼= Ex.

In local coordinates, if Γa
i (x, y) are the coefficients (3) of Γ , then

(6) Γ|s =

(
Γa

i (x, s(x)) −
∂sa

∂xi

)
dxi ⊗ ∂ya .

Assume now that one is given a horizontally nondegenerate Poisson structure θ
on E, with associated triple (θv, Γθ, Fθ). For each section s ∈ Γ(E) we define

c(θ, s) := θv|s + Γθ|s ∈ Ω2,0
S ⊕ Ω1,1

S .

Proposition 5.1. Given a horizontally non-degenerated Poisson structure θ on the
vector bundle p : E → S, a section s ∈ Γ(E) defines a symplectic leaf of θ if and
only if c(θ, s) = 0.

Proof. Recall that the horizontal non-degeneracy of θ at s(x) means that:

Ts(x)E = Verts(x) ⊕Hors(x) = Verts(x) ⊕ θ♯

s(x)(Verts(x))
0.

Now, given a section s ∈ Γ(E), observe that Graph(s) is a symplectic leaf of θ if
and only if for every x ∈ S we have:

θ♯

s(x)(T
∗
s(x)E) = Ts(x)(Graph(s)).
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Hence, we see that this holds iff we have:

Ker θ♯

s(x) = (Hors(x))
0, θ♯

s(x)(Verts(x))
0 = Ts(x)(Graph(s)).

The first condition says that θv|s = 0, while the second condition says that Γθ|s = 0.
So, together, they are are equivalent to c(θ, s) = 0. �

6. Linearizing along sections

As in the previous sections, our scenario is a vector bundle p : E → S, where
we study horizontally non-degenerated Poisson structures θ ∈ X2(E). In the previ-
ous two sections, we have interpreted such Poisson structures as geometric triples
(θv, Γθ, Fθ) and we have discussed their “restrictions” (read: “0-th order approxi-
mations”) along sections s ∈ Γ(E). We will now study higher order approximations.

6.1. Linearization along sections. The notion of linearization along sections of
E is more or less obvious in local coordinates. However, for our purpose it is much
more convenient to have a global description, which is independent of such choices.
In order to formulate this, we first introduce an algebraic operation which governs
this process.

The dilatation and translation operators combine so that, for each t ∈ R and
s ∈ Γ(E), one has an affine bundle map

as
t : E → E, e 7→ te + s(p(e)).

This induces a map on ΩE which we still denote by the same letter:

as
t : ΩE → ΩE .

If we think of ΩE as the tensor product ΩS ⊗ C∞(E), then as
t only acts on the

second component. The operation we are interested in is obtained by rescaling: for
t 6= 0 we set

(7) φs
t :=

1

t
as

t : ΩE → ΩE .

The reason for the rescaling will be clear in the sequel. In local coordinates (x, y),
one sees that the effect of the operation φs

t is very simple:

u = uI,J(x, y) dxI ⊗ ∂yJ 7−→ φs
t (u) =

1

t
uI,J(x, ty + s(x)) dxI ⊗ ∂yJ .

The following properties of φs
t should now be clear:

• φs
t preserves the bracket [·, ·]. In particular, for each u ∈ ΩE ,

φs
t (adu) = adφs

t (u),

where, for any operator D acting on ΩE , we set

φs
t (D) := φs

t ◦ D ◦ (φs
t )

−1.

• φs
t acts on connections: for any connection Γ on E, there is a unique

connection φs
tΓ satisfying:

φs
t (dΓ) = dφs

tΓ.

In local coordinates, a connection with local coefficients Γa
i (x, y) is trans-

formed to a new connection with local coefficients:

(φs
tΓ)a

i (x, y) =
1

t

(
Γa

i (x, ty + s(x) −
∂sa

∂xi

(x))

)
.
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Note also that, using φt := φ0
t , the subspace ΩS of ΩE can be characterized as:

(8) ΩS = {u ∈ ΩE : φt(u) =
1

t
u, ∀t 6= 0},

while the subspace ΩE,lin can characterized as:

(9) ΩE,lin = {u ∈ ΩE : φt(u) = u, ∀t 6= 0}.

On the other hand, for an arbitrary u ∈ ΩE , one has

lim
t→0

t φs
t (u) = u|s.

This is an equality of sections of a bundle over S, so this limit is fiberwise and so
there is no issues about topologies. We can interpret this as saying that the formal
development of φs

t (u) in powers of t starts with the term t−1 with coefficient u|s.
Let us consider the next term in the formal development of φs

t (u) in powers of t:

(10) φs
t (u) ∼

1

t
u|s + dsu + o(t).

More precisely, we set:

Definition 6.1. For s ∈ Γ(E) and u ∈ ΩE , the element dsu ∈ ΩE,lin defined by:

dsu = lim
t→0

t φs
t (u) − u|s

t
,

is called the linearization of u along s.

In order to see that dsu does lie in ΩE,lin one can proceed formally using (9) or
just use local coordinates: an element u ∈ ΩE , with local coefficients uI,J(x, y), has
a linearization dsu which has local coefficients:

(dsu)I,J =
∂uI,J

∂yb
(x, s(x))yb.

Finally, a similar discussion applies to connections, so we describe this briefly.
First of all, the restriction Γ|s introduced in the previous section is the first coeffi-
cient in the formal development of φs

tΓ:

φs
tΓ ∼

1

t
Γ|s + dsΓ + o(t).

This development should be understood at the level of operators acting on ΩE :

dφs
tΓ ∼

1

t
adΓ|s +ddsΓ + o(t).

Therefore, we set:

Definition 6.2. Given a section s ∈ Γ(E) and a connection Γ on E, the linear
connection dsΓ defined by:

ddsΓ = lim
t→0

t dφs
tΓ − adΓ|s

t

is called the linearization of Γ along s.

In order to see that dsΓ is indeed a linear connection, we can use local coordi-
nates: if Γa

i (x, y) are the local coefficients of Γ, then the local coefficients of the
linearization dsΓ are:

(dsΓ)i
a =

∂Γi
a

∂yb
(x, s(x))yb.

Remark 6.3. Note that since both dsu and dsΓ are linear, operators of type addsu

or ddsΓ map ΩS into itself.
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6.2. Linearizing Poisson structures around sections. Let θ be a horizontally
non-degenerated Poisson structure, with associated geometric triple (θv, Γθ, Fθ).
For any section s ∈ Γ(E) we define the linearization of dθ along s as the operator
dθ,s : ΩS → ΩS defined by

dθ,s := addsθv +ddsΓθ
+ addsFθ

.

This is an operator which raises the total degree by 1.
The linearization along s of the structures equations for the geometric triple

(θv, Γθ, Fθ) given by Theorem 4.2 takes the form:

Proposition 6.4. Let θ|s ∈ Ω2
S be the element of total degree 2 defined by:

θ|s := θv|s + Γθ|s + Fθ|s.

Then:

(11) dθ,s(θ|s) = 0.

Proof. Note that equation (11) brakes into the following components:

(i) [θv|s, dsθ
v] = 0.

(ii) [Γθ|s, dsθ
v] + ddsΓθ

(θv|s) = 0.
(iii) [Γθ|s, dsF] + ddsΓθ

(Fθ|s) = 0.
(iv) ddsΓθ

(Γ|s) + [dsFθ, θ
v|s = 0.

The proof is straightforward: one just applies the operators φs
t to the structure

equations given by Theorem 4.2 and takes the limit as t → 0. Equivalently, we can
expand formally in powers of t and compare the coefficients of t−1.

For instance, starting from [θv, θv] = 0 we obtain

[
1

t
θv|s + dsθ

v + . . . ,
1

t
θv|s + dsθ

v + . . .] = 0,

which is equivalent to:

1

t2
[θv|s, θ

v|s] +
1

t
[θv|s, dsθ

v] + . . . = 0.

The coefficient of t−1 gives [θv|s, dsθ
v] = 0, i.e., the first equation in the list. The

other equations follow similarly. �

6.3. Linearizing Poisson structures along a symplectic leaf. Let π be a
horizontally non-degenerated Poisson structure on E which has the zero section as
a symplectic leaf. As usual, we denote by (πv, Γπ, Fπ) the associated geometric
triple.

The operation of restriction to the zero section only gives us the symplectic form
ωS on S:

π|S := πv|0 + Γπ|0 + Fπ|0 = ωS .

More interesting information lies in the next order approximation, which gives
us elements:

πv
lin := d0π

v ∈ Γ(∧2E ⊗ E∗),

σ := d0Fπ ∈ Ω2(S; E∗),

Γπ,lin := d0Γπ (a linear connection on E).

The linearized structure equations (11), given in Proposition 6.4, give us no informa-
tion about this linearized data: those equations arose by comparing the coefficients
of t−1 in the formal expansion resulting from the structure equations. In our case,
however, the next coefficients will only depend on the linearized data, and we obtain
the following result of Vorobjev ([18]):
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Proposition 6.5. Let π be a horizontally non-degenerated Poisson structure on
a vector bundle p : E → S which has the zero section as a symplectic leaf. The
geometric triple (πv

lin, Γπ,lin, ωS + σ) satisfies the structure equations.

Note that, in this case, dπ,0 squares to zero and (ΩS , dπ,0) is just the Poisson
cohomology complex of π restricted to S.

The proposition shows that, after restricting to an open neighborhood of the zero
section (where ωS + σ stays non-degenerate), the triple (πv

lin, Γπ,lin, ωS + σ) defines

a new Poisson structure, which we will denote by j1S π and called the first jet
approximation to π along S. It follows immediately that j1S π has the following
properties:

(i) The zero section S →֒ ν(S) is a symplectic leaf of j1S π;
(ii) The normal spaces ν(S)x, with their linear Poisson structures (which coincide

with πv
lin) are cosymplectic submanifolds of (ν(S), j1S π);

(iii) If S′ is the symplectic leaf through u ∈ ν(S) then:

TuS′ = Horu ⊕TuOu,

where Horu is the horizontal space of Γπ,lin and Ou ⊂ ν(S)p(u) is the coadjoint
orbit through u.

This leads to the following corollary, which will be useful later:

Corollary 6.6. If S′ is a symplectic leaf j1
Sπ, one has:

(i) S′ projects diffeomorphic to S iff it is the graph of a flat section s ∈ Γflat(ν
0
S),

where ν0
S ⊂ νS is the subbundle consisting of zeros of πv

lin
. In particular the

space of all such leaves coincides with H1
π(M, S).

(ii) S′ projects diffeomorphic to S and ωS′ is isotopic to ωS iff S′ is the graph of
s ∈ Γflat(ν

0
S) and there exists β ∈ Ω1(S) such that:

dβ = −σ|S .

In particular, the space of all such leaves coincides with the image of the map
H1

π,S(M) → H1
π(M, S).

Proof. From the description of j1
Sπ as the geometric triple (πv

lin, Γπ,lin, ωS +σ), it is

clear that the space of leaves of j1S π that project diffeomorphically to S coincides
with Γflat(ν

0(S)) the space of flat sections of the subbundle ν0
S ⊂ νS , consisting of

the zeros of πv
lin. Using the Lie algebra bundle ν∗

S , we can describe ν0
S as the dual

of the abelianization:

ν0
S,x := (ν∗

x/[ν∗
x, ν∗

x])∗ ⊂ νx.

Now the first part follows by observing that the differential X0(M, S) → X1(M, S)
vanishes, while the differential X1(M, S) → X2(M, S) associates to a section s ∈
Γ(ν(S)) = X1(M, S) the pair (dπv

lin
s,∇s). So s is a cocycle iff it is a flat section

and takes values in ν0
S . Therefore Γflat(ν

0
S) = H1

π(M, S).
For the second part, suppose that s ∈ Γflat(ν

0(S)) describes a leaf S′ that projects
diffeomorphically to S. From the description of j1

Sπ as a geometric triple, we see
that ωS′ = ωS+σ|s. Therefore, by Moser’s lemma, the symplectic forms are isotopic
iff [σ|S ] = 0. Now observe that the differential X0

S(M) → X1
S(M) associates to a

function f ∈ C∞(S) = X0
S(M) the element (0, df) ∈ Γ(ν(S)) ⊕ Ω1(S) = X1

S(M),
while the differential X1(M, S) → X2(M, S) associates to a pair (s, β) ∈ X1

S(M)
the triple (dπv

lin
s,∇s, dβ + σ|S) ∈ X2

S(M). Hence, the space of such leaves can be

identified with the kernel of the map H1
π(M, S) → H2(S). But this kernel coincides

with the image of the map H1
π,S(M) → H1

π(M, S). �
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7. Analytic framework

In this section we consider the analytic machinery needed for the proofs. Through-
out this section, S is assumed to be an n-dimensional compact manifold.

For any vector bundle V over S and any integer k ≥ 0, we denote by Γ(k)(V )
the Sobolev space of order k associated to V . We should think of it as the space of
sections of V → S, with the property that all distributional derivatives up to order
k belong to the space of L2-sections of V → S. We will say that a section s is of
class H(k) if it belongs to Γ(k)(V ). Note that all such spaces can be equipped with
inner products 〈·, ·〉k so that each Γ(k)(V ) will be treated as a Hilbert space. Most
often, we have k > n

2 so that Γ(k)(V ) is a subspace of the the space Γ0(V ) of all
continuous sections of V and its elements can be handled pointwise.

One remark concerning our use of adjoints: for a bounded operator A : H → H′

between two Hilbert spaces, including those induced by differential operators on
sections of vector bundles, we will use the Hilbert space adjoint A∗ : H′ → H,
defined by the equation

〈Au, v〉H′ = 〈u, A∗v〉H.

Now we discuss how the operations of restriction and linearization on a vector
bundle p : E → S, which we have discussed in the previous sections, can still be
applied to sections which are no longer smooth, but belong instead to some Sobolev
class. We emphasize that most of the times the operations themselves still make
sense, since we will use Sobolev norms of orders high enough to insure that all the
sections are of class C0. However, we still need to assure that the result of applying
these operations has the desired Sobolev class and that this process is continuous.
This is achieved in the next propositions.

First, some notation: we will denote by Conn(E) (respectively, Connlin(E)) the
space of smooth (respectively, linear) connections on the vector bundle E. Note that
Conn(E) is an affine space over Γ(E; p∗ Hom(TM, E)), so it cames equipped the
Cp-topology. On the other hand, Connlin(E) is an affine space over Ω1(S; End(E)),
so we can also consider on it the H(k)-topology, in which case we denote it by

Conn
(k)
lin (E).

Proposition 7.1. Let E be a vector bundle over a compact manifold S with
dimS = n, let k > n

2 and consider the Cp-topology on ΩE and Conn(E). Then:

(i) If p ≥ k, restriction gives continuous operations

ΩE × Γ(k)(E) → Ω
(k)
S , (u, s) 7→ u|s,

Conn(E) × Γ(k)(E) → Ω
(k−1)
S , (Γ, s) 7→ Γ|s.

(ii) If p ≥ k + 1, linearization gives gives continuous operations

ΩE × Γ(k)(E) → Ω
(k)
E,lin, (u, s) 7→ dsu,

Conn(E) × Γ(k)(E) → Conn
(k)
lin (E), (Γ, s) 7→ dsΓ.

(iii) If 0 ≤ r ≤ k, then for any v ∈ Ω
(k)
E,lin and Γ ∈ Conn

(k)
lin

(E) one has:

adv : Ω
(r)
S → Ω

(r)
S ,

dΓ : Ω
(r)
S → Ω

(r−1)
S .

The maps v 7→ adv and Γ 7→ dΓ are continuous into the space of bounded
linear operators.
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Remark 7.2. In part (iii) of the proposition, we do not exclude the case r ≤ n/2.

In this case, the resulting elements in Ω
(r)
S are no longer represented by continuous

sections. To remove any ambiguity, one may whish to read (iii) as follows: For

each v ∈ Ω
(k)
E,lin one has that adv maps Ω(k) into Ω(k−1) and it uniquely extends

to a continuous linear map adv : Ω
(r)
S → Ω

(r)
S for all 0 ≤ r ≤ k (satisfying the

continuity on v and s, as stated in the proposition). A similar comment applies to
the operation dΓ.

Proof. The first statement in part (i) follows from the fact that if f(x, y) is a
function of class Cp and s(x) if of class H(k) (recall that p ≥ k > n/2), then
f(x, s(x)) is again of class H(k) (see Lemma 9.9 in [13]). As it is clear from the proof
given in [13], this substitution operation is continuous with respect to the indicated
topologies. For the second statement we simply note that (see (6)) the expression
for Γ|s is a sum involving a substitution operation and a order 1 derivation.

Part (ii) also holds by the same reasons as (i) and Remark 4.1.
For the first statement in part (iii), recall that for k ≥ r ≥ 0 and k > n

2 , scalar

multiplication defines a continuous operation Hk × Hr → Hr (see, e.g., Corollary
9.7 in [13]). Since the operation adv is purely algebraic (see Remark 4.1) and it
involves only fiberwise multiplications, the result follows. The proof of the second
statement in (iii) is similar since, fixing some smooth connection Γ0, for any other
smooth connection Γ we have dΓ = dΓ0

+ Cu, for some u ∈ Ω1,(k)(S; End(E)),
where the operation Cu (the “composition with u”) is again purely algebraic and
behaves like a fiberwise multiplication. �

Corollary 7.3. Let p ≥ k + 1 > n
2 + 1. Consider the Cp-topology on the space

X2
HN

(E) of (smooth) horizontally nondegenerate bivectors θ on E. Then:

(i) For θ ∈ X2
HN

(E) and s ∈ Γ(k)(E), we have

θ|s = (θv|s, Γθ|s, Fθ|s) ∈ Ω
(k−1)
S

and the operation (θ, s) 7→ θ|s is continuous.
(ii) For θ ∈ X2

HN
(E) and s ∈ Γ(k)(E) and all 0 ≤ r ≤ k, the operator

dθ,s = addsθv +ddsΓθ
+ addsFθ

: Ω
(r)
S → Ω

(r−1)
S

is continuous and so is the operation (θ, s) 7→ dθ,s.

(iii) For θ ∈ X2
HN

(E) and s ∈ Γ(k)(E) the linearized structure equations hold:

dθ,s(θ|s) = 0.

Proof. To prove (i) one applies Proposition 7.1 (i) to the components of the geo-
metric triple induced by θ. To prove (ii), one applies first Proposition 7.1 (ii) to
the components of the same geometric triple and then one applies Proposition 7.1
(iii) with v = dsθ

v, with v = dsFθ and with Γ = dsΓθ. The linearized structure
equations follows from Proposition 6.4. �

From the discussion above, it follows that for k > n
2 and s ∈ Γ(k)(E), we have a

sequence

(12) Ω
1,(k)
S

dθ,s
// Ω

2,(k−1)
S

dθ,s
// Ω

3,(k−2)
S

and a similar sequence for the relative complex:

(13) Ω
1,(k)

S

dθ,s
// Ω

2,(k−1)

S

dθ,s
// Ω

3,(k−2)

S

(for the notations, see the end of Section 4). The key technical lemma, and the
main reason for our choice of Sobolev norms, is the following result.
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Proposition 7.4. Let π be a horizontally non-degenerate Poisson structure on E

and we put dπ = dπ,0. Then (Ω•
S , dπ) and (Ω

•

S , dπ) are elliptic complexes.
If H2

π,S(M) = 0, we have:

(i) The sequence (12) (with θ = π and s = 0) is exact.

(ii) For each p and each r, dπ(Ω
p,(r)
S ) is closed in Ω

p+1,(r−1)
S .

(iii) The “laplacian” △π := dπd∗
π +d∗

πdπ : Ω
2,(k−1)
S → Ω

2,(k−1)
S is an isomorphism.

If H2
π(M, S) = 0, similar statements hold for the complex (Ω

•

S , dπ).

Proof. First of all (Ω•
S , dπ) is the de Rham complex of a transitive Lie algebroid,

namely of T ∗M |S . It is well-known (exactly by the same arguments as in the
case of ordinary de Rham complexes) that the de Rham complexes of transitive Lie
algebroids are elliptic. This, together with the ellipticity of the de Rham complex of

S, also implies the ellipticity of the quotient Ω
•

S = Ω•
S/Ω•(S): the symbol complex

of (Ω
•

S , dπ) at non-zero ξ ∈ T ∗M is the quotient of the symbol complex of Ω•
S at ξ

modulo the symbol complex of Ω•(S), hence acyclic (being a quotient of two acyclic
complexes).

For the proof of the remaining statements, we invoke some general facts about
elliptic complexes (see, e.g., [8]), as we now explain. So let us consider an elliptic
complex of order m over a compact manifold S:

. . . // Γ(Ep−1)
D

// Γ(Ep)
D

// Γ(Ep+1) // . . .

Part (i), follows from the following fact: if the complex is exact at level p, then
the same is true for the completed sequence

. . . // Γ(r+m)(Ep−1)
D

// Γ(r)(Ep)
D

// Γ(r−m)(Ep+1) // . . .

To see this, recall that there exists a paramatrix P for D, i.e., pseudo-differential
operators of order −m satisfying PD +DP = Id−K, for some smoothing operator
K. Therefore, if u ∈ Γ(r)(Ep) satisfies D(u) = 0, it follows that

u = K(u) + D(P (u)).

Since K(u) is smooth and is killed by D, we have K(u) = D(v) for some smooth
v. On the other hand, P (u) ∈ Γ(r−m)(Ep+1), because P is of order −m. Hence
w = v + P (u) belongs to Γ(r−m)(Ep+1) and u = D(w), as desired.

Part (ii) follows from another standard fact for elliptic complexes over compact
manifolds: D(Γ(m)(Ep)) is closed in Γ(0)(Ep+1). Using this, let us check that
D(Γ(r)(Ep)) is closed in Γ(r−m)(Ep+1). So assume that un ∈ Γ(r)(Ep) and that
D(un) converges to u in Γ(r−m)(Ep+1): we want to show that u = D(v), for some
v ∈ Γ(r)(Ep). Using a paramatrix as above, we write u = K(u) + DP (u). If we set
vn := K(un), we find that D(vn) = KD(un). Since K is smoothing, the vn will be
smooth and D(vn) converges to K(u) in Γ(0)(Ep+1). It follows that K(u) = D(v′)
for some v′ ∈ Γ(Ep), so that u = D(v) where v = v′ + P (u) ∈ Γ(r)(Ep).

To prove part (iii), note that (i) and (ii) show that we are in the following
situation: we have a sequence of Hilbert spaces and bounded operators

U
A
→ V

B
→ W

which is exact in the middle and with the property that the range of B is closed
in W . We claim that, under such circumstances, △ := AA∗ + B∗B : V → V is an
isomorphism. To see this, decompose

U = U0 ⊕ U⊥
0 , V = V0 + V ⊥

0 , W = W0 ⊕ W⊥
0 ,
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where U0 = Ker(A)⊥, V0 = Im(A) = Ker(B) and W0 = Im(B). Note that our
hypothesis guarantee that these are all Hilbert space decompositions. Moreover,
we have that

A0 := A|U0
: U0 −→ V0, B0 := B|V ⊥

0

: V ⊥
0 −→ W0

are isomorphisms (continuous bijections between Hilbert spaces). With respect to
the above decomposition, △ = diag(A0A

∗
0, B

∗
0B0), hence it is an isomorphism. �

8. Proofs: the Poisson case

In this section we prove first Theorem 1.1, concerning stability. Then we indi-
cate the changes necessary to prove Theorem 1.2 about strong stability. The last
paragraph contains the proof of the necessity conditions given in Theorem 1.3.

8.1. Proof of Theorem 1.1. We now place ourselves under the assumptions of
Theorem 1.1 and we set k = κ − 1. For the proof we will use the reduced complex
ΩS and the operators dθ,s acting on it. Recall that

Ω
l

S =
∑

p+q=l
q≥1

Ωp(S;∧qE), dθ,s = addsθv +ddsΓ + addsF .

Given a section s ∈ Γ(k)(E), we consider the element

c(θ, s) := (θv|s, Γθ|s) ∈ Ω
2,(k−1)

S .

We recall that our aim is to look for a sections s such that this expression is zero.
Note that such an s is necessarily smooth, hence it will define a symplectic leaf of
θ (Proposition 5.1). We introduce the functional Φθ : Γ(k)(E) → R:

Φθ(s) := ||c(θ, s)||2(k−1) = ||θv|s||
2
(k−1) + ||Γ|s||

2
(k−1),

where, as before, the subscript (k−1) indicates the use of the Sobolev inner product
of class k − 1.

Lemma 8.1. Φθ is a smooth and for each s, w ∈ Γ(k)(E) = Ω
1,(k)

S we have

(dsΦθ)(w) = −〈dθ,s(w), c(θ, s)〉(k−1).

Proof. For w ∈ Ω
1,(k)

S we compute:

(dsΦθ)(w) =
d

dt

∣∣∣∣
t=0

〈c(θ, s + tw), c(θ, s + tw)〉(k−1)

= 2〈
d

dt

∣∣∣∣
t=0

c(θ, s + tw), c(θ, s)〉(k−1) .

Hence it remains to check that the operation

Ω
1,(k)

S ∋ s 7−→ c(θ, s) ∈ Ω
2,(k−1)

S

is smooth, with first derivative precisely −dθ,s:

(14) −
d

dt

∣∣∣∣
t=0

c(θ, s + tw) = dθ,s(w), (w ∈ Ω
1,(k)

S )

We can check that this holds, by checking each component, so we need to show
that:

−
d

dt

∣∣∣∣
t=0

Γ|s+tw = ddsΓ(w), −
d

dt

∣∣∣∣
t=0

θv|s+tw = addsθv(w).
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We check the first identity by computing in local coordinates (the second one is
checked in a similar fashion and so is left for the interested reader):

−
d

dt

∣∣∣∣
t=0

(Γ|s+tw)
a
i =

d

dt

∣∣∣∣
t=0

(
∂(s + tw)a

∂xi

− Γa
i (x, s(x) + tw(x))

)

=
∂wa

∂xi
−

∂Γa
i

∂yb

(x, s(x))wb(x)

which are precisely the local expressions for the covariant derivative of w with
respect to the linear connection dsΓ. �

When θ = π, the zero section s = 0 is a critical point of Φπ. The next result
gives its Hessian.

Lemma 8.2. For w1, w2 ∈ Γ(k)(E) = Ω
1,(k)

S , we have:

(d2
0Φπ)(w1, w2) = 〈dπ,0(w1), dπ,0(w2)〉(k−1).

Proof. We compute, using Lemma 8.1:

(d2
0Φπ)(w1, w2) =

d

dt

∣∣∣∣
t=0

(dtw1
Φπ)(w2)

= −
d

dt

∣∣∣∣
t=0

〈dπ,tw1
(w2), c(π, tw1)〉(k−1).

Since c(π, 0) = 0, we conclude that:

(d2
0Φπ)(w1, w2) = −〈dπ,0(w2),

d

dt

∣∣∣∣
t=0

c(π, tw1)〉(k−1).

Applying (14), we obtain the desired formula. �

The previous results show that we have the Hilbert space decomposition:

Ω
1,(k)

S = Ker dπ,0 ⊕ (Ker dπ,0)
⊥.

For the sequel, we set K := Ker dπ,0 and W := K⊥. We have:

Lemma 8.3. The origin 0 ∈ W is a strongly non-degenerate critical point of
Φπ|W : W → R.

Proof. This follows from the computation of the Hessian given in Lemma 8.2 and

the fact that dπ,0(Ω
1,(k)

S ) is closed in Ω
2,(k−1)

S (see Proposition 7.4 (ii)). �

We have the following simple application of the inverse function theorem.

Proposition 8.4. Let H be a Hilbert space, let Λ be a topological space and let
Fλ : H → R be a family of C2-maps depending continuously on a parameter λ ∈ Λ.
If 0 ∈ H is a strongly non-degenerate critical point of Fλ0

, then there is a continuous
map U ∋ λ 7→ xλ ∈ H, defined in a neighborhood U ⊂ Λ of λ0, such that each xλ

is a critical point of Fλ.

Proof. Let G(·, λ) be the gradient of Fλ:

G : H× Λ → H∗ ≃ H, G(x, λ) := dxFλ.

By our assumptions on Fλ, the partial derivative D1G(x, λ) is continuous in both
x and λ, while D1G(0, λ0) : H → H is an isomorphism. We can then apply
the version of the inverse function theorem with parameters (see, e.g., [12, Theo-
rem 2]) to conclude that the map (x, λ) 7→ (G(x, λ), λ) has a continuous inverse
(y, λ) 7→ (G−1(y, λ), λ), defined in some neighborhood of (0, λ0). If we now set
xλ := G−1(0, λ), the result follows. �
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Remark 8.5. Assume that the parameter space is a product Λ = Λ′ ×H′, where
Λ′ is some topological space and H′ is a Hilbert space. If Fλ = F(θ,s) dependends
continuously on θ ∈ Λ′ and smoothly on s ∈ H ′, then the family of critical points
xλ = x(θ,s) will depend continuously on θ and smoothly on s. The proof is the
same, except that one now uses the version of the implicit function theorem with
parameters.

We can now proceed to complete the proof of Theorem 1.1. The family of
functionals indexed by (θ, s), with s ∈ K, defined by:

W ∋ w 7→ Φθ(s + w),

has a strongly non-degenerate critical point at the origin when θ = π. Hence,
there exists a neighborhood of π and a neighborhood of 0 in K, where the map
(θ, s) 7→ wθ,s ∈ W is defined, depends continuously on θ and smoothly on s, and

s̃θ,s := s + wθ,s

is a critical point of Φθ|s+W . Note that s̃θ,s can be assumed to be as small as we

wish (in Ω
1,(k)

S ), by considering small enough neighborhoods.
We claim that s̃θ,s is a symplectic leaf of θ, i.e., that it is a smooth section

satisfying c(θ, s̃θ,s) = 0 (see Proposition 5.1). To prove this, we start by remarking
that s̃θ,s being a critical point means that (see Lemma 8.1):

(ds̃θ,s
Φθ)(w) = 〈dθ,s̃θ,s

(w), c(θ, s̃θ,s)〉(k−1) = 0, ∀w ∈ W.

This shows that:

d
∗

θ,s̃θ,s
(c(θ, s̃θ,s)) ∈ W⊥ = K =⇒ dπ,0d

∗

θ,s̃θ,s
(c(θ, s̃θ,s)) = 0.

We recall that we also have dθ,s̃θ,s
(c(θ, s̃θ,s)) = 0. So, if we consider the operator

△θ,s̃θ,s
:= dπ,0d

∗

θ,s̃θ,s
+ d

∗

π,0dθ,s̃θ,s
: Ω

2,(k−1)

S → Ω
2,(k−1)

S

we find that
△θ,s̃θ,s

(c(θ, s̃θ,s)) = 0.

By Proposition 7.4 (iii), we know that △π = △π,0 is an isomorphism. Hence so are

△θ,s̃θ,s
, for s small enough and θ close enough to π. It follows that c(θ, s̃θ,s) = 0.

Note that, at this point we only know that s̃θ,s is of type H(k). However, the
equation c(θ, s̃θ,s) = 0 is elliptic on s̃θ,s, so s̃θ,s must be smooth.

In conclusion, we have proved the existence of a smooth section s̃θ,s, depending
continuously on θ and smoothly in s ∈ K, such that

s̃θ,s ∈ s + W

and Graph(s̃θ,s) is a symplectic leaf of θ. Now observe that elements in K, being

flat sections, are necessarily smooth, so K = Kerdπ = Γflat(ν
0(S)) = H1

π(M, S)
(Proposition 5.1 and Corollary 6.6 (i)) and this concludes the proof of Theorem 1.1.

8.2. Proof of Theorem 1.2. We now indicate the changes that are necessary to
prove Theorem 1.2.

The proof follows exactly the same pattern. As before, we set k = κ − 1. We

now consider the complex Ω•
S and the element c(θ, s, β) ∈ Ω

2,(k−1)
S which, for each

horizontally non-degenerate Poisson structure θ, with associated geometric triple

(θv|s, Γθ, Fθ), and each pair (β, s) ∈ Γ(k)(E) ⊕ Ω1,(k)(S) = Ω
1,(k)
S , is defined by:

c(θ, s, β) := (Γθ|s, θ
v|s, Fθ|s − ωS + dβ).

A small enough pair (s, β), with s and dβ smooth, such that c(θ, s, β) = 0 cor-
responds to a symplectic leaf Graph(s) which projects diffeomorphically to S and
which has symplectic form isotopic to ωS . This is just an extension of Proposition
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5.1 (see, e.g., the proof of Corollary 6.6 (ii)). Note that the equation dθ,s(θ|s) = 0
immediately implies:

dθ,sc(θ, s, β) = 0.

One now studies the functional Φθ : Ω
1,(k)
S → R defined by:

Φθ(s, β) := ||c(θ, s, β)||2(k−1),

which is smooth, with differential

(d(s,β)Φθ)(w) = −〈dθ,sw, c(θ, s, β)〉(k−1).

When θ = π and (s, β) = 0, this functional has a critical point with Hessian given
by:

d2
(s,β)Φθ)(w1, w2) = 〈dπ,0w1, dπ,0w2)〉(k−1).

Hence, set K := Kerdπ,0 and W := (Ker dπ,0)
⊥. It follows that for (s, β) ∈ K the

functional defined by

W ∋ w 7→ Φθ((s, β) + w),

has a strongly non-degenerate critical point at the origin when θ = π.
Hence, there exists a neighborhood of π and a neighborhood of the origin in K,

where the map (θ, s, β) 7→ wθ,s,β ∈ W is defined, and

(s̃θ,s,β, β̃θ,s,β) := (s, β) + wθ,s,β

is a critical point of Φθ|(s,β)+W . Note that wθ,s,β depends continuously on θ and
smoothly on (s, β).

One needs to show that:

c(θ, s̃, β̃) = 0.

This follows by exactly the same method as in the proof of Theorem 1.1: One

applies the “laplacian” type operator △θ,s : Ω
2,(k−1)
S → Ω

2,(k−1)
S defined by:

△θ,s := dθ,sd
∗
θ,s + d∗

θ,sdθ,s,

to this element, and checks that:

△θ,s(c(θ, s̃, β̃)) = 0.

By Proposition 7.4, when θ = π and s = 0, the operator △π,0 is an isomorphism.
Hence, for θ and s small enough we have that △θ,s is also an isomorphism, so we

must have c(θ, s̃, β̃) = 0.
To complete the proof, note that elements (s, β) ∈ K must have s smooth (since

s is a flat section) and that pairs (s̃θ,s,β , β̃θ,s,β) and (s̃θ,s′,β′ , β̃θ,s′,β′) define the
same symplectic leaf of θ precisely when s = s′ and −dβ = σ|s = σ|s′ = −dβ′ (by
Corollary 6.6 (ii)). Since σ|s is smooth, we can always choose a smooth 1-form β
with −dβ = σ|S . Hence, the space of symplectic leaves is parametrized by:

{s ∈ Γflat(ν
0(S)) : σ|s ∈ d(Ω1(S))}

and this is precisely the image of the map H1
π(M, S) → H1

π,S(M).

8.3. Proof of Theorem 1.3. To complete the discussion of the Poisson case, we
are missing the proof of the necessary condition for stability given in Theorem 1.3.

We place ourselves under the assumptions of Theorem 1.3. Thus we can assume
that we have a vector bundle p : E → S with a Poisson structure π ∈ X2(E) for
which the zero section is a compact symplectic leaf (S, ωS). The Poisson structure
π is horizontally non-degenerate and the corresponding triple (πv, Γπ, Fπ) is formed
by a linear vertical Poisson structure, a linear connection, and an affine 2-form:
Fπ = ωS + σ, where σ ∈ Ω0,2

lin (E).
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Let c ∈ Ω2
S(E) and split it into its components:

c = c2,0 + c1,1 + c0,2 ∈ Ω2,0
S ⊕ Ω1,1

S ⊕ Ω0,2
S .

To this element we associate a family of horizontally non-degenerate bivector fields
πt ∈ X2(E), with t ∈ R, defined by the geometric triple:

(πt)
v := πv + t c2,0,

Γπt
:= Γπ + t c1,1,

Fπt
:= Fπ + t c0,2 = ωS + σ + t c0,2.

The properties of [·, ·], in particular the fact that it vanishes on ΩS , show that:

[πt, πt] = 0 ⇐⇒ dπ,0c = 0.

Hence, if c is a cocycle, then πt is a family of Poisson structures with π0 = π.
In order to prove part (i) of the theorem, we assume that S is a stable leaf. We

need to show that the map Φ : H2
π,S(E) → H2

π(E, S) vanishes, i.e., that given a

cocycle c ∈ Ω2
S(E), then the cocycle

φ(c) := c2,0 + c1,1 ∈ Ω
2

S

is exact. For this, observe that for t small enough, the associated Poisson structure
πt is close to π and so must have a leaf S′ close to S, which projects diffeomorphically
under p : E → S. By Proposition 5.1, the leaf S′ is of the form Graph(s) for a
section s ∈ Γ(E) satisfying:

(πt)
v|s = 0, Γπt

|s = 0.

The expressions of (πt)
v and Γπt

given above, show that this can be written:

d1,0
π s = −t c2,0, d0,1

π s = −t c1,1.

This just means that dπ,0

(
1
t
s
)

= −φ(c), so φ(c) is exact.
Now we prove part (ii) of the theorem. We assume that S is a strongly stable leaf

and we show that H2
π,S(E) = 0. For this, we choose a cocycle c ∈ Ω2

S(E) and we
form the associated family of Poisson structures πt. Since S is strongly stable, for
t small enough, πt must have a leaf S′ close to S, which projects diffeomorphically
under p : E → S, and with symplectic form isotopic to ωS . This means that S′ is
described by a section s such that:

(πt)
v|s = 0, Γπt

|s = 0, Fπt
|s − ωS ∈ d(Ω1(S)).

The first two conditions, as we saw above, are equivalent to:

d1,0
π s = −t c2,0, d0,1

π s = −t c1,1.

The expression for Ft shows that the last condition amounts to:

σ|s + t c0,2 = dβ ⇐⇒ d−1,2
π s − d0,1

π β = −tc0,2,

for some β ∈ Ω1(S). We conclude that dπ

(
1
t
(s − β)

)
= −c, so c is exact.

9. Proofs: the Lie algebroid case

We now turn to the proof of Theorem 1.8. Since this proof is again very similar
to that of Theorem 1.1, we will just indicate the setup and the main steps. Before
that, we recall the construction of the deformation complex of a Lie algebroid (see
[6]) and its relationship with Poisson geometry.

Given a vector bundle A over M , one defines Cq
def(A) as the space of q-multi-

derivations on A, i.e., skew-symmetric multilinear maps:

Γ(A) ⊗ · · · ⊗ Γ(A)︸ ︷︷ ︸
q times

→ Γ(A)
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which is a derivation in each entry. This means that there exists a skew-symmetric
bundle map

σD : ∧q−1A → TM,

called the symbol, such that

D(α1, . . . , fαq) = fD(α1, . . . , αq) + σD(α1, . . . , αq−1)(f)αq ,

for any function f ∈ C∞(M) and sections α1, . . . , αq ∈ Γ(A). From this definition,
it is clear that a Lie algebroid structure on A can be interpreted as an element
ℓ ∈ C2

def(A), namely the Lie bracket of the structure, with symbol the anchor. The
condition that ℓ must satisfy makes use of a certain graded Lie bracket [·, ·] on
C•

def(A), which will be recalled below. Using this bracket, Lie algebroid structures
on A are in 1-1 correspondence with elements ℓ ∈ C2

def(A) which satisfy [ℓ, ℓ] = 0.
The space C•

def(A) can also be interpreted as the space of linear multivector fields
on the manifold A∗, which provides a close relationship with Poisson geometry. By
a linear q-vector field on A∗ we mean a q-vector field X ∈ Xq(A∗) which locally
looks like:

aj
J(x)ξj∂ξJ

+ bi
J′(x)∂∂xi ∧ ∂ξJ′

,

where x = (x1, . . . , xm) are coordinates in M , (ξ1, . . . , ξr) are fiberwise coordinates

in A∗ coming from a local frame of A, aj
J and bi

J′ are smooth functions, while J
and J ′ are multi-indices of length q and q − 1, respectively. We will denote this
space by X

q
lin(A

∗).
A coordinate free description of the isomorphism

X
q
lin(A) ∼= Cq

def(A), X 7→ DX

associates to X the derivation DX determined by:

eDX (α1,...,αq) = 〈deα1
∧ . . . ∧ deαq

, X〉,

where for α ∈ Γ(A) we denote by eα ∈ C∞(A∗) the fiberwise linear function on A
induced by α. The symbol of DX is given by:

σX(α1, . . . , αq−1)(f) = 〈deα1
∧ . . . ∧ deαq−1

∧ df̃ , X〉

for all f ∈ C∞(M), where f̃ = f ◦ p. Finally, the bracket on C•
def(A) mentioned

above corresponds to the restriction of the Schouten bracket to X•
lin(A

∗). For our
purposes, this can be taken as the definition of the bracket on C•

def(A).
We now turn to the proof of Theorem 1.8. We denote by ℓ0 ∈ C2

def(A) the
original Lie algebroid structure on A. In order to emphasize the analogy with the
previous proof, we will denote by S, instead of L, a compact leaf of ℓ0. As in
the Poisson case, after choosing a tubular neighborhood of S, we may assume that
M is a vector bundle p : E → S. We may also assume that, as a vector bundle,
A = p∗AS where AS = A|S .

The space that plays the role analogue of the space ΩE for the Poisson case, is
the space

C•
E := C•

def(A),

endowed itself with the bracket coming from the Schouten bracket on multivector
fields on A∗. On the other hand, the analogue of ΩS is the space

C•
S := Ω•−1(AS ; E).

All the spaces that we consider will be subspaces of CE . For instance, Cq
S sits

naturally inside Cq
E : any c ∈ Ωq−1(AS ; E) induces a derivation D ∈ Cq

def(A) which
is zero on sections constant on the fibers and has symbol σD = c (use the natural
inclusion of p∗E into TE).

We will also use local coordinates to express elements in CE . For that, we choose
local coordinates (xi) in S and fiberwise coordinates (yj) on E, which together
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give coordinates on the total space E. We also choose fiberwise coordinates (ξk)
on A = p∗AS coming from fiberwise coordinates on AS . Then elements in Cq

E are
sums of the type

(15) ai
K′(x, y)∂xi ∧ ∂ξK′

+ bj
K′′(x, y)∂yj ∧ ∂ξK′′

+ ck,K(x, y)ξk∂ξK

where the sums are over the indices i, j, k and over the multi-indices K of length
q, and K ′ and K ′′ of length k′ = k′′ = (q − 1). Moreover, elements in Cq

S are those
elements with local expressions:

bj
K(x)∂yj ∧ ∂ξK

(note that the coefficient does not depend on y).
Any automorphism φ of the vector bundle A (not necessarily covering the iden-

tity) induces a transformation on X•(A∗) denoted by the same letter. In particular,
the family of bundle automorphisms φs

t : A → A, defined for t > 0 and s ∈ Γ(A)
by:

(x, y, ξ) 7−→ (x, ty + s(x), ξ),

induces transformations φs
t : CE → CE . By construction, each φs

t preserves the
bracket on CE . We also put φt = φ0

t . In local coordinates, φs
t transforms an

element (15) into the element:

ai
K′(x, ty + s(x))∂xi ∧ ∂ξK′

+

+
1

t

(
bj
K′′(x, ty + s(x)) − ai

K′′(x, ty + s(x))
∂sj

∂xi

)
∂yj ∧ ∂ξK′

+

+ ck,K(x, ty + s(x))ξk∂ξK

It is clear now that, just as in the Poisson case, we can view CS inside CE as the
subspace:

CS := {u ∈ CE : φt(u) =
1

t
u}.

We also introduce the subspace:

CE,lin := {u ∈ CE : φt(u) = u}.

Similar to ΩE , we have a restriction operation along sections of E:

CE → CS , u 7→ u|s := lim
t→0

t φs
t (u).

In local coordinates, if u is an element given by (15), then u|s is the element:
(

bj
K′′(x, s(x)) − ai

K′′(x, s(x))
∂sj

∂xi

)
∂yj ∧ ∂ξK′

Given an algebroid structure on A, viewed as an element ℓ ∈ C2
E , the question

of when is the graph Graph(s) of a section s ∈ Γ(E) a leaf of ℓ, is answered by the
following proposition (which is analogous to Proposition 5.1):

Proposition 9.1. Given an algebroid structure ℓ on A, the graph of a section
s ∈ Γ(E) is a leaf of ℓ if and only if ℓ|s = 0.

Next, for u ∈ E we introduce the linearization dsu along a section s to be the
element:

dsu := lim
t→0

t φs
t (u) − u|s

t
.

Hence, for any u ∈ CE we have the formal expansion

φs
t (u) ∼

1

t
u|s + dsu + o(t).
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Just as in the Poisson case, for ℓ ∈ C2
E, we define the operator

dℓ,s := [dsℓ,−] : CS −→ CS

which rises the degree by 1. The operator dℓ,s is defined on the entire CE . The
fact that it restricts to CS is a formal consequence of the expansion above and the
definition of CS . It is easy to see that when ℓ = ℓ0 and s = 0, the resulting complex
(C•

S , dℓ0,0) coincides with the complex (Ω•−1(AS ; E), d) computing the Lie algebroid
cohomology of ℓ0 with coefficients in νS = E, which appears in the statement of
the theorem.

The analogue of Proposition 6.4 follows by linearizing the structure equation
[ℓ, ℓ] = 0 along a section s. To do so, we first apply φs

t and then formally expand
in powers of t. We obtain:

Proposition 9.2. For any algebroid structure ℓ on A and any s ∈ Γ(E),

dℓ,s(ℓ|s) = 0.

All the analytical aspects discussed in Section 7 go through by the same type of
arguments, with same care to obtain the bound κ > n

2 (in particular, replace [13,
Corollary 9.7] by the stronger [13, Theorem 9.6]).

The proof now follows the same pattern as before. For any algebroid structure
ℓ we want to look for sections s such that the element:

c(ℓ, s) = ℓ|s,

vanishes. Hence, one considers the functional Φℓ : C
1,(κ)
S → R defined by:

Φℓ(s) := ||c(ℓ, s)||2(κ−1),

and whose whose differential is

(dsΦℓ)(w) = −〈dℓ,s(w), c(ℓ, s)〉(κ−1).

For the original Lie algebroid structure ℓ0, the zero section s = 0 is a critical point
of this functional, and the Hessian at this point is:

(d2
0Φℓ0)(w1, w2) = 〈dℓ0,0(w1), dℓ0,0(w1)〉(κ−1).

Hence, if denote by K the kernel of

dℓ0,0 : C
1,(κ)
S → C

2,(κ−1)
S

and by W its orthogonal complement, then the restricted functional

Φℓ0 |W : W → R

will have a strongly non-degenerate critical point at the origin 0 ∈ W (here we use
the fact that the complex Ω•(AS ; E) is elliptic).

The conclusion is that for s ∈ K close enough to zero and ℓ close enough to ℓ0,
we find that there exists an element

s̃ℓ,s = s + wℓ,s ∈ s + W

which is a critical point of Φl|s+W . Exactly as in the Poisson case, one deduces
from this that the element c(ℓ, s̃ℓ,s) lies in the kernel of the operator:

△ℓ,s̃ := dℓ0,0d
∗
ℓ,s̃ + d∗

ℓ0,0dℓ,s̃.

When ℓ = ℓ0 and s = 0 the “laplacian” △ℓ,0 is an isomorphism, so we conclude
that, if ℓ is close enough to ℓ0 and s ∈ K is close enough to 0, then △ℓ,s̃ is also an
isomorphism. Therefore, we must have c(ℓ, s̃ℓ,s) = 0, so that s̃ defines a leaf of ℓ.
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To complete the proof, one remarks that since the complex C•
S = Ω•−1(AS ; E) is

elliptic and C0
S = 0 one has

K = ker(dℓ0,0 : C
1,(κ)
S → C

2,(κ−1)
S )

= ker(dℓ0,0 : C1
S → C2

S) = H0(AS ; E).
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